Measure theory with HOMEWORK 4 Due: Mar 11

- **1.** Let (X, \mathcal{B}, μ) be a finite measure space and let d_{μ} denote the usual pseudo-metric on Meas_{μ} defined by $d_{\mu}(A, B) := \mu(A \triangle B)$.
 - (a) Prove that d_{μ} is a complete pseudo-metric on Meas_{μ}, i.e. every d_{μ} -Cauchy sequence (M_n) converges in d_u to a set $M \in \text{Meas}_{\mu}$.

HINT: Note that it is enough to show that a subsequence of (M_n) converges, and pass to a subsequence (M_{n_k}) so that $d_{\mu}(M_{n_k}, M_{n_{k+1}}) \leq 2^{-k}$. Then the error sets $M_{n_k} \bigtriangleup M_{n_{k+1}}$ have summable measures, i.e. $\sum_{k \in \mathbb{N}} \mu(M_{n_k} \bigtriangleup M_{n_{k+1}}) < \infty$. Thus, almost every point of X is either eventually in M_{n_k} or eventually outside of M_{n_k} .

(b) If \mathcal{B} admits a countable generating subalgebra \mathcal{A} , then the pseudo-metric space (Meas_µ, $d_µ$) is separable, hence a Polish pseudo-metric space.

HINT: The restriction of μ on \mathcal{A} is a premeasure on \mathcal{A} , so Tao's proof applies.

2. Let \mathbb{E}_0 be the equivalence relation on $2^{\mathbb{N}}$ of eventual equality, i.e.

$$x \mathbb{E}_0 y : \Leftrightarrow \forall^{\infty} n \ x(n) = y(n),$$

where $\forall^{\infty} n$ means for all large enough *n*. For each *n*, let $\sigma_n : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ be the *n*th bit flip map, i.e. $\sigma_n(x)$ is the same as *x* except that its *n*th coordinate is equal to 1 - x(n). Let Γ be the group generated by all the σ_n . (Actually, Γ is isomorphic to $\bigoplus_{n \in \mathbb{N}} \mathbb{Z}/2\mathbb{Z}$.) Then Γ naturally acts on $2^{\mathbb{N}}$.

- (a) Realize that the orbit equivalence relation of this action is exactly \mathbb{E}_0 .
- (b) Note that the Bernoulli(1/2) measure is invariant under this action, i.e. for any $\mu_{1/2}$ -measurable set $A \subseteq 2^{\mathbb{N}}$ and $\gamma \in \Gamma$, we have $\mu_{1/2}(\gamma A) = \mu_{1/2}(A)$.
- (c) Prove that every transversal for \mathbb{E}_0 is not $\mu_{1/2}$ -measurable.
- (d) [*Optional*] Prove that for every $p \in (0,1)$, every transversal for \mathbb{E}_0 is not μ_p -measurable.
- **3.** Let (X, \mathcal{B}, μ) be a measure space and recall that for a sequence (A_n) of measurable sets,

$$\limsup_{n} A_n := \{ x \in X : \exists^{\infty} n \ x \in A_n \}.$$

- (a) Prove the following more general (and somehow less useful) version of the Borel–Cantelli lemma: If $\mu(X) < \infty$, then $\mu(\limsup_n A_n) = \lim_N \mu(\bigcup_{n \ge N} A_n)$.
- (b) From this version of the Borel–Cantelli lemma, deduce the versions (a) and (b) discussed in class.

4. We say that a real $r \in \mathbb{R}$ admits a sequence of good rational approximations of exponent $\alpha > 0$ if there are infinitely many pairs $(p,q) \in \mathbb{Z} \times \mathbb{N}^+$ such that

$$|r-\frac{p}{q}| < \frac{1}{q^{\alpha}}.$$

Dirichlet's approximation theorem (or rather its immediate consequence) states that every real admits a sequence of good rational approximations of exponent 2.

Prove however that for any $\varepsilon > 0$, almost no real admits a sequence of good rational approximations of exponent $2 + \varepsilon$, i.e., the set *B* of all $r \in \mathbb{R}$ that admit a sequence of good rational approximations of exponent $2 + \varepsilon$ is null (with respect to Lebesgue measure).

HINT: First note that it is enough to prove the statement for [0,1) instead of \mathbb{R} . Next, express *B* in terms of the sets

$$A_{p,q} := \left\{ r \in \mathbb{R} : |r - \frac{p}{q}| < \frac{1}{q^{2+\varepsilon}} \right\}$$

where $p, q \in \mathbb{N}^+$ and p < q. Finally, what is the measure of $A_{p,q}$?