Mathematical Logic

Homework 10

Due: May 17 (Fri)

1. Let $N := (\mathbb{N}, 0, S, +, \cdot)$ be the standard structure of natural numbers, and prove: **Theorem** (Tarski). *The set* \ulcorner Th(N) \urcorner *of codes of the theory* Th(N) *is not arithmetical.*

HINT: Use the fixed point lemma.

2. Let $R_1, \ldots, R_m \subseteq \mathbb{N}^k$ be computable relations such that for each $\vec{a} \in \mathbb{N}^k$ exactly one of $R_1(\vec{a}), \ldots, R_m(\vec{a})$ holds, and suppose that $g_1, \ldots, g_m : \mathbb{N}^k \to \mathbb{N}$ are computable functions. Then $g : \mathbb{N}^k \to \mathbb{N}$ given by

$$g(\vec{a}) := \begin{cases} g_1(\vec{a}) & \text{if } R_1(\vec{a}) \\ \vdots & \vdots \\ g_m(\vec{a}) & \text{if } R_m(\vec{a}) \end{cases}$$

is computable.

3. Prove that the following functions are computable.

(a)
$$\dot{-}: \mathbb{N}^2 \to \mathbb{N}$$
 defined by $n \dot{-} m := \begin{cases} n-m & \text{if } n \ge m \\ 0 & \text{otherwise.} \end{cases}$

- (b) Rem : $\mathbb{N}^2 \to \mathbb{N}$ defined by Rem(n, m) := the unique $r \in \{0, 1, \dots, m-1\}$ such that $n = q \cdot m + r$ if $m \neq 0$; otherwise, Rem(n, m) := 0.
- 4. It is an open question as to whether the decimal representation 3.1415926... of the number π contains arbitrarily large strings of consecutive 0s. Nevertheless, prove that the following function $f : \mathbb{N} \to \mathbb{N}$ is computable:

 $f(n) \coloneqq \begin{cases} 1 & \text{if the decimal representation of } \pi \text{ contains } n \text{ consecutive 0s} \\ 0 & \text{otherwise.} \end{cases}$