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Measure theory with
ergodic horizons Homework 12 Due: Jun 3

1. Let (Y ,ν) be a probability space and consider the product space (X,µ) ..= (YN,µ). Let
S : X→ X be the shift transformation, i.e. (yn)n∈N 7→ (yn+1)n∈N. Prove:

(a) S is measure-preserving, i.e. µ(S−1(A)) = µ(A) for each measurable A ⊆ X.

(b) S is mixing, i.e. for all measurable A,B ⊆ X, we have

lim
n∈∞

µ(S−1(A)∩B) = µ(A)µ(B).

Hint: Fist prove for cylinders A,B and then approximate.

(c) For k ⩾ 2, the k-fold bakers map bk : [0,1)→ [0,1) with Lebesgue measure λ on
[0,1) is measure-isomorphic to the shift transformation on (kN,νN

u ), where νu is
the uniform probability measure on k ..= {0,1, . . . , k − 1}.

2. Proof of the classical ergodic theorem without the simplifying assumptions. The
following steps remove the assumptions that the functions f and x 7→ nx are bounded.

(a) Let δ > 0 be small enough so that for each measurable set B ⊆ X

µ(B) ⩽ δ =⇒
∫
B
|f − δ|dµ ⩽ ∆

4
.

(b) Let M > 0 be large enough so that Y ..= f −1([−M,∞)) has measure ⩾ 1 − δ. Thus,
1Y (f −∆) ⩾ −(M +∆) and

∫
1X\Y |f −∆|dµ ⩽ ∆

4 .

(c) Let L ∈N be large enough so that the set

Z ..= {x ∈ X : nx > L}
has measure ⩽ ε · δ, where ε ..= 1

2(M+∆)
∆
4 . Thus, by (b) of the local-global bridge

(small2 measure implies small density), for every n ∈ N, we have An1Z(x) =
|In(x)∩Z |
|In(x)| ⩽ ε for all x in a set Xn ⊆ X of measure ⩾ 1− δ.

(d) Tiling. Let N ∈N be large enough so that L
N < ε. Then for each x ∈ XN , at least

(1 − 2ε)-fraction of the set IN (x) is tiled by intervals of the form Iny (y). Thus,

AN (1Y (f −∆))(x) ⩾ −2ε(M +∆) = −∆4 .

Hint: Do not tile the points of Z in IN (x). They occupy at most ε-fraction of IN (x).

(e) Local-global contradiction. −∆ =
∫

(f −∆)dµ ⩾
∫
1Y (f −∆)dµ− ∆

4 , and the local-
global bridge (again!) gives:∫
1Y (f −∆)dµ =

∫
AN (1Y (f −∆))dµ ⩾

∫
XN

AN (1Y (f −∆))dµ− ∆

4
⩾ −∆

4
− ∆

4
,

so −∆ ⩾ −∆4 −
∆
4 −

∆
4 = −3

4∆, a contradiction.
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3. Lebesgue decomposition theorem. Follow the steps to prove the Lebesgue decompo-
sition theorem: for any σ -finite measures µ,ν on a measurable space (X,B), there are
measures µ0,µ1 on (X,B) with µ = µ0 +µ1 such that µ0≪ ν and µ1 ⊥ ν.

(a) It is enough to prove that there is a partition X = X0 ⊔X1, with Xi ∈ B, such that
µ|X0
≪ ν|X0

and ν(X1) = 0.

(b) Reduce to the case when both µ and ν are finite measures, and below assume that
they are finite.

(c) By a 1
2-measure exhaustion argument, collect together “all” sets B ∈ B, which

are ν-null but not µ-null. Let X1 be their union, so X1 is ν-null, and verify that
X0

..= X \X1 satisfies the desired property.

4. Prove that the function f in the Radon–Nikodym theorem is unique up to ν-null sets,
i.e. if g is another function satisfying µ(B) =

∫
B
g dν for all B ∈ B, then f = g ν-a.e.

This function f is called the Radon–Nikodym derivative of µ over ν, and is denoted
by dµ

dν .

5. Let µ be a locally finite Borel measure on R. Let fµ : R→R be a distribution function
of µ, i.e. µ((a,b]) = fµ(b)− fµ(a) for all reals a < b. Let λ denote the Lebesgue measure on

R. Prove: if fµ is differentiable and f ′µ is continuous, then µ≪ λ and dµ
dλ = f ′µ.

6. Let µ be the pushforward of the Bernoulli(1
2 ) measure from 2N to R via the usual

homeomorphism φ : 2N ∼−−→ C from 2N to the standard Cantor set C ⊆ [0,1]. Let fµ be
a distribution function of µ, i.e. µ((a,b]) = fµ(b)− fµ(a) for all reals a < b. Let λ denote
the Lebesgue measure. Prove that fµ is continuous and f ′µ exists and is equal to 0 λ-a.e.
Nevertheless, fµ(1)− fµ(0) = 1. Thus the fundamental theorem of calculus fails for fµ.

Hint: Find the graph of fµ on our course webpage.
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https://www.math.mcgill.ca/atserunyan/Courses/2025_S.Yerevan.MeasureTheory/

