Exponentially many perfect matchings in cubic graphs

Louis Esperet
G-SCOP, Grenoble

Andrew King
Columbia University

František Kardoš
P.J. Safarik University, Košice

Daniel Král’
Charles University, Prague

and

Sergey Norin
Princeton University
Perfect matchings in bridgeless cubic graphs

A bridge: an edge whose deletion disconnects the graph

Cubic graph: Every vertex is incident to exactly 3 edges

Perfect matching: A set of edges that covers all vertices exactly once.
Theorem (Petersen, 1891): Every bridgeless cubic graph has a perfect matching.

Observation (Tait, 1880): The Four Color Theorem is equivalent to the following:

The edge set of every planar cubic bridgeless graph is the union of three perfect matchings.

Conjecture (Berge, Fulkerson, 1971): In every bridgeless cubic graph there exists a collection of perfect matchings covering every edge exactly twice.
The number of perfect matchings

$m(G)$: The number of perfect matchings in a graph G

- $m(G)$ is hard to compute (Valiant, 1979)
- $m(G)$ is equal to the permanent of the graph biadjacency matrix when G is bipartite
- $m(G)$ is related to meaningful chemical and physical properties of molecules represented by G
Perfect matchings in bridgeless cubic graphs

$m(G)$: The number of perfect matchings in a graph G

Theorem: There exists a constant $\varepsilon > 0$ such that $m(G) \geq 2^{\varepsilon|V(G)|}$ in every cubic bridgeless graph G. ($\varepsilon = 1/3656$.)

Perfect matchings in bridgeless cubic graphs

\(m(G) \): The number of perfect matchings in a graph \(G \)

Theorem: There exists a constant \(\varepsilon > 0 \) such that \(m(G) \geq 2^{\varepsilon|V(G)|} \) in every cubic bridgeless graph \(G \). (\(\varepsilon = 1/3656 \).)

Conjectured by Lovász and Plummer (1970’s).

Previous results:

Voorhoeve (1979): \(m(G) \geq \left(\frac{4}{3} \right)^{|V(G)|/2} \) for bipartite \(G \).

Chudnovsky, Seymour (2008): \(m(G) \geq 2^{\varepsilon|V(G)|} \) for planar \(G \). (\(\varepsilon = 1/655978752 \).)

Edmonds, Lovász, Pulleyblank (1982): \(m(G) \geq n/4 + 2 (|V(G)| = n) \)

Král’, Sereni, Stiebitz (2008): \(m(G) \geq n/2 \)

Esperet, Král’, Škoda, Škrekovski (2009): \(m(G) \geq 3n/4 - 10 \)

Esperet, Kardoš, Král’ (2010): \(m(G) \) is superlinear.
$m^*(G)$:

$m^*(G)$: the maximum number k such that every edge of G belongs to at least k perfect matchings.
$m^*(G)$: the maximum number k such that every edge of G belongs to at least k perfect matchings.

We can not say the same for $m(G)$.

$$m^*(G) \geq m^*(G_1) \cdot m^*(G_2),$$
Voorhoeve’s splitting trick

$m^*(G)$: the maximum number k such that every edge of G belongs to at least k perfect matchings.

Theorem (Voorhoeve):

$m^*(G) \geq \left(\frac{4}{3} \right)^{|V(G)|/2 - 3}$ for every bipartite cubic graph G.

Proof:

![Diagram of graph G_1 with edges labeled e, f_1, f_2, f_3, f_4.]
Voorhoeve’s splitting trick

$m^*(G)$: the maximum number k such that every edge of G belongs to at least k perfect matchings.

Theorem (Voorhoeve): $m^*(G) \geq \left(\frac{4}{3}\right)^{\frac{|V(G)|}{2-3}}$ for every bipartite cubic graph G.

Proof:

Diagram: A graph G_1 with labeled edges. The edges are labeled e, f_1, f_2, f_3, and f_4.
Voorhoeve’s splitting trick

$m^*(G)$: the maximum number k such that every edge of G belongs to at least k perfect matchings.

Theorem (Voorhoeve): $m^*(G) \geq \left(\frac{4}{3}\right)^{|V(G)|/2-3}$ for every bipartite cubic graph G.

Proof:

![Graph notations]
Voorhoeve’s splitting trick

$m^*(G)$: the maximum number k such that every edge of G belongs to at least k perfect matchings.

Theorem (Voorhoeve): $m^*(G) \geq \left(\frac{4}{3}\right)^{|V(G)|/2^{-3}}$ for every bipartite cubic graph G.

Proof:

![Graph Diagram](image)

- G_1
- f_1, f_2, f_3, f_4
Voorhoeve’s splitting trick

\(m^*(G) \): the maximum number \(k \) such that every edge of \(G \) belongs to at least \(k \) perfect matchings.

Theorem (Voorhoeve): \(m^*(G) \geq \left(\frac{4}{3} \right)^{|V(G)|/2-3} \) for every bipartite cubic graph \(G \).

Proof:
Voorhoeve’s splitting trick

\(m^*(G) \): the maximum number \(k \) such that every edge of \(G \) belongs to at least \(k \) perfect matchings.

Theorem (Voorhoeve): \(m^*(G) \geq \left(\frac{4}{3} \right)^{|V(G)|/2} - 3 \) for every bipartite cubic graph \(G \).

Proof:

\[
3m^*(G) \geq m^*(G_1) + m^*(G_2) + m^*(G_3) + m^*(G_4)
\]
Cubic bridgeless graph with $m^*(G) = 1$
Cubic bridgeless graph with $m^*(G) = 1$
Cubic bridgeless graph with $m^*(G) = 1$
Cubic bridgeless graph with $m^*(G)=1$

Two perfect matchings M_1 and M_2 such that $M_1 \setminus M_2$ contains at least $\varepsilon |V(G)|$ disjoint cycles.
Two perfect matchings M_1 and M_2 such that $M_1 \cup M_2$ contains at least $\varepsilon |V(G)|$ disjoint cycles.
A strengthening

Theorem: There exists a constant $\epsilon > 0$ such that for every cubic bridgeless graph G either

- $m^*(G) \geq 2^{\epsilon|V(G)|}$ or
- for some two perfect matchings M_1 and M_2 in G the edge set $M_1 \cup M_2$ contains at least $\epsilon|V(G)|$ disjoint cycles.
The perfect matching polytope

With a perfect matching M we associate a vector $\chi_M \in R^{E(G)}$: $\chi_M(e) = \begin{cases} 1, & e \in M \\ 0, & e \notin M \end{cases}$

The perfect matching polytope $PMP(G)$ is the convex hull of characteristic vectors of perfect matchings of G.

Let $\delta(X)$ denote the set of edges in the cut separating X from $V(G)-X$.

Theorem (Edmonds): We have $w \in PMP(G)$ if and only if

- $0 \leq w(e) \leq 1$ for every $e \in E(G)$,
- $w(\delta(v)) = 1$ for every $v \in V(G)$,
- $w(\delta(X)) \geq 1$ for every odd $X \subseteq V(G)$.

A vector $w \in PMP(G)$ corresponds to a probabilistic distribution on the set of perfect matchings of G such that

$$\Pr[e \in M_w] = w(e).$$

If G is cubic and bridgeless then $w \equiv 1/3 \in PMP(G)$.
Burls

A set $X \subseteq V(G)$ is M-alternating for a perfect matching M of G if there exists another perfect matching M' such that M only differs from M' on X.

A set $X \subseteq V(G)$ is a burl if for every probabilistic distribution M_w such that

$$\Pr[e \in M_w] = \frac{1}{3},$$

we have

$$\Pr[X \text{ is } M_w \text{-alternating}] \geq \frac{1}{3}.$$

A foliage in G is a collection of pairwise disjoint burls.
A foliage
A foliage
A foliage
A foliage
A **foliage** in G is a collection of pairwise disjoint burls. Let $f(G)$ denote the maximum size of a foliage in G.

Lemma: $m(G) \geq 2^{f(G)/3}$

Proof: Given a foliage $\{X_1, X_2, \ldots, X_k\}$ there exists $w \in PMP(G)$ such that each X_i is w-alternating. Then

$$\Pr[\text{X_i is M_w - alternating}] \geq 1/3.$$

$$E[|\{i : X_i \text{ is M_w - alternating}\}] \geq k/3.$$

A perfect matching achieving the expected value can be independently changed to another perfect matching on each of the $k/3$ disjoint burls.
Examples of burls: Twigs

Lemma: For a cubic bridgeless graph G,

- $m^*(G) \geq 1$,
- $m^*(G) \geq 2$, if $|V(G)| \geq 6$ and G has no non-trivial cuts of size ≤ 3,
- $m(G) \geq 4$, if $|V(G)| \geq 6$.
Examples of burls: Twigs

Lemma: For a cubic bridgeless graph G,
- $m^*(G) \geq 1$,
- $m^*(G) \geq 2$, if $|V(G)| \geq 6$ and G has no non-trivial cuts of size ≤ 3,
- $m(G) \geq 4$, if $|V(G)| \geq 6$.

A set $X \subseteq V(G)$ is a **twig** if either $|\delta(X)| = 2$, or $|\delta(X)| = 3$ and $|X| \geq 5$.

Lemma: Every twig is a burl.

Proof: $\Pr[|M_w \cap \delta(X)| = 1] = 1$.

![Diagram](image-url)
Examples of burls: Twigs

Lemma: For a cubic bridgeless graph G,
- $m^*(G) \geq 1$,
- $m^*(G) \geq 2$, if $|V(G)| \geq 6$ and G has no non-trivial cuts of size ≤ 3,
- $m(G) \geq 4$, if $|V(G)| \geq 6$.

A set $X \subseteq V(G)$ is a **twig** if either $|\delta(X)| = 2$ or $|\delta(X)| = 3$ and $|X| \geq 5$.

Lemma: Every twig is a burl.

Proof: $\Pr[|M_w \cap \delta(X)| = 1] = 1$.

One of the edges of $\delta(X)$ is in at least 2 perfect matchings of the new graph.
Lemma: Vertex set of any cycle of length 4 is a burl.

Proof: \[\mathbb{E}[\mid M_w \cap \delta(X) \mid] = \frac{4}{3}, \]
\[\mid M_w \cap \delta(X) \mid \in \{0, 2, 4\}, \]
\[\Pr[\mid M_w \cap \delta(X) \mid = 0] \geq \frac{1}{3}. \]
We say that G_1 and G_2 are obtained from G by a cut contraction. (We can apply a similar procedure to cuts of size 2.)

Lemma: $m^*(G) \geq m^*(G_1)m^*(G_2)$, $f(G) \geq f(G_1) + f(G_2) - 2$.

We say that G has a core if a graph G' with $|V(G')| \geq 6$ and no non-trivial cuts of size at most 3 can be obtained from G by a (possibly empty) sequence of cut contractions.
Main technical statement

Theorem: Let G be a cubic bridgeless graph then, if G has a core

$$m^*(G) \geq 2^\alpha |V(G)| - \beta f(G) + \gamma,$$

where $\alpha << \beta << \gamma << 1$.
Main technical statement

Theorem: Let G be a cubic bridgeless graph then, if G has a core

$$m^*(G) \geq 2^{\alpha |V(G)| - \beta f(G) + \gamma}.$$

Sketch of a proof: By induction.

1. If G has no non-trivial cuts of size at most 3 apply Voorhoeve’s splitting trick.

 $$3m^*(G) \geq m^*(G_1) + m^*(G_2) + m^*(G_3) + m^*(G_4)$$

 $$|V(G_i)| = |V(G)| - 2$$

 $$f(G_i) \leq f(G) + 2$$
Main technical statement

Theorem: Let G be a cubic bridgeless graph then, if G has a core

$$m^*(G) \geq 2^{\alpha|V(G)|-\beta f(G)+\gamma}.$$

Sketch of a proof: By induction.

1. If G has no non-trivial cuts of size at most 3 apply Voorhoeve’s splitting trick.

2. Easy if for some small cut both contractions G_1 and G_2 have a core

$$m^*(G) \geq m^*(G_1)m^*(G_2) \geq 2^{\alpha|V(G)|-\beta f(G)-2\beta+2\gamma}$$

$$f(G) \geq f(G_1) + f(G_2) - 2.$$
Main technical statement

Theorem: Let G be a cubic bridgeless graph then, if G has a core

$$m^*(G) \geq 2^{\alpha |V(G)| - \beta f(G) + \gamma}.$$

Sketch of a proof: By induction.

1. If G has no non-trivial cuts of size at most 3 apply Voorhoeve’s splitting trick.

2. Easy if for some small cut both contractions G_1 and G_2 have a core.

3. Otherwise, G has a tree structure with respect to small cuts with exactly one “large” piece.
Cut decomposition

G has a tree structure with respect to small cuts with exactly one “large” piece.

$m^*(G) \geq m^*(G') \geq 2^{\alpha |V(G')| - \beta f(G') + \gamma}$
Cut decomposition

G has a tree structure with respect to small cuts with exactly one “large” piece.
Cut decomposition

G has a tree structure with respect to small cuts with exactly one “large” piece.
Cut decomposition

G has a tree structure with respect to small cuts with exactly one “large” piece.

If this part contained no long paths then we lost k twigs by deleting it a multiple of k vertices and gained at most one twig.
Burls in long paths of 3-cuts

A burl
Burls in long paths of 3-cuts
Burls in long paths of 3-cuts

Behaves like a 4-cycle
Conjecture (Lovász, Plummer, 1986): There exist constants $c_1(k), c_2(k) > 0$ such that for every k-regular graph G with $m^*(G) \geq 1$, we have

$$m(G) \geq c_1(k) \left(c_2(k) \right)^{|V(G)|}$$

Moreover, $c_2(k) \to 1$ as $k \to 1$.

Counterexample (Geelen, N.): For $k \geq 4$ there exist k-regular graphs G with $m^*(G) \geq 1$, and

$$m(G) \leq 2^{O(\sqrt{|V(G)|})}$$

(Examples are not $(k-1)$-edge-connected.)
k-regular graphs

Conjecture (Lovász, Plummer, 1986): There exist constants $c_1(k), c_2(k) > 0$ such that for every k-regular $(k-1)$-edge-connected graph G we have

$$m(G) \geq c_1(k) \left(c_2(k) \right)^{|V(G)|}$$

Moreover, $c_2(k) \to 1$ as $k \to 1$.

Theorem (Seymour): There exist a constant $\epsilon > 0$ such that $m(G) \geq 2^{\epsilon|V(G)|}$ in every k-regular $(k-1)$-edge-connected graph G.
Conjecture (Lovász, Plummer, 1986): There exist constants \(c_1(k), c_2(k) > 0 \) such that for every \(k \)-regular \((k-1)\)-edge-connected graph \(G \) we have

\[
m(\overline{G}) \geq c_1(k) \left(c_2(k) \right)^{|V(\overline{G})|}
\]

Moreover, \(c_2(k) \to 1 \) as \(k \to 1 \).

Theorem (Seymour): There exist a constant \(\varepsilon > 0 \) such that \(m(\overline{G}) \geq 2^{\varepsilon |V(\overline{G})|} \) in every \(k \)-regular \((k-1)\)-edge-connected graph \(G \).

Proof: Consider \(w \equiv 1/k \in PMP(G) \).
Choose 3-perfect matchings independently from the corresponding distribution.
Thank you!