Lecture 1: Introduction
The probabilistic method -
- to find an object with certain properties
 choose a random one (from carefully
 selected distribution).

Pioneered by Paul Erdős.

Lemma 1.1: Every graph with \(m \) edges has
 a bipartite subgraph with \(\geq \frac{m}{2} \) edges.
 (Graphs are simple:
 Graph \(G \) consists of vertex set \(V(G) \)
 and edge set \(E(G) \subseteq V(G) \times V(G) \)
 collection of vertex pairs).

Proof: Let \((A, B) \) be a partition of \(V(G) \)
 chosen uniformly at random.
 \(P[\{v \in A\}] = \frac{1}{2} \) independently for every \(v \in V(G) \).

Let \(E' \subseteq E(G) \) consists of edges with one end in \(A \) another in \(B \).

\[
P[ee E'] = \frac{1}{2}.
\]

\[
E[|E'|] = \sum_{ee E'} P[ee E'] = \frac{1}{2} |E'| = \frac{1}{2} m.
\]
Ramsey number is the minimum integer N s.t. in every coloring of edges of complete graph on N vertices in two colors red & blue, there is either a complete subgraph on k vertices with all red edges or L vertices with all blue edges.

Ramsey theorem: $R(k, l)$ exists, for all $k, l \geq 1$.

Erdős–Szekeres: $R(k, k) \leq \binom{2k-2}{k-1} \sim c \frac{4}{\sqrt{k}}$.

Theorem 1.2: If \(\left(\binom{n}{k} \right)^{2^{-\binom{2}{2}}} < 1 \) (\(\star \)), then $R(k, k) \geq n$.

Proof: Color the edges of K_n in red or blue uniformly independently at random. (there are $2^{\binom{n}{2}}$ colorings, this is the same as choosing one at random).

Assume $V(K_n) = \{1, 2, \ldots, n\}$, $\left| V(K_n) \right| = n$.

For every $X \subseteq \{1, 2, \ldots, n\}$ with $|X| = k$
let $A_x = \begin{cases} 1 & \text{if all edges between vertices of } X \\ 0 & \text{otherwise} \end{cases}$

$$P[A_x = 1] = \frac{1}{2^{(k-1)}} = 2 \cdot \left(\frac{1}{2}\right)^{(k)}$$

$$E[\Sigma A_x] = \sum_x E[A_x] = \frac{1}{2^{(k-1)}} \cdot \binom{\frac{n}{k}}{(x)} \leq 1.$$

So $P[\Sigma A_x = 0] > 0 \rightarrow$ there exists a coloring with no monochromatic K_k.

$$R(k,k) \geq 2^{\frac{k}{2}}$$

$$R(k,k) \geq (1 + o(1)) \frac{k}{\sqrt{2}} 2^{\frac{k}{2}}$$

The best explicit constructions only give colorings with no monochromatic K_k on $\sim 2^{\frac{k}{2}}$ vertices.
Lemma 1.3: For all $k, n \in \mathbb{N}$

$$R(k, k) > n - \binom{n}{k} 2^{-\left(\frac{k}{3}\right)} \quad (***)$$

"Alteration method"

Proof: As seen in 1.2, there is a 2-coloring of K_n with $\leq \binom{n}{k} 2^{-\left(\frac{k}{3}\right)}$ monochromatic K_k.
Remove a vertex from each of them to obtain a graph coloring of complete graph with $\geq (***)$ vertices and no monochromatic K_k.

$$\downarrow$$

$$R(k, k) \geq (1+o(1)) \frac{k}{e} 2^{k/2}.$$

Best known bound:

$$R(k, k) \geq c \frac{k^2}{2^{k/2}}.$$

Upper bound:

$$R(k, k) \leq e^{-(\log k)^2} \binom{2k}{k}$$

Ashwin Sah 2020
k-uniform hypergraphs

H has vertex set \(V(H) \)
and edge set \(E(H) \subseteq V(H)^{(k)} \)

collection of \(k \) element subsets of \(V(H) \).

H is \(2 \)-colorable if there exists a 2-coloring of \(V(H) \)
s.t. every edge contains two vertices of different colors.

What is the minimum number of edges in a non \(2 \)-colorable \(k \)-uniform hypergraph?

Let \(m(k) \) denote the answer.

\[m(2) = 3 \quad m(3) = 7 \]

\(K_{5,3} \) all triples

\(K_{5} \) on 5 vertices.

10 edges

Fano plane 3-uniform hypergraph.

7 edges
Lemma 1.4: \(m(k) \geq 2^{k-1} \) for all \(k \geq 2 \).

Proof: If \(H \) is \(k \)-uniform \(|E(H)| \leq 2^{k-1} \) we want to show there is a \(2 \)-coloring.

Color each vertex white or black independently uniformly at random.

\[
\Pr[\text{e is monochromatic}] = 2 \cdot \frac{1}{2^k} = \frac{1}{2^{k-1}} \\
\mathbb{E}[\text{\# monochromatic edges}] = |E(H)| \cdot \frac{1}{2^{k-1}} < 1.
\]

So there is a coloring with no monochromatic edges.

\(m(k) \neq O(k^2 2^k) \)