quiz 3 math133, linear algebra and geometry summer 2023

Justify all your claims rigorously. Allotted time is 1 hour.

1. Consider the following vectors of \mathbb{R}^3 :

 $v_1 = (2, 1, 1), \quad v_2 = (2, 0, -1), \quad v_3 = (4, 1, 0), \quad v_4 = (1, 1, 1).$

- **a.** Are v_1 , v_2 , v_3 , v_4 linearly independent? Justify your answer.
- **b.** Do v_1 , v_2 , v_3 , v_4 span \mathbb{R}^3 ? Justify your answer.
- **c.** Is $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$ a basis of \mathbb{R}^3 ? If so, justify your answer. If not, find a subset of \mathcal{B} which forms a basis of \mathbb{R}^3 and prove that it does in fact form a basis.
- **2.** Let U, V, W be \mathbb{K} -vector spaces and let $\mathcal{T} : U \to V$ and $S : V \to W$ be linear maps. Show that the composition

$$S \circ T : U \to W$$

is a linear map.