Measure theory with ergodic horizons

Homework 12

Due: Jun 3

- **1.** Let (Y, ν) be a probability space and consider the product space $(X, \mu) := (Y^{\mathbb{N}}, \mu)$. Let $S : X \to X$ be the shift transformation, i.e. $(y_n)_{n \in \mathbb{N}} \mapsto (y_{n+1})_{n \in \mathbb{N}}$. Prove:
 - (a) *S* is measure-preserving, i.e. $\mu(S^{-1}(A)) = \mu(A)$ for each measurable $A \subseteq X$.
 - (b) *S* is mixing, i.e. for all measurable $A, B \subseteq X$, we have

$$\lim_{n \in \infty} \mu(S^{-1}(A) \cap B) = \mu(A)\mu(B).$$

HINT: Fist prove for cylinders *A*, *B* and then approximate.

- (c) For $k \ge 2$, the *k*-fold bakers map $b_k : [0,1) \to [0,1)$ with Lebesgue measure λ on [0,1) is measure-isomorphic to the shift transformation on $(k^{\mathbb{N}}, v_u^{\mathbb{N}})$, where v_u is the uniform probability measure on $k := \{0, 1, \dots, k-1\}$.
- 2. Proof of the classical ergodic theorem without the simplifying assumptions. The following steps remove the assumptions that the functions f and $x \mapsto n_x$ are bounded.
 - (a) Let $\delta > 0$ be small enough so that for each measurable set $B \subseteq X$

$$\mu(B) \leqslant \delta \implies \int_{B} |f - \delta| d\mu \leqslant \frac{\Delta}{4}.$$

- (b) Let M > 0 be large enough so that $Y := f^{-1}([-M, \infty))$ has measure $\ge 1 \delta$. Thus, $\mathbb{1}_Y(f - \Delta) \ge -(M + \Delta)$ and $\int \mathbb{1}_{X \setminus Y} |f - \Delta| d\mu \le \frac{\Delta}{4}$.
- (c) Let $L \in \mathbb{N}$ be large enough so that the set

$$Z := \{x \in X : n_x > L\}$$

has measure $\leq \varepsilon \cdot \delta$, where $\varepsilon := \frac{1}{2(M+\Delta)} \frac{\Delta}{4}$. Thus, by (b) of the local-global bridge (small² measure implies small density), for every $n \in \mathbb{N}$, we have $A_n \mathbb{1}_Z(x) = \frac{|I_n(x) \cap Z|}{|I_n(x)|} \leq \varepsilon$ for all x in a set $X_n \subseteq X$ of measure $\geq 1 - \delta$.

(d) **Tiling.** Let $N \in \mathbb{N}$ be large enough so that $\frac{L}{N} < \varepsilon$. Then for each $x \in X_N$, at least $(1 - 2\varepsilon)$ -fraction of the set $I_N(x)$ is tiled by intervals of the form $I_{n_y}(y)$. Thus, $A_N(\mathbb{1}_Y(f - \Delta))(x) \ge -2\varepsilon(M + \Delta) = -\frac{\Delta}{4}$.

HINT: Do not tile the points of Z in $I_N(x)$. They occupy at most ε -fraction of $I_N(x)$.

(e) **Local-global contradiction.** $-\Delta = \int (f - \Delta) d\mu \ge \int \mathbb{1}_Y (f - \Delta) d\mu - \frac{\Delta}{4}$, and the local-global bridge (again!) gives:

$$\int \mathbb{1}_{Y}(f-\Delta)d\mu = \int A_{N}(\mathbb{1}_{Y}(f-\Delta))d\mu \ge \int_{X_{N}} A_{N}(\mathbb{1}_{Y}(f-\Delta))d\mu - \frac{\Delta}{4} \ge -\frac{\Delta}{4} - \frac{\Delta}{4},$$

so $-\Delta \ge -\frac{\Delta}{4} - \frac{\Delta}{4} - \frac{\Delta}{4} = -\frac{3}{4}\Delta$, a contradiction.

- **3.** Lebesgue decomposition theorem. Follow the steps to prove the Lebesgue decomposition theorem: for any σ -finite measures μ, ν on a measurable space (X, \mathcal{B}) , there are measures μ_0, μ_1 on (X, \mathcal{B}) with $\mu = \mu_0 + \mu_1$ such that $\mu_0 \ll \nu$ and $\mu_1 \perp \nu$.
 - (a) It is enough to prove that there is a partition $X = X_0 \sqcup X_1$, with $X_i \in \mathcal{B}$, such that $\mu|_{X_0} \ll \nu|_{X_0}$ and $\nu(X_1) = 0$.
 - (b) Reduce to the case when both μ and ν are finite measures, and below assume that they are finite.
 - (c) By a $\frac{1}{2}$ -measure exhaustion argument, collect together "all" sets $B \in \mathcal{B}$, which are ν -null but not μ -null. Let X_1 be their union, so X_1 is ν -null, and verify that $X_0 := X \setminus X_1$ satisfies the desired property.
- 4. Prove that the function f in the Radon–Nikodym theorem is unique up to ν -null sets, i.e. if g is another function satisfying $\mu(B) = \int_B g \, d\nu$ for all $B \in \mathcal{B}$, then $f = g \nu$ -a.e. This function f is called the **Radon–Nikodym derivative** of μ over ν , and is denoted by $\frac{d\mu}{d\nu}$.
- 5. Let μ be a locally finite Borel measure on ℝ. Let f_μ : ℝ → ℝ be a distribution function of μ, i.e. μ((a, b]) = f_μ(b) f_μ(a) for all reals a < b. Let λ denote the Lebesgue measure on ℝ. Prove: if f_μ is differentiable and f'_μ is continuous, then μ ≪ λ and dµ/dλ = f'_μ.
- 6. Let μ be the pushforward of the Bernoulli $(\frac{1}{2})$ measure from $2^{\mathbb{N}}$ to \mathbb{R} via the usual homeomorphism $\phi : 2^{\mathbb{N}} \xrightarrow{\sim} C$ from $2^{\mathbb{N}}$ to the standard Cantor set $C \subseteq [0,1]$. Let f_{μ} be a distribution function of μ , i.e. $\mu((a,b]) = f_{\mu}(b) f_{\mu}(a)$ for all reals a < b. Let λ denote the Lebesgue measure. Prove that f_{μ} is continuous and f'_{μ} exists and is equal to 0λ -a.e. Nevertheless, $f_{\mu}(1) f_{\mu}(0) = 1$. Thus the fundamental theorem of calculus fails for f_{μ} . HINT: Find the graph of f_{μ} on our course webpage.