BAIRE-MEASURABLE SETS

ANUSH TSERUNYAN

Observation 1. For any sets A, B, C,

- (1.a) Involution: $A \bigtriangleup A = \emptyset$.
- (1.b) Identity: $A \bigtriangleup \emptyset = A$.
- (1.c) Associativity: $(A \bigtriangleup B) \bigtriangleup C = A \bigtriangleup (B \bigtriangleup C)$.
- (1.d) $A \bigtriangleup B = A^c \bigtriangleup B^c$.

Let X be a metric (topological) space.

Definition 2. A set $A \subseteq X$ is called *Baire-measurable* if $A = U \bigtriangleup M$ for some open set U and a meager set M.

Lemma 3. A set $A \subseteq X$ is Baire-measurable if and only if $A \bigtriangleup U$ is meager for some open set $U \subseteq X$.

Proof. Follows from the equivalence

$$A = U \bigtriangleup M \iff U \bigtriangleup A = M,$$

which is obtained by taking the symmetric difference with U on both sides and using (1.a), (1.b), and (1.c).

Below, we will be using Lemma 3 as the definition of Baire-measurable.

Lemma 4. Baire-measurable subsets of X are closed under countable unions.

Proof. Suppose that A_n is a Baire-measurable set for each $n \in \mathbb{N}$, and we need to show that $A := \bigcup_{n \in \mathbb{N}} A_n$ is Baire-measurable. By the Baire-measurability of the A_n , there are open sets $U_n \subseteq X$ such that $A_n \bigtriangleup U_n$ is meager. Put $U := \bigcup_{n \in \mathbb{N}} U_n$ and it is enough to show that $A \bigtriangleup U$ is meager. But observe that

$$A \bigtriangleup U = (A \setminus U) \cup (U \setminus A) = \bigcup_{n \in \mathbb{N}} (A_n \setminus U) \cup \bigcup_{n \in \mathbb{N}} (U_n \setminus A)$$

and the sets $A_n \setminus U$ and $U_n \setminus A$ are meager because they are contained in $A_n \bigtriangleup U_n$, so $A \bigtriangleup U$ is meager because it is a countable union of meager sets.

Lemma 5. Closed subsets of X are Baire-measurable.

Proof. Let $K \subseteq X$ be a closed subset of a metric space X. Let B be the boundary of K, i.e. $B = \overline{K} \setminus \text{Int}(K)$. But K is closed, so $\overline{K} = K$, and hence, $B = K \setminus \text{Int}(K) \subseteq K$, so $\text{Int}(B) \subseteq \text{Int}(K)$, which implies that $\text{Int}(B) = \emptyset$. We also have that B is closed, being a closed set minus open, so it is nowhere dense. Thus, $K \bigtriangleup \text{Int}(K) = K \setminus \text{Int}(K) = B$ is nowhere dense, so K is Baire-measurable.

Lemma 6. For sets $A, B \subseteq X$, if A is Baire-measurable and $A \bigtriangleup B$ is meager, then B is also Baire-measurable.

Proof. Suppose that A is Baire-measurable, so there is an open set U such that $A \bigtriangleup U$ is meager. But then

$$B \bigtriangleup U = B \bigtriangleup (\emptyset \bigtriangleup U)$$

[by (1.a)] = $B \bigtriangleup ((A \bigtriangleup A) \bigtriangleup U)$
[by (1.c)] = $(B \bigtriangleup A) \bigtriangleup (A \bigtriangleup U)$
 $\subseteq (B \bigtriangleup A) \cup (A \bigtriangleup U),$

and both set $B \bigtriangleup A$ and $A \bigtriangleup U$ are meager, so $B \bigtriangleup U$ is also meager, and hence B is Baire-measurable.

Proposition 7. The Baire-measurable subsets of X form a σ -algebra.

Proof. The emptyset is trivially Baire-measurable and Lemma 4 shows the closure under countable unions, so it remains to show the closure under complements. Fix a Baire-measurable set $A \subseteq X$, so there is an open set $U \subseteq X$ such that $A \bigtriangleup U$ is meager. By (1.d), $A^c \bigtriangleup U^c = A \bigtriangleup U$, so $A^c \bigtriangleup U^c$ is also meager. But U^c is closed and hence Baire-measurable by Lemma 5, so A^c is also Baire-measurable by Lemma 6.