Assignment #3: Number theory. Solutions.

1. **Prime factorization.** Show that \(\sqrt[3]{3} \) is irrational.

 Solution: Suppose for a contradiction that \(\sqrt[3]{3} = \frac{m}{n} \) for some positive integers \(m \) and \(n \). Then \(3n^3 = m^3 \). Let \(k \) be the power of 3 in the (unique) prime factorization of \(n \), and let \(l \) be such power in the prime factorization of \(m \). Then the power of 3 in the prime factorization of \(3n^3 \) is \(3k + 1 \), and it is \(3l \) in the factorization of \(m^3 \). We get \(3k + 1 = 3l \), which is a contradiction as the right side is divisible by 3 and the left side is not.

2. **Euclid’s algorithm.** Use the Euclid’s Algorithm to find each of the following.

 (a) \(\text{gcd}(1230, 96) \):

 \[
 \begin{align*}
 1230 &= 96 \cdot 12 + 78 \\
 96 &= 78 \cdot 1 + 18 \\
 78 &= 18 \cdot 4 + 6 \\
 18 &= 6 \cdot 3
 \end{align*}
 \]

 \(\text{gcd}(1230, 96) = 3 \).

 (b) \(\text{gcd}(34, 411) \):

 \[
 \begin{align*}
 411 &= 34 \cdot 12 + 3 \\
 34 &= 3 \cdot 11 + 1
 \end{align*}
 \]

 \(\text{gcd}(34, 411) = 1 \).

3. **Congruences.** Evaluate the following.

 (a) \(36^{1620} \pmod{17} \)

 (b) \(36^{1620} \pmod{30} \)

 Solution (a): By Fermat’s little theorem \(36^{16} \equiv 1 \pmod{17} \). \(1620 = 16 \cdot 101 + 4 \). Therefore,

 \[
 36^{1620} \equiv 36^4 \equiv 2^4 = 16 \pmod{17}.
 \]

 (b): \(36 \equiv 6 \pmod{30} \) and \(6 \cdot 6 \equiv 6 \pmod{30} \). It follows that \(36^k \equiv 6 \pmod{30} \) for every positive integer \(k \), and, in particular, for \(k = 1620 \).
4. **Modular equations.** Solve the following equations.

(a) \(5x + 1 \equiv 0 \pmod{13}\);

(b) \(17x - 5 \equiv 0 \pmod{211}\);

(c) \(x^2 - 3x + 2 \equiv 0 \pmod{17}\).

Solution: (a) \(5 \cdot 8 - 13 \cdot 3 = 1\). Therefore \(5 \cdot 8 \equiv 1 \pmod{13}\).

\[
5x \equiv -1 \pmod{13} \\
8 \cdot 5x \equiv 8 \cdot (-1) \pmod{13} \\
x \equiv -8 \equiv 5 \pmod{13}.
\]

(b): Using Euclidean algorithm we obtain \(5 \cdot 211 - 62 \cdot 17 = 1\), and \((-62) \cdot 17 \equiv 1 \pmod{211}\). As in (a), we get \(x \equiv (-62) \cdot 5 = -310 \equiv 112 \pmod{211}\).

c):

\[
x^2 - 3x + 2 \equiv 0 \pmod{17} \\
(x - 1)(x - 2) \equiv 0 \pmod{17} \\
x \equiv 1, 2 \pmod{17}.
\]

5. **Proofs.**

(a) Show that for all integers \(a, b\) and \(k\) we have

\[
\gcd(a, b) = \gcd(b, a - kb).
\]

(b) Show that for all positive integers \(m\) and \(n\)

\[
\gcd(2^m - 1, 2^n - 1) = 2^{\gcd(m, n)} - 1.
\]

Solution: a) Let \(d_1 = \gcd(a, b)\) and let \(d_2 = \gcd(b, a - kb)\). We have \(d_1|a\) and \(d_1|b\), therefore \(d_1|a - kb\) and consequently \(d_1|d_2\). On the other hand, \(d_2|b\) and \(d_2|a - kb\), therefore \(d_2|(a - kb) + k \cdot b = a\). It follows that \(d_2|d_1\). Thus, \(d_1 = d_2\), as required.

b): Suppose not. Let \(m, n\) be the pair of positive integers for which the formula does not hold chosen with \(m + n\) as small as possible and with \(m > n\). (If \(m = n\) the formula is clearly correct.) Using part (a) we have,

\[
\gcd(2^m - 1, 2^n - 1) = \gcd(2^n - 1, 2^m - 1 - 2^{m-n}(2^n - 1)) = \gcd(2^n - 1, 2^{m-n} - 1).
\]

As \(n + (m - n) = m < m + n\), by the choice of \(m\) and \(n\) as the counterexample with the smallest sum, we have

\[
\gcd(2^n - 1, 2^{m-n} - 1) = 2^{\gcd(n, m-n)} - 1 = 2^{\gcd(m, n)} - 1,
\]

where we used the result of part (a) again in the last equality. Therefore the formula is correct for \(m\) and \(n\), contradicting existence of a counterexample.