Exercises from Sally's book. 1.6.2, 1.6.15, 1.6.16
Other (also mandatory) exercises.

1. Given a partition \mathcal{C} of a set X, it was proven in class that the binary relation $E_{\mathcal{C}}$ on X is an equivalence relation. Prove this again on your own very carefully (without skipping any steps). Just in case, we recall the definition of $E_{\mathcal{C}}$: for any $x, y \in X$,

$$
x E_{\mathcal{C}} y: \Leftrightarrow \exists A \in \mathcal{C} \text { such that } x, y \in A .
$$

2. Conversely, given an equivalence relation E on a set X, it was proven in class that the set of E-classes form a partition \mathcal{C} of X and that $E_{\mathcal{C}}$ is exactly E. Prove this again on your own following the steps below.
(a) Prove that for each $x, y \in X, x E y$ if and only if $[x]_{E}=[y]_{E}$.
(b) Prove that $\bigcup_{x \in X}[x]_{E}=X$.
(c) Prove that for each $x, y \in X$, if $[x]_{E} \cap[y]_{E} \neq \emptyset$ then $[x]_{E}=[y]_{E}$.
(d) Conclude that $E_{\mathcal{C}}=E$.
3. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $f(z):=z^{2}$. Define the relation E_{f} on \mathbb{Z} by putting

$$
x E_{f} y: \Leftrightarrow f(x)=f(y)
$$

It was proven in class (for any function on any set) that this is an equivalence relation. Explicitly describe and list all E_{f}-equivalence classes.
4. Let $G:=(V, E)$ be an undirected graph with no loops, i.e. V is the set of vertices and $E \subseteq V^{2}$ is the set of edges, which is irreflexive and symmetric. For vertices $x, y \in X$, we say that y is adjacent to x (or y is a neighbor of x) if there is an edge $(x, y) \in E$. Assuming that V is finite, the degree of each vertex $v \in V$, denoted by $\operatorname{deg}_{G}(v)$, is the number of neighbors of x. Prove that the sum of all degrees, i.e. $\sum_{v \in V} \operatorname{deg}_{G}(v)$, has to be an even number.
5. There was a party of 170 people in which every person shook some other people's hands (at most one hand per person). It is possible that a person didn't shake anyone's hand. Prove that there are two people that shook equal number of hands.
Hint: Prove by contradiction. Use the statement of Question 4.

