Counting using bijections

Review of MATH 240. A function \(f : X \to Y \) is

- a surjection (or onto) if for every \(y \in Y \) there exists \(x \in X \) such that \(y = f(x) \),
- an injection if for every \(y \in Y \) there exists at most one \(x \in X \) such that \(y = f(x) \),
- a bijection if for every \(y \in Y \) there exists exactly one \(x \in X \) such that \(y = f(x) \).

Let \([n]\) denote \(\{1, 2, \ldots, n\} \)

Theorem 1.

1. There exist \(n^k \) sequences \(s_1s_2\ldots s_k \) of length \(k \) such that \(s_1, s_2, \ldots, s_k \in [n] \). Equivalently, there are \(n^k \) functions \(f : [k] \to [n] \).
2. There exist \(n(n-1)\ldots(n-k+1) \) sequences \(s_1s_2\ldots s_k \) of length \(n \) such that \(s_1, s_2, \ldots, s_k \in [n] \), and \(s_i \neq s_j \) for \(i \neq j \). Equivalently, there are \(n(n-1)\ldots(n-k+1) \) injections \(f : [k] \to [n] \).
3. There are \(n! \) permutations of \([n]\), i.e. bijections \(f : [n] \to [n] \).

Lemma 2. There are \(2^n \) subsets of an \(n \) element set.

Lemma 3. There are

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]

\(k \) element subsets of an \(n \) element set.

Theorem 4 (Binomial theorem).

\[
(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}.
\]

Corollary 5.

\[
2^n = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \ldots + \binom{n}{n},
\]

\[
\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \ldots = \binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \ldots
\]

Theorem 6. There exist \(\binom{n+k-1}{k-1} \) solutions to the equation

\[
x_1 + x_2 + \ldots + x_k = n,
\]

such that \(x_1, x_2, \ldots, x_k \geq 0 \) are integers.

There exist \(\binom{n-1}{k-1} \) solutions to the above equation if we require that \(x_1, x_2, \ldots, x_k \geq 1 \) instead.

Labelled trees.

Theorem 7. There exist \(n^{n-2} \) trees on \(n \) vertices with vertices labelled 1, 2, \ldots, \(n \).
Catalan numbers. Let \(C_n \) denote the \(n \)th Catalan number.

\[
C_n = \frac{1}{n+1} \binom{2n}{n}.
\]

Theorem 8. \(C_n \) counts the number of the following objects:

- Sequences of \(n \) pluses and \(n \) minuses, such that each (initial) partial sum is non-negative.
- Dyck walks: Paths from \((0,0)\) to \((2n,0)\) using steps \((1,1)\) and \((1,-1)\) and never going below the \(x \) axis.
- Rooted plane trees with \(n+1 \) vertices.
- Planted\(^1\) trivalent\(^2\) with \(2n+2 \) vertices
- Decompositions of an \((n+2)\)-gon into \(n \) triangles.

Generating functions

The formal power series

\[
F(x) = \sum_{n \geq 0} f(n)x^n
\]

is the ordinary generating function for the sequence \(f(n) \).

Basic generating function method.

1. Find a recurrence for \(f(n) \)
2. Multiply both sides of the recurrence by \(x^n \).
3. Solve the resulting equation to find \(F(x) \).
4. Express \(F(x) \) as power series again to find \(f(n) \).

\[
\frac{1}{1-ax} = \sum_{n \geq 0} a^n x^n.
\]

Manipulating ordinary generating functions. Let \(F(x) = \sum_{n \geq 0} f(n)x^n \) then

\[
\sum_{n \geq 0} f(n+k)x^n = \frac{F(x) - f(0) - f(1)x - \ldots - f(k-1)x^{k-1}}{x^k},
\]

\[
x \frac{d}{dx} F(x) = \sum_{n \geq 0} n f(n)x^n.
\]

If \(G(x) = \sum_{n \geq 0} g(n)x^n \), \(H(x) = \sum_{n \geq 0} h(n)x^n \) then

\[
H(x)G(x) = \sum_{n \geq 0} \left(\sum_{k=0}^{n} h(k)g(n-k) \right) x^n.
\]

Convolutions. If \(F_i(x) \) is the generating function for selecting items from the set \(S_i \) for \(i = 1, 2, \ldots, k \) then \(F_1(x)F_2(x) \ldots F_k(x) \) is the generating functions for selecting items from \(S_1 \cup S_2 \ldots \cup S_k \).

\(^1\)the root has degree one
\(^2\)every vertex has degree one or three
Exponential generating functions. The formal power series
\[\hat{F}(x) = \sum_{n \geq 0} f(n) \frac{x^n}{n!} \]
is the exponential generating function for the sequence \(f(n) \).

If \(\hat{F}(x) = \sum_{n \geq 0} f(n) \frac{x^n}{n!} \) then
\[\frac{d}{dx} \hat{F}(x) = \sum_{n \geq 0} f(n+1) \frac{x^n}{n!} , \]
\[x \frac{d}{dx} \hat{F}(x) = \sum_{n \geq 0} n f(n) \frac{x^n}{n!} , \]
If \(G(x) = \sum_{n \geq 0} g(n) \frac{x^n}{n!} \), \(H(x) = \sum_{n \geq 0} h(n) \frac{x^n}{n!} \) then
\[\hat{H}(x)\hat{G}(x) = \sum_{n \geq 0} \left(\sum_{k=0}^{n} \binom{n}{k} h(k) g(n-k) \right) \frac{x^n}{n!} . \]
\[e^{ax} = \sum_{n \geq 0} a^n \frac{x^n}{n!} . \]