
Classical results.

1. **AM-GM.** For any non-negative real numbers x_1, x_2, \ldots, x_n,

 \[
 \sqrt[n]{x_1 x_2 \cdots x_n} \leq \frac{x_1 + x_2 + \cdots + x_n}{n}.
 \]

2. **Cauchy-Schwarz.** For any real $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$,

 \[
 (x_1 y_1 + x_2 y_2 + \cdots + x_n y_n)^2 \leq (x_1^2 + x_2^2 + \cdots + x_n^2)(y_1^2 + y_2^2 + \cdots + y_n^2).
 \]

3. **Jensen.** For any convex function f and any real x_1, x_2, \ldots, x_n,

 \[
 f \left(\frac{x_1 + x_2 + \cdots + x_n}{n} \right) \leq \frac{f(x_1) + f(x_2) + \cdots + f(x_n)}{n}.
 \]

Problems.

1. Show that

 \[
 \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdots \frac{2n-1}{2n} < \frac{1}{\sqrt{2n+1}}.
 \]

2. **Putnam 2003. A2.** Let a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n be nonnegative real numbers. Show that

 \[
 (a_1 a_2 \cdots a_n)^{1/n} + (b_1 b_2 \cdots b_n)^{1/n} \leq [(a_1 + b_1)(a_2 + b_2) \cdots (a_n + b_n)]^{1/n}.
 \]

3. **Putnam 2004. B2.** Let m and n be positive integers. Show that

 \[
 \frac{(m+n)!}{(m+n)^{m+n}} < \frac{m! n!}{m^m n^n}.
 \]

4. **USA 1997.** A set of $n > 3$ real numbers has sum at least n and the sum of the squares of the numbers is at least n^2. Show that the largest positive number is at least 2.

5. **IMO 1994.** Let m and n be positive integers. Let a_1, a_2, \ldots, a_m be distinct elements of $\{1, 2, \ldots, n\}$ such that whenever $a_i + a_j \leq n$ for some i, j (possibly the same) we have $a_i + a_j = a_k$ for some k. Prove that:

 \[
 \frac{a_1 + a_2 + \cdots + a_m}{m} \geq \frac{n + 1}{2}.
 \]

6. **Putnam 2003. A4.** Let a, b, c, A, B, C be real, a, A non-zero such that $|ax^2 + bx + c| \leq |Ax^2 + Bx + C|$ for all real x. Show that $|b^2 - 4ac| \leq |B^2 - 4AC|$.

7. **Putnam 2003. B6.** Show that

 \[
 \int_0^1 \int_0^1 |f(x) + f(y)| \, dx \, dy \geq \int_0^1 |f(x)| \, dx
 \]

 for any continuous real-valued function f on $[0, 1]$.