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1. Introduction

The notion of simplicial homotopy is well known, see Section 2 below. But it raises several
interesting questions that we have not found answered in the literature, including one for
which the literature is wrong.

First we raise the question of when a simplicial object in some category is contractible.
We begin by showing that, assuming the category is idempotent complete, it does not
matter whether we are dealing with a simplicial object that is augmented or not. Looking
through the literature, we find essentially three definitions of contractibility. The first two
are in terms of what are called “extra degeneracies” although there is some question what
that means, and the third is that a simplicial object is contractible if it is homotopic to
a constant.

There are at least three places in the literature that claim that being homotopic to a
constant is equivalent to (one of) the extra degeneracy definitions. Regrettably, one of the
three is [Barr, (2002), Theorem 3.3]. Unfortunately, what is proved there is only that the
extra degeneracy implies homotopic to a constant (see Theorem 4.7, below); the converse
is ignored. In fact, the converse is false, as we will show below, based on 4.8. The second,
[Rodŕıguez Gonzalez, (2008), Proposition 1.2.12] repeats and cites the claim from [Barr,
(2002)]. The third appears in [Riehl, (2014), Lemma 4.5.1], which cites [Meyer, (1984),
Theorem 6.4], which seems to be the required result but includes one equation (the one
labeled (Ci)

n, in our notation dih0 = h0di−1, 1 ≤ i ≤ n + 1), which is not generally
satisfied by a homotopy when i = 1. Thus although Meyer’s result as stated is correct,
the extra hypothesis means that it does not support the implication claimed by Riehl.
See the discussion just before 4.8 for a further explanation.

It turns out that there are two versions of extra degeneracies, which we will call extra
degeneracies and strong extra degeneracies. We will show that

strong extra degeneracies +3 extra degeneracies +3 homotopic to a constant

and gives examples to show that both implications are strict.
As the names suggest, having strong extra degeneracies immediately implies having

extra degeneracies. Theorem 4.7, as noted above, shows that having extra degeneracies
implies homotopic to a constant.

The proofs that these implications are strict are done using examples that begin with
a truncated simplicial set, 4.4 and 4.8. and are completed using a construction called the
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coskeleton. This is usually described using a Kan extension, but we have not found an
explicit description of the coskeleton and so we include one; See Section 5.1. One problem
with coskeletons is that they do not get along well with simplicial homotopies. We use a
notion we call reduced homotopy which is fully equivalent to the usual, yet does lift to
coskeletons. See Section 3 for details.

We say that a simplicial object is contractible, respectively strongly contractible,
if it has extra degeneracies, respectively strong extra degeneracies. One question that
started us looking at these things was wondering whether a retract of a contractible
simplicial object is contractible. It turns out that for simplicial objects in an idempotent-
complete category, the properties of being homotopic to constant and of being contractible
are closed under the formation of retracts, but the property of being strongly contractible
is not. See Section 6 for details.

Section 7 gives an explicit equational proof that if a topological space is topologically
contractible to a point, then its singular simplicial set is contractible, but not necessarily
strongly contractible. It is this example that leads us to take one of the senses of con-
tractibility as definitive. We have not been able to find this explicit construction in the
literature.

Since many of the computations involving simplicial objects are long and complicated,
we have relegated several of them to appendices.

2. Simplicial objects and partial simplicial objects

To make this self-contained, we briefly describe simplicial objects in a category. A sim-
plicial object in a category X consists of a countable sequence of objects {Xn | n ≥ 0};
arrows din = di : Xn

//Xn−1 for n > 0 and 0 ≤ i ≤ n, called face operators; and arrows
sin = si : Xn

//Xn+1 for n ≥ 0 and 0 ≤ i ≤ n, called degeneracies. These are subject
to the following equations. Note that, as already indicated, we usually omit the lower
indices.

• didj = dj−1di, for i < j;

• sisj = sjsi−1, for j < i;

• disj =

 sj−1di if i < j
id if i = j or i = j + 1
sjdi−1 if i > j + 1

An augmented simplicial object X // X−1 consists of a simplicial object X and a
map d00 = d0 : X0

//X−1 such that d0d0 = d0d1 : X1
//X−1.

If X and Y are simplicial objects, a simplicial map f : X //Y consists of morphisms
fn : Xn

// Yn that commute with the faces and degeneracies in the obvious way. If
f, g : X // Y is a pair of simplicial maps a homotopy, written h : f ///o/o g consists of
morphisms hin = hi : Xn

// Yn+1 such that
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• d0h0 = fn;

• dn+1hn = gn;

• dihj =

hj−1di if i < j
dihi−1 if i = j
hjdi−1 if i > j + 1

• sihj =

{
hjsi−1 if i > j
hj+1si if i ≤ j

Note that the relation ///o/o is neither symmetric nor transitive. It is reflexive. We leave it
as an exercise to show that h : f ///o/o f if we define hi = sif .

We will also have occasion to deal with partial simplicial objects, also known as
truncated simplicial objects. An m-partial simplicial object X is a finite sequence
X0, X1, . . . , Xm, face maps di = din : Xn

// Xn−1 for 0 < n ≤ m and 0 ≤ i ≤ n, and
degeneracies si = sin : Xn

// Xn+1 for 0 ≤ n < m and 0 ≤ i ≤ n satisfying the same
identities as a simplicial object insofar as they are defined. We will show that every partial
simplicial object is the truncation of a full simplicial object, Section 5.1.

3. Reduced homotopy1

By a reduced homotopy between f, g : X // Y we mean a family ri = rin : Xn
// Yn

for all n and 0 ≤ i ≤ n+ 1 such that

RH-1. r0 = fn;

RH-2. rn+1 = gn;

RH-3. dirj =

{
rj−1di for i < j
rjdi for i ≥ j

RH-4. sirj =

{
rj+1si for i < j
rjsi for i ≥ j

Some special cases of this are worth mentioning. When j = 0, it follows that dir0 =
r0di and sir0 = r0si, which are just the conditions that f is simplicial. When j = n+1, it
follows that dirn+1 = rndi, while sirn+1 = rn+2si, which just express that g is simplicial.

3.1. Proposition. There is a bijection between homotopies and reduced homotopies be-
tween pairs of arrows X //// Y .

1As far as we are aware, the definition of reduced homotopy is new. There are hints in the literature,
but we have not found a precise definition nor a theorem such as 3.1. We needed this because the usual
definition of homotopy does not work well with coskeleton (5.1). The difficulty lies in describing the value
of di+1

n+1h
i
n = din+1h

i
n, in terms of Xn.
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Proof. Let f, g : X // Y and h : f ///o/o g. Define r0 = f , rn+1 = g and ri = dihi = dihi−1

for 1 ≤ i ≤ n. Then the first two equations of RH are satisfied. For RH-3, we consider
cases:

i < j < n+ 1:

dirj = didjhj = dj−1dihj = dj−1hj−1di = rj−1di

i < j = n+ 1:
dirn+1 = dig = gdi = rndi

i > j:
dirj = didjhj = djdi+1hj = djhjdi = rjdi

i = j > 0:
diri = didihi = didihi−1 = didi+1hi−1 = dihi−1di = ridi

i = j = 0:
d0r0 = d0f = fd0 = r0d0

To verify RH-4, we calculate sirj. When i < j, we have

sirj = sidjhj = dj+1sihj = dj+1hj+1si = rj+1si

When i ≥ j, we have

sirj = sidjhj = djsi+1hj = djhjsi = rjsi

In the other direction, given a reduced homotopy r, we let hi = ri+1si. To see that h
is a homotopy, first we calculate

d0h0 = d0r1s0 = r0d0s0 = f

dn+1hn = dn+1rn+1sn = rn+1dn+1sn = g

Next we see that
dihi = diri+1si = ridisi = ri

while
dihi−1 = dirisi−1 = ridisi−1 = ri

For i < j, we have

dihj = dirj+1sj = rjdisj = rjsj−1di = hj−1di

For i > j + 1, we have

dihj = dirj+1sj = rj+1disj = rj+1sjdi−1 = hjdi−1

Next we calculate sihj.
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i ≤ j:
sihj = sirj+1sj = rj+2sisj = rj+2sj+1si = hj+1si

i > j:
sihj = sirj+1sj = rj+1sisj = rj+1sjsi−1 = hjsi−1

Now we must show that these constructions are inverse to each other. If we begin with h
and define ri = dihi, then ri+1si = di+1hi+1si = di+1sihi = hi. The other way around, if
we start with r and let hi = ri+1si, then dihi = diri+1si = ridisi = ri.

4. Contractible simplicial objects

What does it mean for a simplicial object to be contractible? We know what it means for
a topological set to be contractible. A space S is topologically contractible if there
exists a continuous map H : S×I //S, where I is the unit interval, such that H(s, 0) = s
for all s ∈ S and H(s, 1) is constantly equal to some s0 ∈ S.

This definition makes special use of a one point space. The most important feature,
at least from our point of view, of a one point space is that it is discrete, which implies
that its singular simplicial complex (see Section 7) is constant in the following sense.

4.1. Constant simplicial objects. A constant simplicial object C is one for
which every term is the same, say A and every face and degeneracy is the identity. We
will say that X is homotopic to C if there are maps f : C // X and g : X // C such
that gf = idC and idX

///o/o fg. On the one hand, this is (apparently) too weak, as will
be discussed later. On the other hand, we ought to be content with gf ///o/o 1 and both
instances of ///o/o should be replaced by the equivalence relation it generates. If we did this
for fg, the problem would become intractible. As for gf , the only map homotopic to idC

is itself (easy exercise) so that point resolves itself. We stick to the above definition.

4.2. Extra degeneracies. But there is another way to look at a contraction. Given
a space S we will show in Section 7 that the singular simplicial complex (see Section 7)
has an “extra degeneracy”. This is a sequence of maps tn : Xn

//Xn+1 such that

• d0t = id;

• dit = tdi−1 for i > 0;

• sit = tsi−1 for i > 0.

This almost satisfies the same equations as a degeneracy labeled s−1. But such a degen-
eracy would also satisfy s0s−1 = s−1s−1 or, in the notation we are using, s0t = tt. We
will call t a contraction, and say that X is contractible or has extra degeneracies
if t satisfies the three equations. We will call t a strong contraction, and say that
X is strongly contractible or has strong extra degeneracies if t satisfies the three
equations above and, in addition, satisfies s0t = tt.
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Example 4.4 below shows that contractibility does not imply strong contractibility.
What we do have is Theorem 6.1 which, for simplicial sets, is [Goerss & Jardine (1999),
Lemma III.5.1]. Incidentally, that reference (page 200) defines an extra degeneracy the
way we do. But first we need an interlude to discuss augmentations.

4.3. Augmentation. We show that if the ambient category has split idempotents, then
it doesn’t matter whether we are dealing with an augmented or non-augmented simplicial
object. For the augmentation can be added in essentially one way. If X is a simplicial set
and the category has coequalizers, it is natural to augment it by letting d00 : X0

//X−1

be the coequalizer of d01, d
1
1 : X1

//X0. It is slightly surprising that if X is a contractible
simplicial object in a category X that is idempotent complete, you don’t need coequalizers.

Assuming a contraction t, we begin with d1td1t = d1d2tt = d1d1tt = d1td0t = d1t. We

then split the idempotent d1t as X0
d0 //X−1

t //X0 so that d1t = td0 as required. We
also have

d0d0 = d0td0d0 = d0d1td0 = d0d1d1t = d0d1d2t = d0d1td1 = d0td0d1 = d0d1

so that we have an augmented simplicial object. It is immediate that

X1

d0 //

d1
//X0

d0 //X−1

is a coequalizer. These considerations are closely related to Beck’s precise tripleableness
theorem which is not quite stated in [Beck, (1967), Theorem 1] but is clearly explained
in [Linton (1969), Section 1].

4.4. A contractible simplicial set that is not strongly contractible. We
begin with a contractible truncated augmented simplicial setX, defined only in dimensions
−1, 0, 1, 2. The elements of the Xn are as shown in this table:

X−1 X0 X1 X2

α β γ δ ε ζ η θ

d0 α β β γ δ γ δ
d1 β β γ γ γ δ
d2 γ γ δ δ
s0 δ η θ
s1 ζ θ
t β γ ε ζ

4.5. Proposition. These equations define a short simplicial object with t as a contrac-
tion.

Proof. There are many computations; see Appendix A for details.
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4.6. Proposition. Neither t nor any other map is a strong contraction.

Proof. First we observe that if τ : X0
//X1 satisfies ττ = s0τ as well as all the other

identities it has to satisfy to be a strong contraction, then so does τ : X−1
//X0. In fact

ττ = ττd0τ = d2τττ = d2s0ττ = s0τd0τ = s0τ

Now suppose we had a candidate τ for a strong contraction. Since τ(α) = β, we must
have τ(β) = ττ(α) = s0τ(α) = s0(β) = δ. In a similar way, τ(δ) = θ. As for τ(γ), the
first constraint is that d0τ(γ) = γ, which forces τ(γ) to be either ε or η. But we must also
satisfy d1τ(γ) = τd0(γ) = τ(β) = δ, which forces τ(γ) = θ, a contradiction.

This is now completed to an example using the coskeleton, Section 5.1.

4.7. Theorem. A contractible simplicial object in an idempotent complete category is
homotopic to a constant simplicial object.

Proof. Suppose X
d0 // A has a contraction t = {tn : Xn

// Xn+1|n ≥ 0}. Let

A
t−1 // X0

d0 // A split the idempotent d1t0 We define fn = (s0)nt : A // Xn and
gn = (d0)n+1 : Xn

//A. We begin by showing that these are simplicial maps between X
and the constant simplicial object A. We must show that the diagram

A A A

Xn+1 Xn Xn−1

A A A

idoo id //

(s0)n+1t

��

(s0)nt

��

(s0)n−1t

��
sioo di //

(d0)n+2

��

(d0)n+1

��

(d0)n

��
idoo id //

(4.7.1)

commutes. We have si(s0)nt = (s0)n+1t, di(s0)nt = (s0)n−1t, (d0)n+2si = (d0)n+1, and
(d0)ndi = (d0)n+1. Clearly gf = id, and we wish to show that id ///o/o fg. We define
hi = (s0)it(d0)i : Xn

//Xn+1. A number of equations have to be satisfied.

1. d0h0 = d0t = id.

2. dn+1hn = dn+1(s0)nt(d0)n = (s0)nd1t(d0)n = (s0)nt(d0)n+1 = fngn.

3. dihi = di(s0)it(d0)i = (s0)i−1d1s0t(d0)i = (s0)i−1t(d0)i, while dihi−1

= di(s0)i−1t(d0)i−1 = (s0)i−1t(d0)i.

4. If i > j + 1, dihj = di(s0)jt(d0)j = (s0)jdi−jt(d0)j = (s0)jtdi−j−1(d0)j

= (s0)jt(d0)jdi−1 = hjdi−1.



8

5. If i < j, dihj = di(s0)jt(d0)j = (s0)j−1t(d0)j, while hj−1di

= (s0)j−1t(d0)j−1di = (s0)j−1t(d0)j.

6. If i > j, sihj = si(s0)jt(d0)j = (s0)jsi−jt(d0)j = (s0)jtsi−j−1(d0)j

= (s0)jt(d0)jsi−1 = hjsi−1.

7. If i ≤ j, sihj = si(s0)jt(d0)j = (s0)j+1t(d0)j, while hj+1si

= (s0)j+1t(d0)j+1si = (s0)j+1t(d0)j.

Thus X is homotopic to a constant simplicial object.

Note that in the third equation above, we could continue to get

dihi−1 = (s0)i−1t(d0)i = (s0)i−1t(d0)i−1di−1 = hi−1di−1

which is not necessarily satisfied by a homotopy that makes a simplicial object homotopic
to a constant simplicial object . This is the equation that [Meyer, (1984)] added with-
out comment that allowed him to conclude that homotopic to a constant implied extra
degeneracy.

Suppose C is a constant simplicial object in which every term is A every face and
degeneracy is the identity and that f : C //X and g : X // C are such that gf = idC

and h : idX
///o/o fg. Meyer defined tn = h0n in each dimension. But one of the equations

that has to be satisfied by a contraction is d1t = td0 or d1h0 = h0d0. This equation is not
satisfied by homotopies in general, but it is exactly Meyer’s additional equation.

4.8. A partial simplicial object homotopic to a constant, but not con-
tractible. We let C denote the 2-partial simplicial set which is constantly equal to
{∗}, the one-point set whose only element is ∗. We embed C as a subsimplicial set of
Y = {Y0, Y1, Y2}. We let Y0 = {∗} and let Y1 be the set which is generated by ∗, an
element α, and by action of the map r11 : Y1 //Y1, which we will denote by u. We assume
that u(∗) = ∗ and we let Y1 = {∗, α, uα, . . . , unα, . . .}.

To construct Y2, we let β = s0(α) and γ = s1(α). We also let v = r12 : Y2 // Y2
and w = r22 : Y2 // Y2. For convenience we look for an example for which vw = wv and
such that Y2 is the set generated by ∗, β, γ, and the action of v, w. We let Y2 have the
elements ∗, β, γ, and all elements of the form vn(β), wn(β), vnγ, wn(γ), vkw`(β), vkw`(γ).
The definitions of the faces and degeneracies and of the reduced homotopy are then given
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by the following chart:

In this chart, n, k are non-negative but ` has to be strictly positive.

Y0 Y1 Y2
∗ ∗ α unα ∗ β γ vnβ vnγ wkβ w`γ vnwkβ vnw`γ

d0 ∗ ∗ ∗ ∗ α ∗ α ∗ ukα ∗ ukα ∗
d1 ∗ ∗ ∗ ∗ α α unα unα ukα u`α un+kα un+`α

d2 ∗ ∗ α ∗ unα ∗ ∗ ∗ ∗
s0 ∗ ∗ β wnβ

s1 ∗ ∗ γ vnγ

r0 ∗ ∗ α unα ∗ β γ vnβ vnγ wkβ w`γ vnwkβ vnw`γ

r1 ∗ ∗ uα un+1α ∗ vβ vγ vn+1β vn+1γ vwkβ vw`γ vn+1wkβ vn+1w`γ

r2 ∗ ∗ ∗ ∗ wβ wγ vnwβ vnwγ wk+1β w`+1γ vnwk+1β vnw`+1γ

r3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

There is some redundancy in the chart as, for example, the values of si(α), dj(α), rk(α)
can be determined by looking at the column headed by α or at the next column, headed
by un(α) and letting n = 0. Note that we set u0, v0, w0 equal to the identity function. For
further redundancy see Appendix B. Also note that we cannot set ` = 0. For example,
the column for w`(γ) would contradict the column for γ if we set ` equal to zero

We claim that this defines a truncated simplicial homotopy between the constant
simplicial object C and the the truncated simplicial set Y . See Appendix B for details.

We claim that this is not contractible. If there were a contraction t, we focus on tα.
From d0tα = α, we infer from the chart that tα can only be vnβ for some n ≥ 0. From
t∗ = td0α = d1tα = d1vnβ = unα, we see that t∗ = unα. From t∗ = td1α = d2tα =
d2vnβ = ∗ we derive a contradiction.

Finally, we note that by using the coskeleton, see below, we can construct a full
simplicial set which is homotopic to a constant but not contractible.

5. The coskeleton of a partial simplicial object

5.1. Coskeleton. Suppose that X has finite limits. Here we show how to extend a
truncated (augmented) simplicial object, such as the ones described in 4.4 and 4.8, to a
simplicial object. This construction is well known; we have included it to make this note
self contained. It can be described as the right Kan extension from the inclusion of the
truncation of the standard simplex into the full standard simplex.

We will show that if two maps between (n− 1)-partial simplicial objects are reduced
homotopic, so are the induced maps between the coskeletons. We will also show that
if the partial object is (strongly) contractible, the full object will be also. By an ob-
vious induction, it will suffice to begin with a partial (augmented) simplicial object
X = {X−1, X0, X1, . . . , Xn−1}, together with the relevant faces and degeneracies.

In the argument below, we pretend that the category is set-based and that the limits
can be defined by elements. This can of course always be replaced by actual limits. Then
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we let Coskn(X) = {X−1, X0, . . . , Xn−1, Xn} where Xn is the set of all (n + 1)-tuples
x = (x0, x1, . . . , xn) ∈ (Xn−1)

n+1 for which dixj = dj−1xi when i < j. We define dix = xi,
from which it is immediate that didjx = dj−1dix when i < j.

Moreover, given x ∈ Xn−1, the definition of si(x) ∈ Xn is forced because the simplicial
identities determine the values of dksi. So we define si : Xn−1

//Xn by:

six = x = (si−1d0x, si−1d1x, . . . , si−1di−1x, x, x, sidi+1x, . . . , sidn−1x)

More precisely, six = (x0, . . . , xn), where

xk =

{
si−1dkx if k < i
x if k = i, i+ 1
sidk−1x if k > i+ 1

Defining si : Xn−1
//Xn as above and di : Xn

//Xn−1 by di(x0, x1, . . . , xn) = xi, we claim
that we have extended X to Coskn(X), a partial simplicial object of degree n. Moreover
the extended object will preserve the contractibility (and strong contractibility) when the
original (n − 1)-partial simplicial object X has these properties. See Appendix C for
details. The first step is to prove si(x) = (x0, x1, . . . , xn) ∈ Coskn(X) for all x ∈ Xn−1,
by showing djxk = dj−1xj whenever j < k.

5.2. Proposition. Suppose X and Y are (n−1)-partial simplicial objects, f, g : X //Y
are (n− 1)-partial simplicial maps and r : f ///o/o g is an (n− 1)-partial reduced homotopy.
Then f , g, and r extend to the nth coskeletons.

Proof. That f and g extend is obvious. To extend r, let (x0, x1, . . . , xn) be an element
of the Coskn(X) This means that for 0 ≤ i < j ≤ n, dixj = dj−1xi. For 0 ≤ k ≤ n + 1,
let rk(x0, . . . , xn) = (rk−1x0, . . . , rk−1xk−1, rkxk, . . . , rkxn). In particular

r0(x0, . . . , xn) = (r0x0, . . . , r0xn) = (fx0, . . . , fxn) = f(x0, . . . , xn)

and

rn+1(x0, . . . , xn) = (rnx0, . . . , rnxn) = (gx0, . . . , gxn) = g(x0, . . . , xn)

We must show that rk(x0, . . . , xn) ∈ Coskn(Y ). We have to consider cases.

i < j < k:

dirk−1xj = rk−2dixj = rk−2dj−1xi = dj−1rk−1xi

i < k ≤ j:

dirkxj = rk−1dixj = rk−1dj−1xi = dj−1rk−1xi

k ≤ i < j:

dirkxj = rkdixj = rkdj−1xi = dj−1rkxi
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It is clear from the definition that for i < j, dirj = rj−1di and for i ≥ j, dirj = rjdi.
These equations are where the formula came from. We must show that the commutation
equations of the r with the degeneracies is satisfied. (Recall that for x ∈ Xn−1, s

ix =
(si−1d0x, . . . , si−1di−1x, x, x, sidi+1x, . . . , sidn−1x)) We must show that j < k implies that
sjrk = rk−1sj. Since the face operators in Coskn(Y ) are collectively monic, it suffices to
show that disjrk = dirk−1sj for i = 0, . . . , n. Again we consider cases.

i < j < k:

disjrk = sj−1dirk = sj−1rk−1di = rk−2sj−1di = rk−2disj = dirk−1sj

j < k and i = j, j + 1:

disirk = rk = rkdisi = dirk+1si

j < i+ 1 ≤ k:

disjrk = sjdi−1rk = sjrk−1di−1 = rksjdi−1 = rkdisj = dirk+1sj

j < k < i+ 1:

disjrk = sjdi−1rk = sjrkdi−1 = rk+1sjdi−1 = rk+1disj = dirk+1sj

In order to apply this to 4.8 we need the following.

5.3. Proposition. If C is a constant partial simplicial object, then its coskeleton is also
constant.

Proof. Suppose C is defined up to degree n − 1. As in the definition of coskeleton, we
will pretend we are in sets. Then Cn = {(x0, . . . , xn) ∈ Cn+1

n | dixj = dj−1xi for i < j}.
But all di are identities, so this says that all xi are equal so that Cn = Cn−1 and it is easy
to see that all faces and degeneracies are the identity.

6. Retracts

One of our original motivations for this paper was to discover whether a retract of a
contractible simplicial object is contractible.

6.1. Theorem. A retract of a contractible simplicial object is contractible; every con-
tractible simplicial object is a retract of a strongly contractible simplicial object.
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Proof. Suppose Y
f //X

g // Y are simplicial maps such that gf = id and that X has
a contraction tX . We define tY = gtXf . The proof that tY is a contraction is trivial.

To go the other way, suppose t is a contraction on X. The cone CX is defined
by (CX)n = Xn+1, (Cd)i = di+1 and (Cs)i = si+1. We claim that the s0 constitute
a strong contracting homotopy on CX. In fact, (Cd)0s0 = d1s0 = id. For i > 0,
(Cd)is0 = di+1s0 = s0di = s0(Cd)i−1 and (Cs)is0 = si+1s0 = s0si = s0(Cs)i−1. In
addition, (Cs)0s0 = s1s0 = s0s0 so that s0 is a strong contraction on CX. Now we wish
to show that the existence of a contraction on X gives X as a retract of CX. In fact,
tn : Xn

// (CX)n = Xn+1 and d0 : (CX)n = Xn+1
// Xn exhibit Xn as a retract of

(CX)n so it suffices to show that these are simplicial maps. We have (Cd)it = di+1t = tdi

and similarly (Cs)it = tsi. Finally, for i ≥ 0, (Cd)id0 = di+1d0 = d0di and similarly,
(Cs)id0 = d0si.

6.2. Corollary. A retract of a strongly contractible simplicial set need not be strongly
contractible.

Proof. This is immediate from Example 4.4.

The story of simplicial objects that are homotopic to a constant is a bit more compli-
cated. We begin with three lemmas of which the first is standard and left to the reader.
The third says that the horizontal composite of homotopies is a homotopy. This is doubt-
less known although the use of reduced homotopy makes it trivial. It remains the case
that homotopies do not generally compose vertically.

6.3. Lemma. Suppose that h : g ///o/o k in the diagram X
f //Y

g //
k
//Z

` //W of simplicial

objects, then `hf : `gf ///o/o `kf .

6.4. Lemma. Suppose C is a constant simplicial object. Then any two homotopic maps
X // C are equal.

Proof. Assume that f, g : X // C and h : f ///o/o g. Then from f0 = d0h0 = h0 and
g0 = d1h0 = h0 in degree 0, we see that f0 = g0. If we suppose that fn−1 = gn−1, then we
have that fn = d0fn = fn−1d

0 = gn−1d
0 = d0gn = gn.

6.5. Lemma. Suppose that in the diagram X
f //
g
// Y

k //
`
//Z, we have f ///o/o g and k ///o/o `,

then kf ///o/o `g.

Proof. Although it must be possible to prove this using ordinary homotopies, the use of
reduced homotopies renders it easy. Assuming that r : f ///o/o g and q : k ///o/o ` are reduced
homotopies, let pin = qinr

i
n for 0 ≤ i ≤ n + 1. It is now a trivial computation to see that

the pin define a reduced homotopy kf ///o/o `g.



13

6.6. Theorem. If idempotents split in X , a retract of a simplicial object in X that is
homotopic to a constant is also homotopic to a constant.

Proof. Suppose that we have a diagram

C X C

Y

f // g //

k

��

`

OO

kf

��?
??

??
??

??
??

??

g`

??�������������

in which C is constant, gf = id, id ///o/o fg, and k` = id. We claim that g`kf : C // C
is idempotent. Observe that g`kfg`kf ///o/o g`k`kf by 6.3 as fg ///o/o id. By 6.4 this implies
g`kfg`kf = g`k`kf which equals g`kf as k` = id. We then split this idempotent getting

maps B u //C
v //B such that vu = id and uv = g`kf . Then vg`kfu = vuvu = id. For

the other composite kfuvg` = kfg`kfg`, we have id = k`k` ///o/o kfg`kfg` from Lemma
6.5.

7. Singular simplicial complexes

As usual, ∆n denotes the set of all points (a0, . . . , an) ∈ Rn such that all ai ≥ 0 and
a0 + · · · an = 1. We map δi : ∆n−1

//∆n by

δi(a0, . . . , an−1) = (a0, . . . , ai−1, 0, ai, . . . , an−1)

and σi : ∆n+1
//∆n by

σi(a0, . . . , an+1) = (a0, . . . , ai−1, ai + ai+1, ai+2, . . . , an)

If X is a topological space, we let SS(X) denote the simplicial set whose nth term is
Hom(∆n, X) with di given by di = Hom(δi, X) and si = Hom(σi, X). Then SS(X)
becomes a simplicial set, as is well-known and readily verified. We also note that if
f : X // Y is continuous, then SS(f) : SS(X) // SS(Y ), defined so that f(u) = fu, is
easily seen to be a simplicial map.

7.1. Theorem. Suppose X and Y are topological spaces, f, g : X // Y maps and H :
X×I //Y a map such that H(x, 0) = fx and H(x, 1) = gx. Then H induces a simplicial
homotopy SS(f) ///o/o SS(g).

Proof. Define ri : SSn(X) //SSn(Y ) by letting u : ∆n
//X and defining riu(a0, . . . , an) =

H(u(a0, . . . , ai, ai+1, . . . , an), a0 + · · ·+ ai−1). We give the details in Appendix D.
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It is standard that a topological space X is contractible to the point ∗ ∈ X if there
is a map H : X × I //X such that H(x, 1) = x and H(x, 0) = ∗ for all x ∈ X. It will
be convenient in this section to denote H(x, a) by ax for x ∈ X and a ∈ I, treating it as
the set I acting on X. Should it happen that it is the monoid I that acts, meaning that
(ab)x = a(bx) for all x ∈ X and a, b ∈ I, we will say that we have a regular contraction
and that X is regularly contractible.

Any convex set in Rn is regularly contractible. By translating, we can assume that it
contains the origin and then we can let ∗ = 0 and ax have its standard value. In fact,
it would suffice that there be a single element ∗ in the set such that the line segment
between each other point and ∗ lie in the set. Such a set is called star-shaped.

7.2. Theorem. Let X be a contractible topological space. Then the singular simplicial
set over X is contractible; if X is regularly contractible, then its singular simplicial set is
strongly contractible.

Proof. Suppose X×I //X is contraction, denoted (x, a) 7→ ax. We define a contraction
t : Hom(∆n, X) // Hom(∆n+1, X) by

tu(a0, a1, . . . , an+1) =

{
(1− a0)u

(
a1

1−a0
, . . . an+1

1−a0

)
if a0 6= 1

∗ otherwise

The details, including the proof that tu is well-defined and continuous, are found in
Appendix D. Note that this equation is not like the one used in the preceding theorem.

7.3. A contractible space that is not regularly contractible. Unfortu-
nately, the space is not Hausdorff, nor even T1. It is equivalent to a subspace of the
Khalimsky topology on Z, see [Khalimsky (1969), Hamada (2015)].

We let E be the space with five elements we will denote v, w, x, y, z and whose basic
open sets are {v}, {v, w, x}, {z}, and {x, y, z}. We define a topological contraction H of
E to the single point v, as follows, where H(u, r) = ru for u ∈ E and r ∈ [0, 1]:

1. rv = v for all 0 ≤ r ≤ 1

2. rw =

{
v for 0 ≤ r < 1/5
w for 1/5 ≤ r ≤ 1

3. rx =

 v for 0 ≤ r < 1/5
w for 1/5 ≤ r ≤ 2/5
x for 2/5 < r ≤ 1

4. ry =


v for 0 ≤ r < 1/5
w for 1/5 ≤ r ≤ 2/5
x for 2/5 < r < 3/5
y for 3/5 ≤ r ≤ 1
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5. rz =


v for 0 ≤ r < 1/5
w for 1/5 ≤ r ≤ 2/5
x for 2/5 < r < 3/5
y for 3/5 ≤ r ≤ 4/5
z for 4/5 < r ≤ 1

Continuity follows from the calculation

1. H−1({v}) = ({v} × [0, 1]) ∪ (E × [0, 1/5))

2. H−1({v, w, x}) = ({v, w, x} × [0, 1]) ∪ (E × [0, 3/5))

3. H−1{z}) = ({z} × (4/5, 1]

4. H−1{x, y, z} × (2/5, 1]

Finally, we will show that neither this action nor any other is regular. Suppose r · is
a regular action with base point u ∈ E. We can suppose without loss of generality that
u ∈ {x, y, z} since there is a symmetry on E that exchanges {x, y, z} with {v, w, x}. Since
1 ·v = v and {v} is open, there is some r < 1 such that r ·v = v. But then rn ·v = v for all
n. Since lim rn = 0, it follows that lim rnv = 0 · v = u. But {x, y, z} is a neighbourhood
of u that excludes every rn · v, so that is impossible.

A. Details for example 4.4

These are the detailed computations required in Subsection 4.4

1. For i < j, didj = dj−1di. But all composites of faces end in a one element set, so
this is automatic.

2. For i < j, sjsi = sisj−1:

s1s0(β) = s1(δ) = θ = s0(δ) = s0s0(β)

3. d0s0 = d1s0 = d1s1 = d2s1 = id:

d0s0(β) = d0(δ) = β; d0s0(γ) = d0(η) = γ; d0s0(δ) = d0(θ) = δ

d1s0(β) = d1(δ) = β; d1s0(γ) = d1(η) = γ; d1s0(δ) = d1(θ) = δ

d1s1(γ) = d1(ζ) = γ; d1s1(δ) = d1(θ) = δ

d2s1(γ) = d2(ζ) = γ; d2s1(δ) = d2(θ) = δ

4. d0s1 = s0d0:

d0s1(γ) = d0(ζ) = δ = s0(β) = s0d0(γ); d0s1(δ) = d0(θ) = δ = s0(β) = s0d0(δ)

5. d2s0 = s0d1:

d2s0(γ) = d2(η) = δ = s0(β) = s0d1(γ); d2s0(δ) = d2(θ) = δ = s0(β) = s0d1(δ)
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A.1. Proposition. The map t is a contraction.

Proof. Again there are a number of computations.

1. d0t = id:
d0t(α) = d0(β) = α; d0t(β) = d0(γ) = β;

d0t(γ) = d0(ε) = γ; d0t(δ) = d0(ζ) = δ

2. d1t = td0:

d1t(β) = d1(γ) = β = t(α) = td0(β); d1t(γ) = d1(ε) = γ = t(β) = td0(γ);

d1t(δ) = d1(ζ) = γ = t(β) = td0(δ)

3. d2t = td1:

d2t(γ) = d2(ε) = γ = t(β) = td1(γ); d2t(δ) = d2(ζ) = γ = t(β) = td1(δ)

B. Details for 4.8

We will verify that Y , as given in 4.8, is homotopically equivalent to the constant partial
simplicial set C. In what follows, steps 1-5 show that Y is a partial simplicial set, while
steps 6-11 verify that the maps r0, r1, r2, r3 define a reduced homotopy with the required
properties.

It is not necessary to prove that two maps into Y0, from the same domain, are equal as
this is immediate, because Y0 has only one element. Similarly, two maps from Y0 into the
same codomain are, for the maps we are using, always equal because these maps always
preserve the element labeled ∗.

We often prove that two maps, say p and q, are equal by showing that p(x) = q(x) for
all x in their common domain. We can omit the case of x = ∗ because the maps we are
using always preserve ∗.

If the common domain of p and q is Y1, then to prove p = q, we only need to verify
that p(x) = q(x) for x = unα because the case x = α follows when n = 0.

If the common domain of p and q is Y2, then to prove p = q, we only need to verify
that p(x) = q(x) for x = vnγ, vkwkβ and vkw`γ because the case x = ∗ is immediate and
the other cases follow by setting n or k equal to 0.

We find it convenient to use notation such as “r2 ≡ ∗ on Y1” to indicate that r2 maps
every element of Y1 to ∗.

1. Proof that didj = dj−1di for i < j.

This follows because didj and dj−1di both map to Y0 (See above).
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2. Proof that sisj = sjsi−1 for i > j.

This follows because sisj and sjsi−1 both map from Y0. (See above).

3. Proof that disj = sj−1di when i < j.

Since the only degeneracies in this example of a partial simplicial set are s0, s1 and
since i < j, we only have to show that d0s1 = s0d0.

d0s1 = s0d0

d0s1(unα) = d0(vnγ) = ∗ = s0(∗) = s0d0(unα)

4. Proof that disj = id for i = j or i = j + 1.

d0s0 = id
d0s0(unα) = d0(wnβ) = unα

d1s0 = id
d1s0(unα) = d1(wnβ) = unα

d1s1 = id
d1s1(unα) = d1(vnγ) = unα

d2s1 = id
d2s1(unα) = d2(vnγ) = unα

5. Proof that disj = sjdi−1 for i > j + 1.

The only case that meets this condition is:

d2s0 = s0d1

d2s0(unα) = d2(wnβ) = ∗ = s0(∗) = s0d1(unα)

6. Proof of RH-1, that r0 is the identity.

A glance at the chart makes it clear that r0(x) = x for all x ∈ Y0 ∪ Y1 ∪ Y2.

7. Proof of RH-2, that rn+1 ≡ ∗ on Yn

Three glances at the chart make it clear that r1 ≡ ∗ on Y0; that r2 ≡ ∗ on Y1 and
that r3 ≡ ∗ on Y2.

8. Proof that dirj = rj−1di for i < j (first half of RH-3).

Cases of the form dir3 = r2di are immediate because dir3 ≡ ∗ as r3 ≡ ∗ on Y2 and
r2di ≡ ∗ as r2 ≡ ∗ on Y1. Aside from maps to Y0, the following cases remain:

d1r2 = r1d1

d1r2(vnγ) = d1(vnwγ) = un+1α = r1(unα) = r1d1(vnγ)
d1r2(vnwkβ) = d1(vnwk+1β) = un+k+1α = r1(un+kα) = r1d1(vnwkβ)
d1r2(vnw`γ) = d1(vnw`+1γ) = un+`+1α = r1(un+`α) = r1d1(vnw`γ)
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d0r2 = r1d0

d0r2(vnγ) = d0(vnwγ) = ∗ = r1(∗) = r1d0(vnγ).
d0r2(vnwkβ) = d0(vnwk+1β) = uk+1α = r1(ukα) = r1d0(vnwkβ).
d0r2(vnw`γ) = d0(vnw`+1γ) = ∗ = r1(∗) = r1d0(vnw`γ)

d0r1 = r0d0

d0r1(vnγ) = d0(vn+1γ) = ∗ = r0(∗) = r0d0(vnγ)
d0r1(vnwkβ) = d0(vn+1wkβ) = ukα = r0(ukα) = r0d0(vnwkβ)
d0r1(vnw`γ) = d0(vn+1w`γ) = ∗ = r0(∗) = r0d0(vnw`γ)

9. Proof that dirj = rjdi for i ≥ j. (Second half of RH-3)

Note that if j = 0 then dirj = rjdi is immediate as r0 is the identity

d2r2 = r2d2 d2r2(vnγ) = d2(vnwγ) = ∗ = r2d2(vnγ)
d2r2(vnwkβ) = d2(vnwk+1β) = ∗ = r2d2(vnwkβ)
d2r2(vnw`γ) = d2(vnw`+1γ) = ∗ = r2d2(vnw`γ)

d2r1 = r1d2

d2r1(vnγ) = d2(vn+1γ) = un+1α = r1(unα) = r1d2(vnγ)
d2r1(vnwkβ) = d2(vn+1wkβ) = ∗ = r1(∗) = r1d2(vnwkβ)
d2r1(vnw`γ) = d2(vn+1w`γ) = ∗ = r1(∗) = r1d2(vnw`γ)

d1r1 = r1d1

d1r1(vnγ) = d1(vn+1γ) = un+1α = r1(unα) = r1d1(vnγ)
d1r1(vnwkβ) = d1(vn+1wkβ) = un+1+kα = r1(un+kα) = r1d1(vnwkβ)
d1r1(vnw`γ) = d1(vn+1w`γ) = un+`+1α = r1(un+`α) = r1d1(vnw`γ)

10. Proof that sirj = rj+1si for i < j. (First half of RH-4)

The proof that sir2 = r3si for i < j is immediate because we have s1r2 ≡ ∗ as
r2 ≡ ∗ on Y1 and r3si ≡ ∗ because r3 ≡ ∗ on Y2. The only remaining case is:

s0r1 = r2s0

s0r1(unα) = s0(un+1α) = wn+1β = r2(wnβ) = r2s0(unα)

11. Proof that sirj = rjsi for i ≥ j (Second half of RH-4, so this will complete the proof
that Example 4.8 has the indicated properties.)

Note that i can only be 0 or 1 as there is no s2 in the partial simplicial set of 4.8
Also, if j = 0, then the result is immediate as r0 is the identity. And if i = 0 then
we must have j = 0 as i ≥ j. The maps sidj with domain Y0 are trivially equal to
djsi when i ≥ j because these maps agree on ∗, the only element of Y0. It follows
that it only remains to show that s1r1 = r1s1:

s1r1 = r1s1

s1r1(unα) = s1(un+1α) = vn+1γ = r1(vnγ) = r1s1(unα)
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C. The coskeleton equations

We start by completing the proof that the function si actually maps Xn−1 to Xn. It
clearly suffices to show that djdksix = dk−1djsix for x ∈ Xn−1 and j < k. Recall that

six = (si−1d0x, si−1d1x, . . . , si−1di−1x, x, x, sidi+1x, . . . , sidn−1x)

There are a number of cases to consider:

1. j < k < i:

djdksix = djsi−1dkx = si−2djdkx = si−2dk−1djx

dk−1djsix = dk−1si−1djx = si−2dk−1djx

2. j < k = i, i+ 1:

djdksix = djx

dk−1djx = dk−1si−1djx = djx

3. j < i < k − 1:

djdksix = djsidk−1x = si−1djdk−1x = si−1dk−2djx

dk−1djsix = dk−1si−1djx = si−1dk−2djx

4. j = i, i+ 1, k > i+ 1:

djdksix = djsidk−1x = dk−1x

dk−1djsix = dk−1x

5. i+ 1 < j < k:

djdksix = djsidk−1x = sidj−1dk−1x = sidk−2dj−1x

dk−1djsix = dk−1sidj−1x = sidk−2dj−1x

The simplicial identities for didj and disj are immediate consequences of the definitions.
Next we show that for i > j, sisj = sjsi−1. The {dk}, being the projections on the limit,
are collectively monic, so it suffices to show that dksisj = dksjsi−1, which allows an
inductive argument. We must consider a number of cases depending on where k falls with
respect to i and j. We always suppose i > j.

1. k < j:

dksisj = si−1dksj = si−1sj−1dk = sj−1si−2dk

dksjsi−1 = sj−1dksi−1 = sj−1si−2dk
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2. k = j, j + 1:
dksisj = si−1dksj = si−1

dksjsi−1 = si−1

3. i > k > j + 1:
dksisj = si−1dksj = si−1sjdk−1 = sjsi−2dk−1

dksjsi−1 = sjdk−1si−1 = sjsi−2dk−1

4. k = i, i+ 1:
dksisj = sj

dksjsi−1 = sjdk−1sj−1 = sj

5. k > i+ 1:
dksisj = sidk−1sj = sisjdk−2 = sjsi−1dk−2

dksjsi−1 = sjdk−1si−1 = sjsi−1dk−2

Now suppose the original fragment is contractible so far. We extend the contraction
to t : Xn−1

//Xn by
tx = (x, td0x, td1x, . . . , tdn−1x)

We must show that this is an element of Xn. Suppose i < j. When i = 0, d0djtx =
dj−1d0tx = dj−1x = dj−1x. For 0 < i < j, we have

didjtx = ditdj−1x = tdi−1dj−1x = tdj−1di−2x

djdi−1tx = djtdi−2x = tdj−1di−2x

We will show that the above extension of a contraction t is a contraction on Cosk(X),
and, if the original contraction, t, is strong, then the extension will be strong. sit = tsi−1

for i > 0. Again we compose with all the dk.

1. 1 < k < i:
dksit = si−1dkt = si−1tdk−1 = tsi−2dk−1

dktsi−1 = tdk−1si−1 = tsi−2dk−1

2. 1 < k = i, i+ 1
dksit = t = tdk−1si−1 = dktsi−1

3. k > i+ 1
dksit = sidk−1t = sitdk−2 = tsi−1dk−2

dktsi−1 = tdk−1si−1 = tsi−1dk−2

Finally, we show that if the original contraction t is a strong contraction, then so is its
extension.
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1. k = 0

d0s0t = t = d0tt

2. k = 1

d1s0t = t = td0t = d1tt

3. k > 1

dks0t = s0dk−1t = s0tdk−2 = ttdk−2 = dktt

D. The simplicial homotopy equations

Proof of Theorem 7.1.

Proof of RH-1.

r0u(a0, . . . , an) = H(u(a0, . . . , an), 0) = fu(a0, . . . , an) = SS(f)(u)

Proof of RH-2.

rn+1(u(a0, . . . , an) = H(u(a0, . . . , an), 1) = gu(a0, . . . , an) = SS(g)(u)

Proof of RH-3. For i < j,

dirju(a0, . . . , an−1) = rj(u)(a0, . . . , ai−1, 0, ai, . . . , aj, . . . , an−1)

= H(u(a0, . . . , ai−1, 0, ai, . . . , aj, . . . an−1), a0 + · · ·+ 0 + · · ·+ aj−2)

while

rj−1diu(a0, . . . , an−1) = H(diu(a0, . . . , an−1), a0 + · · ·+ aj−2)

H(u(a0, . . . , ai−1, 0, ai, . . . , aj, . . . an−1), a0 + · · ·+ aj−2)

For i ≥ j,

dirju(a0, . . . , an−1) = rj(u)(a0, . . . , aj−1 . . . , ai−1, 0, ai, . . . , an−1)

= H(u(a0, . . . , aj−1, . . . , ai−1, 0, ai, . . . , an−1), a0 + · · ·+ aj−1)

while

rjdiu(a0, . . . , an−1) = H(diu(a0, . . . , an−1), a0 + · · ·+ aj−1)

= H(u(a0, . . . , aj−1, . . . , ai−1, 0, ai, . . . an−1), a0 + · · ·+ aj−1)
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Proof of RH-4. For i < j,

sirju(a0, . . . , an+1) = rju(a0, . . . , ai−1, ai + ai+1, . . . , aj+1, . . . an+1)

= H(u(a0, . . . , ai−1, ai + ai+1, . . . , aj+1, . . . an+1), a0 + · · ·+ (ai + ai+1) + · · ·+ aj)

while
rj+1siu(a0, . . . , an+1) = rj+1siu(a0, . . . , ai, . . . aj . . . an+1)

= H(siu(a0, . . . , an+1), a0 + · · ·+ aj)

which is clearly the same as sirju. For i ≥ j,

sirju(a0, . . . , an+1) = rju(a0, . . . , aj−1, . . . , ai−1, ai + ai+1, . . . an+1)

= H(u(a0, . . . , aj−1 . . . , ai−1, ai + ai+1, . . . an+1), a0 + · · ·+ aj−1)

while
rjsiu(a0, . . . , an+1) = rjsiu(a0, . . . , aj, . . . ai . . . an+1)

= H(siu(a0, . . . , an+1), a0 + · · ·+ aj−1)

which is clearly the same as sirju.
It seems worth pointing out that Meyer’s condition is not satisfied. For example, recall

that hi = ri+1si then:

d1h0u(a0, a1) = h0u(a0, 0, a1) = H(u(a0, a1), a0)

while
h0d0u(a0, a1) = H(d0u(a0 + a1), a0) = H(u(0, a0 + a1), a0)

The result is that, while as shown above, a space homotopic to a point gives a contractible
simplicial complex, Meyer’s construction does not do the job in this case.

Proof of Theorem 7.2.
First we show that tu is well-defined and continuous. Since that u

(
a1

1−a0
, . . . , an+1

1−a0

)
is always defined when a0 6= 1, it suffices to show that, for 1 ≤ i ≤ n + 1, we have
0 ≤ ai

1−a0
≤ 1. But this readily follows as 1− a0 = a1 + · · ·+ an+1 ≥ ai.

As for continuity, it is clear that tu is continuous at every point of ∆n+1 except possibly
when a0 = 1. Let q = (1, 0, . . . , 0) be the only such point in ∆n+1. It suffices to show
that if p1, p2, . . . , pi, . . . is a sequence of points of ∆n+1 that converges to q, then ∗ is in
the closure of the set {tu(pi) | i = 1, 2, . . .}.

Now write pi = (xi0, x
i
1, . . . , x

i
n+1). Note that we may as well assume that xi0 6= 1, for

all i, as otherwise q ∈ {tu(pi) | i = 1, 2, . . .}. But the sequence x10, x
2
0, . . . , x

i
0, . . . must

converge to 1 as the projection from ∆n+1
// [0, 1], which sends (a0, a1, . . . , an+1) to a0

is continuous.
Now let Y ⊆ X be the image ∆n+1 under u. Note that Y is compact. Define Define

φ(pi) =
(
u
(

xi
1

1−xi
0
, . . . ,

xi
n+1

1−xi
0

)
, 1− xi0

)
∈ Y ×[0, 1]. Since Y ×[0, 1] is compact, the sequence



23

φ(p1), . . . , φ(pi), . . . must have a cluster point (meaning a point (y, b) ∈ Y × [0, 1] such
that every neighborhood of (y, b) contains infinitely many members of the sequence). It
clearly follows that b = 0.

Finally, since tu(pi) = H(φ(pi)) and since H is continuous, and therefore preserves
cluster points, we see that H(y, b) is a cluster point of, and thus in the closure of, {tu(pi) |
i = 1, 2, . . .}. But as shown above, b = 0 so H(y, b) = ∗.

Next we show that t is a contraction.

d0tu(a0, . . . , an) = tu(0, a0, . . . , an) = 1u(a0, . . . , an) = u(a0, . . . , an)

so that d0t = id. For i > 0,

ditu(a0, . . . , an) = tu(a0, . . . , ai−1, 0, ai, . . . , an)

= (1− a0)u
(

a1
1− a0

, . . . ,
ai−1

1− a0
, 0,

ai
1− a0

, . . . ,
an

1− a0

)

while

tdi−1u(a0, . . . , an) = (1− a0)di−1u

(
a1

1− a0
, . . . ,

an
1− a0

)
= (1− a0)u

(
a1

1− a0
, . . . ,

ai−1

1− a0
, 0,

ai
1− a0

, . . . ,
an

1− a0

)

The argument with the degeneracies is similar. For i > 0,

situ(a0, . . . , an+2) = tu(a0, . . . , ai + ai+1, . . . , an)

= (1− a0)u
(

a1
1− a0

, . . . ,
ai + ai+1

1− a0
, . . . ,

an
1− a0

)

while

tsi−1u(a0, . . . , an+2) = (1− a0)si−1u

(
a1

1− a0
, . . . ,

an+2

1− a0

)
= (1− a0)u

(
a1

1− a0
, . . . ,

ai
1− a0

+
ai+1

1− a0
, . . . ,

an+2

1− a0

)

Assuming there is a regular contraction on X we will show that the t, as defined above,
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is a strong contraction on SS(X). We have that

ttu(a0, . . . , an+2) = (1− a0)tu
(

a1
1− a0

, . . . ,
an+2

1− a0

)
= (1− a0)

(
1− a1

1− a0

)
u

(
a2/(1− a0)

1− a1/(1− a0)
, . . . ,

an+2/(1− a0)
1− a1/(1− a0)

)
= (1− a0)

(
1− a0 − a1

1− a0

)
u

(
a2

1− a0 − a1
, . . . ,

an+2

1− a0 − a1

)
= (1− a0 − a1)u

(
a2

1− a0 − a1
, . . . ,

an+2

1− a0 − a1

)
= tu(a0 + a1, a2, . . . , an+2)

= s0tu(a0, . . . , an+2)
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