1. **Fermat primality test.** A number m passes the Fermat primality test if $2^{m-1} \equiv 1 \pmod{m}$.

 a) Does $m = 2047$ pass the test?

 b) Did the test give the correct answer in this case?

2. **RSA encryption.** Using a public key $N = 55$ and an exponent $e = 3$ we want to transmit a message $m = 12$.

 a) What is the encryption m^* of m using RSA?

 b) Run the RSA decryption method to decrypt m^*.

3. **Bijection.** Give a bijection between the set of all integers and the set of all positive integers.

4. **Counting techniques.** How many ways are there to position two black rooks and two white rooks on an 8×8 chessboard so that no two pieces of different colors share a row or a column?

5. **Binomial coefficients.** What is the coefficient of x^7y^5 in

 a) What is the coefficient of x^7y^5 in $(x + y)^{12}$?

 b) What is the coefficient of x^7y^5 in $(2x - y)^{12}$?

6. **Combinatorial identity.**

 a) Using the formula for binomial coefficients prove that for all positive integers $k \leq r \leq n$

 $$\binom{n}{r} \binom{r}{k} = \binom{n}{k} \binom{n-k}{r-k}.$$

 b) Give a bijective proof of the above formula by interpreting both sides as enumerating certain pairs of subsets of an n-element set.