1. Let $\sigma_{\text {arthm }}:=(0, S,+, \cdot)$ be the signature of arithmetic and let $\urcorner:$ Formulas $(\sigma) \rightarrow \mathbb{N}$ be the coding function for $\sigma_{\text {arthm }}$-formulas informally defined in class. Recall that a σ-theory T is called computable (resp. arithmetical), if the set

$$
\ulcorner T\urcorner:=\{\ulcorner\varphi\urcorner: \varphi \in T\} \subseteq \mathbb{N}
$$

is computable (resp. arithmetical). Define $\operatorname{Proof}_{T} \subseteq \mathbb{N}^{2}$ by

$$
\operatorname{Proof}(a, b): \Leftrightarrow b=\ulcorner\varphi\urcorner \text { and } a \text { is a code of a proof of } \varphi \text { from } T \text {. }
$$

It was proven in class that if a σ-theory T is computable, then the relation Proof_{T} is computable. Prove the same for arithmetical, i.e. if a σ-theory T is arithmetical, then so is the relation Proof_{T}.

Definition. A function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is called primitive recursive if it is one of the basic functions below or is obtained from the latter by finitely many applications of the operations of composition and primitive recursion. Basic functions:

- Successor function $S: \mathbb{N} \rightarrow \mathbb{N}$ given by $n \mapsto n+1$;
- Constant functions $C_{m}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ given by $\vec{a} \mapsto m$ for each $k, m \in \mathbb{N}$;
- Projection functions $P_{i}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ given by $P_{i}^{k}\left(x_{1}, \ldots, x_{k}\right):=x_{i}$ for each $k \in \mathbb{N}$ and $i \in\{1, \ldots, k\}$.

2. Prove that the following functions are primitive recursive.
(a) Predecessor function $P D: \mathbb{N} \rightarrow \mathbb{N}$ defined by $n \mapsto n-1$ if $n \geqslant 1$ and 0 otherwise.
(b) Secure subtraction $-: \mathbb{N}^{2} \rightarrow \mathbb{N}$ defined by $(n, m) \mapsto n-m$ if $n \geqslant m$ and 0 otherwise.
(c) Addition $N^{2} \rightarrow \mathbb{N}$ defined by $(x, y) \mapsto x+y$.
(d) Multiplication $N^{2} \rightarrow \mathbb{N}$ defined by $(x, y) \mapsto x \cdot y$.
(e) Exponentiation $N^{2} \rightarrow \mathbb{N}$ defined by $(x, y) \mapsto x^{y}$ if $x \neq 0$ and 0 otherwise.
3. Intertwined primitive recursion. For $i \in\{0,1\}$, let $g_{i}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ and $h_{i}: \mathbb{N}^{k+2} \rightarrow \mathbb{N}$ be computable functions. Let $f_{0}, f_{1}: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ be such that for each $\vec{a} \in \mathbb{N}^{k}$ and $n \in \mathbb{N}$,

$$
\left\{\begin{array}{l}
f_{0}(\vec{a}, 0)=g_{0}(\vec{a}) \\
f_{1}(\vec{a}, 0)=g_{1}(\vec{a}) \\
f_{0}(\vec{a}, n+1)=h_{0}\left(\vec{a}, n, f_{1}(\vec{a}, n)\right) \\
f_{1}(\vec{a}, n+1)=h_{1}\left(\vec{a}, n, f_{0}(\vec{a}, n)\right) .
\end{array}\right.
$$

Prove that both f_{0} and f_{1} are computable.
Hint: Consider the function $f(\vec{a}, n):=\operatorname{Pair}\left(f_{0}(\vec{a}, n), f_{1}(\vec{a}, n)\right)$.

