Problem Seminar.
Number theory.

Classical results.

1. **Euler.** For a positive integer n and any integer a relatively prime to n one has
 \[a^{\phi(n)} \equiv 1 \pmod{n}, \]
 where $\phi(n)$ is the number of positive integers between 1 and n relatively prime to n.

2. **Polignac’s formula.** If p is a prime number and n a positive integer, then the exponent of p in $n!$ is
 \[\left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \ldots. \]

3. **Chinese Remainder theorem.** Let m_1, m_2, \ldots, m_k be pairwise positive integers greater than 1, such that $\gcd(m_i, m_j) = 1$ for $i \neq j$. Then for any integers a_1, a_2, \ldots, a_k the system of congruences
 \[x \equiv a_1 \pmod{m_1}, \]
 \[x \equiv a_2 \pmod{m_2}, \]
 \[\ldots \]
 \[x \equiv a_k \pmod{m_k}. \]
 has solutions, and any two such solutions are congruent modulo $m = m_1 m_2 \ldots m_k$.

4. **Sylvester’s theorem.** Let a and b be positive integers with $\gcd(a, b) = 1$. Then $ab - a - b$ is the largest positive integer c for which the equation $ax + by = c$ is not solvable in nonnegative integers.

Problems.

1. Prove that $n!$ is not divisible by 2^n for any positive integer n.

2. **Putnam 1956. A2.** Given any positive integer n, show that we can find a positive integer m such that mn uses all ten digits when written in the usual base 10.

3. **Putnam 2000. A2.** Prove that there exist infinitely many integers n such that $n, n+1, n+2$ are each the sum of the squares of two integers. [Example: $0 = 0^2 + 0^2$, $1 = 0^2 + 1^2$, $2 = 1^2 + 1^2$.]

4. **Putnam 2013. A2.** Let S be the set of all positive integers that are not perfect squares. For n in S, consider choices of integers a_1, a_2, \ldots, a_r such that $n < a_1 < a_2 < \cdots < a_r$ and $n \cdot a_1 \cdot a_2 \cdots a_r$ is a perfect square, and let $f(n)$ be the minimum of a_r over all such choices. For example, $2 \cdot 3 \cdot 6$ is a perfect square, while $2 \cdot 3, 2 \cdot 4, 2 \cdot 5, 2 \cdot 3 \cdot 4, 2 \cdot 3 \cdot 5, 2 \cdot 4 \cdot 5$, and $2 \cdot 3 \cdot 4 \cdot 5$ are not, and so $f(2) = 6$. Show that the function f from S to the integers is one-to-one.
5. **Putnam 2000. B2.** Prove that the expression
\[
gcd(m, n)^{n \choose m}
\]
is an integer for all pairs of integers \(n \geq m \geq 1 \).

6. **USA 1991.** Let \(n \) be an arbitrary positive integer. Show that the following sequence is eventually constant modulo \(n \):
\[
2, 2^2, 2^{2^2}, 2^{2^{2^2}}, 2^{2^{2^{2^2}}}, \ldots
\]

7. **IMO 2002.** The positive divisors of an integer \(n > 1 \) are \(1 = d_1 < d_2 < \ldots < d_k = n \). Let \(s = d_1d_2 + d_2d_3 + \ldots + d_{k-1}d_k \). Prove that \(s < n^2 \) and find all \(n \) for which \(s \) divides \(n^2 \).

8. **IMO 2011.** Let \(f \) be a function from the set of integers to the set of positive integers. Suppose that, for any two integers \(m \) and \(n \), the difference \(f(m) - f(n) \) is divisible by \(f(m - n) \). Prove that, for all integers \(m \) and \(n \) with \(f(m) \leq f(n) \), the number \(f(n) \) is divisible by \(f(m) \).