final math133, linear algebra and geometry summer 2023

Examiner	Alexis Leroux-Lapierre
Associate examiner	Rosalie Bélanger-Rioux
Date and time of the examination	June 1st 2023, 9h00

Justify all your claims rigorously. This exam is worth 54% of the grade for math133. Question 1 is worth 5 points and questions 2,3,4,5,6,7,8 are worth 7 points. Allotted time is 3 hours.

1. (5 points) Find $x_1, x_2, x_3 \in \mathbb{R}$ satisfying the following system of equations :

$$\begin{cases} 3x_1 - x_2 + 4x_3 &= -7\\ 2x_1 + 3x_2 - 2x_3 &= 1\\ x_1 + x_3 &= -2 \end{cases}$$

2. (7 points) Let

$$\mathscr{B} = \{(2, -1, -1), (1, -1, -2), (-1, 1, 1)\}$$
 $\mathscr{C} = \{(2, -3), (3, -4)\}$

be bases of \mathbb{R}^3 and \mathbb{R}^2 respectively (you can assume that they indeed are bases). Consider the map $\mathcal{T} : \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$T(x_1, x_2, x_3) = (x_1 + x_2, x_2 - x_3).$$

- **a.** Show that T is linear.
- **b.** Is *T* surjective?
- **c.** What is the dimension of the kernel of T?
- **d.** Compute the matrix representation of T in bases \mathscr{B} and \mathscr{C} , i.e. $[T]_{\mathscr{C} \leftarrow \mathscr{B}}$

3. (7 points) Let U, V, W be \mathbb{K} -vector spaces and let $T : U \to V$ and $S : V \to W$ be linear maps. Show that if S is injective, then $\text{Ker}(S \circ T) = \text{Ker} T$.

4. (7 points) Consider the following subsets of \mathbb{R}^4 :

$$U_1 = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 ; x_1 + x_4 \ge 0 \}$$

$$U_2 = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 ; x_2 = 0 \text{ or } x_3 = 0 \}$$

$$U_3 = \{ (s, t + s, t - s, 3t + 2s) \in \mathbb{R}^4 ; s, t \in \mathbb{R} \}$$

Determine which subsets are subspaces and which are not. Justify your answer.

5. (7 points) Let $V = \mathbb{R}[x]$ be the \mathbb{R} -vector space of polynomials with coefficients in \mathbb{R} . Consider the map $T : \mathbb{R}[x] \to \mathbb{R}[x]$ given by

$$T(p(x)) = x^2 \cdot p(x).$$

- **a.** Show that T is a linear map.
- **b.** What is the kernel of T?
- **c.** What is the image of T?

6. (7 points) Let U,V be \mathbb{K} -vector spaces and let $u_1, \ldots, u_k \in U$ be linearly independent vectors. Show that if $T: U \to V$ is an injective linear map, then $T(u_1), \ldots, T(u_k) \in V$ are linearly independent.

7. (7 points) Let V be a \mathbb{K} -vector space and consider $v_1, v_2, v_3 \in V$ such that $v_1 + v_2 + v_3 = 0$. Show that

$$\operatorname{span}_{\mathbb{K}}\{v_1, v_2\} = \operatorname{span}_{\mathbb{K}}\{v_2, v_3\}.$$

- **8.** (7 points) Let U be a subspace of \mathbb{R}^n .
 - a. Show that

$$W = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n ; x_1y_1 + x_2y_2 + \dots + x_ny_n = 0 \text{ for all } (y_1, y_2, \dots, y_n) \in U\}$$

is a subspace of \mathbb{R}^n .

b. Assuming that n = 3 and $U = \{(x, y, z) \in \mathbb{R}^3 ; x + y + z = 0\}$, find a basis of W.