Measure theory with ergodic horizons HOMEWORK 2 Due: Feb 25

- **1.** Let \mathcal{A} denote the algebra of all finite unions of boxes in \mathbb{R}^d .
 - (a) Finish the proof of Claim (b) for boxes in \mathbb{R}^d , namely: For any finite partitions \mathcal{P} and \mathcal{Q} of a set $A \in \mathcal{A}$ into boxes, we have

$$\sum_{P\in\mathcal{P}}\tilde{\lambda}(P)=\sum_{Q\in\mathcal{Q}}\tilde{\lambda}(Q).$$

- (b) Deduce that λ is finitely additive on A.
- 2. Let \mathcal{A} denote the algebra of all finite unions of boxes in \mathbb{R}^d . Using the statement that λ is countably additive on bounded boxes, i.e. $\lambda(B) = \sum_{n \in \mathbb{N}} \lambda(B_n)$ for a bounded box $B \subseteq \mathbb{R}^d$ and a partition $\{B_n\}_{n \in \mathbb{N}}$ of B into boxes, finish the proof of countable additivity of λ on \mathcal{A} . More precisely:
 - (i) Prove that $\lambda(B) = \sum_{n \in \mathbb{N}} \lambda(B_n)$ for an unbounded box $B \subseteq \mathbb{R}^d$ and a partition $\{B_n\}_{n \in \mathbb{N}}$ of *B* into boxes.

CAUTION: An unbounded box has measure ∞ or 0.

- (ii) Finally conclude that $\lambda(A) = \sum_{n \in \mathbb{N}} \lambda(A_n)$ for a set $A \in \mathcal{A}$ and a partition $\{A_n\}_{n \in \mathbb{N}}$ of A into sets in \mathcal{A} .
- **3.** Let X be a set and $\mathcal{A} \subseteq \mathscr{P}(X)$ be a collection of sets containing \emptyset and covering X. Let $m : \mathcal{A} \to [0, \infty]$. Prove that the induced outer measure $m^* : \mathscr{P}(X) \to [0, \infty]$ is
 - (a) monotone: $A \subseteq B$ implies $m^*(A) \leq m^*(B)$ for all $A, B \in \mathscr{P}(X)$.
 - (b) countably subadditive^{*}: $m^*(\bigcup_{n\in\mathbb{N}} B_n) \leq \sum_{n\in\mathbb{N}} m^*(B_n)$ for all $B_0, B_1, \ldots \in \mathscr{P}(X)$.
- 4. Prove the existence part of Carathéodory's theorem via Carathéodory's proof. Let μ be a premeasure on an algebra \mathcal{A} and let μ^* be its outer measure. Let \mathcal{M} be the collection of conservative sets, i.e. sets M such that $\mu^*(S) = \mu^*(M \cap S) + \mu^*(M^c \cap S)$ for all $S \subseteq X$. Prove:
 - (a) $\mathcal{M} \supseteq \mathcal{A}$.
 - (b) \mathcal{M} is an algebra.
 - (c) μ^* is countably additive on \mathcal{M} .

HINT: It's enough to observe finite additivity.

(d) Countable disjoint unions of sets in \mathcal{M} don't butcher the sets in \mathcal{A} , i.e. if $M := \bigsqcup_{n \in \mathbb{N}} M_n$ with $M_n \in \mathcal{M}$ and $A \in \mathcal{A}$, then $\mu^*(A) = \mu^*(M \cap A) + \mu^*(M^c \cap A)$.

HINT: First show that $\mu^*(A) \ge \mu^*((\bigsqcup_{n \le N} M_n) \cap A) + \mu^*(M^c \cap A)$ then let $N \to \infty$.

- (e) \mathcal{M} is closed under countable disjoint unions, and is hence a σ -algebra.
- 5. A translation-invariant Borel measure on \mathbb{R}^d is a measure μ defined on the Borel σ -algebra $\mathcal{B}(\mathbb{R}^d)$ such that $\mu(\vec{x} + B) = \mu(B)$ for each point $\vec{x} \in \mathbb{R}^d$ and each Borel set $B \subseteq \mathbb{R}^d$. For example the Lebesgue measure is translation-invariant.

Prove that \mathbb{R}^d does not admit a translation-invariant Borel *probability* measure μ . In fact, show that for any nonzero vector $\vec{x} \in \mathbb{R}^d$, there does not exist a Borel probability measure that is invariant under translation by \vec{x} .

HINT: Find a Borel set $W \subseteq \mathbb{R}^d$ such that $\mathbb{R}^d = \bigsqcup_{n \in \mathbb{Z}} (n\vec{x} + W)$.