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1 Chapter 1: Modular Forms, Elliptic Curves, and Modular Curves

The goal of this chapter is to define the objects in the title. Importantly, we will develop different
languages to talk about elliptic curves. A point of great interest will be that elliptic curves and
complex torii are in bijection.

1.1 1.1-1.2: Modular forms

The story begins in the complex upper half plane H = {τ ∈ C : Im(τ) > 0}. We are intrested in
the action of SL2(Z), given by the following:(

a b
c d

)
τ =

aτ + b

cτ + d

Proposition 1.1. This is indeed an action.

Proof. Let j(γ, τ) = cτ + d. We need to verify:

� Im(γ(τ)) > 0; we can in fact show Im(γ(τ)) = Im(τ)
|j(γ,τ)|2

� 1(τ) = τ

� γ(γ′(τ)) = (γγ′)(τ)

All three are routine, using the identity ad− bc = 1.

We extend this idea further, and apply it to function of the upper half plane.

Definition 1.1. For γ ∈ SL2(Z) and k ∈ Z we define the weight-k operator [γ]k on f : H → C by

(f [γ]k)(τ) = j(γ, τ)−kf(γ(τ))

Notice that f and f [γ]k have the same zeros and poles. We say a function is weakly modular (of
weight k) if f [γ]k = f for all γ ∈ SL2(Z). It can be shown that SL2(Z) is generated by τ → τ + 1
and τ → −1/τ . Also, [γ]k[γ

′]k = [γγ′]k. Together, these facts imply that being to check weakly
modularity, we only need to check f(τ + 1) = f(τ) and f(−1/τ) = τkf(τ). This might seem like
an extremely restrictive condition, and indeed it is. For example,

Proposition 1.2. There are no nonzero weakly modular forms of odd weight.

Proof. The matrix −1 is in SL2(Z), and remark that f [−1]k = −f . Suppose f is weakly modular
of odd weight k. Then, f [−1]k = f , so f = −f for all τ which implies f = 0.

For a function to be (fully) modular, we add a ”niceness” condition.
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Definition 1.2. A function f : H → C is a modular form of weight k if

� f [γ]k = f for all γ ∈ Γ

� f is holomorphic on H

� f is holomorphic at ∞

If we add that a0 = 0 in the Fourier expansion of all f [α]k, then f is a cusp form.

Recall that f being holomorphic at ∞ means g(q) = g(log(q)/(2πi)) defined on B′ = B(0, 1)\0
extends holomorphically to q = 0. This comes from the intuition that under the biholomorphic
equivalence of H and D, the ”point at infinity” is mapped to 0. Recall also that this condition
guarantees existence of a Fourier expansion, justifying the last remark.

We now ask what structure the set Mk of modular forms of weight k has. Further, let M =⊕
Mk.

Proposition 1.3. Each Mk forms a complex vector space. Further, M is a graded ring.

Proof. Let f ∈ Mk, g ∈ Mk′ , and λ ∈ C.
Suppose k = k′. Then, (f + λg)[γ]k = f [γ]k + λg[γ]k = f + λg, and the holomorphy conditions are
respected. This shows Mk is a vector space over C.
Now, we show that fg is also modular, but of weight k+ k′. This gives the (graded) ring structure
to M.

(fg)[γ]k+k′(τ) = j(γ, τ)k+k′f(τ)g(τ) = j(γ, τ)kf(τ)j(γ, τ)k
′
g(τ) = f(τ)g(τ)

1.2 Particular functions

We describe explicitely a family of modular forms, called Eisenstein series. Then, we make a cusp
form out of them.

Definition 1.3. The Eisenstein series of weight k is a modular form, for k an even number bigger
than 3.

Gk(τ) =
∑

ω∈Z⊕τZ\0

1

wk

It is indeed modular, since γ(τ) is a lattice point of Z⊕ τZ.

Proposition 1.4. The sum Gk(τ) converges uniformly.

An intresting result, to be proven in chapter 3, is that Eisenstein series generate Mk. In fact,
M = C[E4, E6]. For example, M8 = C[E8]. Note that E2

4 is of weight 8, and has constant term 1.
Hence, E2

4 = E8.
For a cusp form, we can combine Eisenstein series to cancel the constant term.

Definition 1.4. Write g2(τ) = 60G4(τ), and g3(τ) = 140G6(τ).
Then, the discriminant function ∆(τ) = (g2(τ))

3 − 27(g3(τ))
2 is a cusp form.

2



Finally, we define a weakly-modular form of weight 0. That is, an SL2(Z)-invariant function.
To do this, divide two modular forms of same weight. The difficulty lies in getting a modular form
that never vanishes. That ∆(τ) does the job will be proven later.

j(τ) = 1728
(g2(τ))

3

∆(τ)

Note that both the numerator and denominator have the same weight, so the function is indeed
weakly-modular of weight 0. It has a pole at infinity, so it is not modular.
We end by computing some values of the aforedefined functions.

Proposition 1.5. We have j(i) = 1728, g2(i) = 4ϖ4
4, g3(i) = 0. Also, j(ζ3) = 0, g2(ζ3) = 0,

g3(ζ3) =
27
16ϖ

6
3.

Proof. Note that γµ3 =

(
0 −1
1 0

)
µ3 = −1/µ3 = −µ23 = µ3 + 1, so g2(γµ3) = g2(µ3). But, again

using modularity, g2(γµ3) = µ43g2(µ3). Hence g2(µ3) = 0. The same argument shows g3(i) = 0.
Since ∆(τ) is never 0 on H, g2(τ) = 0 forces g3(τ) ̸= 0 and inversly. For the values of j(i) and
j(µ3), simply plug in the previous results.
The other identities are more difficult; the proofs do not fit on this margin.

We can already get a taste of the relation with number theory with the following fact.

Proposition 1.6. The normalized Eisenstein series Ek(τ) = Gk(τ)
2ζ(k) has rational coefficient for

k ≥ 2 even.

Proof. The proof is at the end of this notes, for it is long and would crowd the discussion.

1.3 1.3: Complex Torii

A lattice is an abelian group Λω2
ω1

= ω1Z+ ω2Z ⊂ C. Notice that the quotient C/Λ, geometrically,
is a torus. Since the set is unchanged as we replace ωi by a multiple, we can make the normalizing
convention that ω1/ω2 ∈ H.

Lemma 1.1. Λω2
ω1

= Λ
ω′
2

ω′
1
iff ω′

1/ω
′
2 = γ(ω1/ω2) for some γ ∈ SL2(Z).

Proof. Since ωi ∈ Λ
ω′
2

ω′
1
, we have ω1 = aω′

1 + bω′
2 and ω2 = cω′

1 + dω′
2. In matrix form, ω′

1/ω
′
2 =

γ(ω1/ω2). Because the lattices are equal, their cells (parallelograms) have the same area. Since
det(γ) is governing how area is scaled, this forces det(γ) = ±1. The assumption that ω′

1/ω
′
2 and

ω1/ω2 were both in the upper half plane guarantees det(γ) = 1.

Algebraically, this quotient is C/Λ = {z + Λ}. We will be intrested in the study of functions
ϕ : C/Λ → C/Λ′. Given the structure, we can ask that these are both holomorphic and group
homomorphisms. Such a function is called an isogeny. The following results give a classification.

Proposition 1.7. Let ϕ : C/Λ → C/Λ′ be holomorphic. Then, ϕ(z + Λ) = mz + bΛ′ for complex
numbers m, b such that mΛ ⊂ Λ′. Moreover, ϕ is a bijection iff there is equality.

Proof. Consider ϕ̃ : C → C, the lift of ϕ. This ϕ̃ is still holomorphic.
Now, for all λ ∈ C, consider fλ(z) = ϕ̃(z + λ) − ϕ̃(z). The image of this map is discrete by
construction, and hence constant. Thus ϕ̃′ is bounded, which makes it constant by Liouville.
Hence ϕ̃(z) = mz + b, which composes with the covering map to give ϕ(z +Λ) = mz + b+Λ′.
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Proposition 1.8. Let ϕ : C/Λ → C/Λ′ be holomorphic. TFAE:

� ϕ is a homomorphism

� b ∈ Λ′

� ϕ(0) = 0.

Proof. We write Z = z + Λ. (i) ⇐⇒ (ii): By the previous proposition, ϕ(z + Λ) = mz + b + Λ′.
If ϕ(Z + Z ′) = ϕ(Z) + ϕ(Z ′), then mz + b +mz′ + b + Λ′ = m(z + z′) + b + Λ′. That is to say,
b+ λ′ = Λ′. Conversly, ϕ(Z + Z ′) = mz +mz′ + Λ′ = mz + Λ′ +mz′ + Λ′ = ϕ(Z) + ϕ(Z ′).
That (ii) and (iii) are equivalent is trivial.

Hence, complex torri are holomorphically isomorphic iff mΛ = Λ′ for some m. This allows us
to rewrite every torus as Λω2

ω1
= Z + τZ for τ = ω1/ω2, since the map ϕ(z + Λω2

ω1
) = z/ω2 + Λτ

is an isomorphism (since 1/ω2Λ
ω2
ω1

= Λτ ). By the first above lemma, Λτ = Λτ ′ iff τ and τ ′ are in
the same SL2(Z)-orbit. Hence, isogeny classes of torii are in correspondence with orbits of SL2(Z)
acting on H.
General things can be said about isogenies.

Proposition 1.9. Every (nontrivial) isogenie ϕ is sujective and has finite kernel.

Proof. This comes from topology and complex analysis. Every torus is compact, and by the open
mapping theorem, ϕ(C/Λ) is clopen. Since ϕ is nontrivial, this makes it surjective. From complex
analysis, the preimage of singletons under holomorphic maps is discrete. In particular, ker(ϕ) is
discrete, and hence finite since C/Λ is compact.

A particular type of isogeny is [N ] : C/Λ → C/Λ given by [N ](z +Λ) = Nz + Λ. The kernel is
written E[N ], and it’s elements can be thought of as torsion points.
Another type of isogeny is πC : C/Λ → C/C for C a cyclic subgroup of E[N ] (note C/C forms a
superlattice of C/Λ.

Proposition 1.10. Every isogeny is a composition of some [N ] and πC .

1.4 1.4: Complex torii and Elliptic Curves

Definition 1.5. An elliptic curve is a the solution set of the equation y2 = 4x3 − a2x− a3.

The goal of this section is to establish a correspondence between the torii and elliptic curves.
To this end, we use the Weirstress ℘ function. Note that it is doubly periodic.

℘(z) =
1

z2
+
∑
Λ\0

1

(z − ω)2
− 1

ω2

It’s derivative, ℘′(z) = −1
∑

Λ
1

(z−ω)3
is also of interest. Note that ℘ depends on the lattice, which

we omit from the notation. By using the geometric series, swapping order of the summation (since
things converge), and cancelling odd powers when summed over the lattice, we get

℘(z) =
1

z2
+

∑
2≤n even

(n+ 1)Gn+2(Λ)z
n

Before stating the result, we need to introduce a new function. We generalize the Eisenstein series
to Gk(Λ) =

∑′ 1
ωk , so Gk(τ) = Gk(Λτ ).
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Theorem 1.1. For a lattice Λ, the map z → (℘(z), ℘′(z)) is a map from C/Λ → elliptic curve.
Precisely, for all z ∈ C\Λ,

(℘(z))2 = 4(℘(z))3 − g2(Λ)℘(z)− g3(Λ)

Proof. Recall that ℘(z) = 1
z2

+3G4(Λ)z
2 +4G6(Λ)z

4 + z6(...). Keeping track of the terms of order
less than z2, we get (℘′(z))2 ∼2 4(℘(z))3 − g2(Λ)℘(z) − g3(Λ) (by which we mean their difference
is O(z2)).
So their difference is a holomorphic and doubly periodic function, so it’s bounded, hence constant.
But it goes to 0 as z → ∞, so the difference is 0.

Theorem 1.2. Given an ellitpic curve E : y2 = 4x3 − a2x− a3 with ∆ = a32 − 27a23 ̸= 0, there is a
lattice with a2 = g2(Λ) and a3 = g3(Λ), hence a complex torus such that (℘, ℘′)(C/Λ) = E.

Proof. Suppose first a2 ̸= 0 ̸= a3. Then, there is a τ such that j(τ) = 1728a32/∆ since j surjects.
After some algebra, we get

a32
g2(τ)3

=
a23

g3(τ)2

Choose ω2 so that ω−4
2 = a2/g2(τ). Take power 2/3, and use the above equality to get ω−6

2 =
a3/g3(τ).
Now, let Λ = ω1Z⊕ ω2Z. Note that Λ = ω2Λτ , so g2(Λ) = ω−4

2 g2(τ) and g3(Λ) = ω−6
2 g3(τ), so we

are done.
Now if a2 = 0, choose Λ = mΛζ3 . Thus, g2(Λ) = m−3g2(ζ3) = 0 and g3(Λ) = m−3 27

16ϖ
6
3, so we can

choose an appropriate m to make g3(Λ) = a3.

For a3 = 0, choose Λ = mΛi for m =
16ϖ8

4

a22
.

Hence to every complex torus, we can associate an ellptic curve, and inversly. Write Eτ for the
elliptic curve corresponding to C/Λτ .

We end this section by noting that since C/Λ was an abelian group, we can carry the group law
on the elliptic curve it corresponds to. In a word, the group law is defined by colinear triples on E
summing to 0.

1.5 1.5: Modular Curves

We have shown that complex torii and elliptic curves are in correspondence, so we use the terms
interchangably. Recall E[N ] = Z/NZ× Z/NZ, the kernel of the map [N ].
Our goal is to link this story back to the upper half plane, and later to modular forms. First, we
have to introduce the notion of congruence subgroups. Being modular for the whole modular group
is very restrictive (there are no forms of odd weights), so we relax the condition.

Definition 1.6. The principal congruence subgroup of level N is

Γ(N) =

{[
a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
≡

[
1 0
0 1

]
(mod N)

}
A congruence subgroup of SL2(Z) is a subgroup Γ with the property that Γ(N) ⊂ Γ for some
positive N .
We single out Γ0(N) and Γ1(N).

Γ0(N) =

{[
a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
≡

[
∗ ∗
0 ∗

]
(mod N)

}
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Γ1(N) =

{[
a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
≡

[
1 ∗
0 1

]
(mod N)

}
Definition 1.7. An enhanced elliptic curve for Γ0(N) is a pair (E,C) consisting of an elliptic curve
along with a specified cyclic subgroup.
We impose the following equivalence relation: (E,C) ∼ (E′, C ′) if there is an isomorphism E → E′

taking C → C ′. Then, define
S0(N) = {(E,C)}/ ∼

Similarily, define enhanced elliptic curves for Γ1(N) by pairs (E,Q) for Q a point of order N , and
for Γ(N) by triples (E,P,Q) where P,Q generate E[N ] = ker([N ]) such that the Weil pairing
eN (P,Q) = e2πi/N . We also define relations (E,Q) ∼ (E′, Q′) and (E,P,Q) ∼ (E′, P ′, Q′) in the
obvious way. Then,

S1(N) = {(E,Q)}/ ∼ S(N) = {(E,P,Q)}/ ∼

The point is that Si(N) captures the isomorphism classes of elliptic curves, with some torsion-
data preserved. In particular, Si(1) is just the isomorphism classes without looking at the torsion
data. These are called moduli spaces, and on one side of the bijection we wish to create. We can
give an explicit description of these spaces.

Theorem 1.3.
S0(N) = {[Eτ , ⟨1/N + Λτ ⟩] : τ ∈ H}

S1(N) = {[Eτ , 1/N + Λτ ] : τ ∈ H}

S(N) = {[Eτ , τ/N + Λτ , 1/N + Λτ ] : τ ∈ H}

Proof. We do the case of Γ1(N).
By the previous section, E corresponds to a complex torus, so E = Eτ for some τ ′. In this point
of view, Q = (cτ ′ + d)/N + Λ′

τ , where gcd(c, d,N) = 1 otherwise Q would have order less than Λ.
The goal is to write this element in a simpler form.

Using Bezout’s theorem, there are numbers a, b, k so that ac − bd + kN = 1, so ac − bd = 1

(mod N). Write γ =

[
a b
c d

]
, which is in SL2(Z/NZ). Since SL2(Z) surjects, we can just as

well consider γ as an element of the modular group. Let τ = γ(τ ′), and m = cτ ′ + d. We claim
z + Λτ 7→ mz + Λτ ′ is a desired isomorphism.

mΛτ = (aτ ′ + b)Z⊕ (cτ ′ + d)Z = Λ′
τ

m(1/N + Λτ ) = (cτ ′ + d)/N + Λτ ′ = Q

Hence, (E,Q) = (Eτ , 1/N + Λτ ) in S1(N).
Now, the case for Γ0(N).

Let (E,C) an enhanced elliptic curve. Then, E = Eτ for some τ ∈ H, and

The other side is the following construction. Recall that lattices Λτ and Λ′
τ are isomorphic iff

τ = τ ′ (mod SL2(Z)). This motivates the following definition.

Definition 1.8. Let Γ a congruence subgroup, which acts on H. The modular curve for Γ is

Y (Γ) = Γ\H = {Γτ : τ ∈ H}

We write Yi(N) for the modular curve for Γi(N).
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Theorem 1.4. The modulii spaces and modulii curves are related by the following bijections:

ψ0 : S0(N) → Y0(N) [C/Λτ , ⟨1/N + Λτ ⟩] 7→ Γ0(N)τ

ψ1 : S1(N) → Y1(N) [C/Λτ , 1/N + Λτ ] 7→ Γ1(N)τ

ψ : S(N) → Y (N) [C/Λτ , τ/N + Λτ , 1/N + Λτ ] 7→ Γ(N)τ

Proof. Again, we do the case for Γ1(N).
Injectivity : Suppose Γ1(N)τ = Γ1(N)τ , or simply τ = γ(τ ′) for some γ ∈ Γ1(N). Since that

m = j(γ, τ ′) ≡ 1 (mod (N)), the isogeny z+Λτ 7→ mz+Λτ ′ has m(1/N +Λτ ) = 1/N +Λτ ′ . Hence
[C/Λτ , 1/N + Λτ ] = [C/Λτ ′ , 1/N + Λτ ′ ] in S1(N).

Well-defined : Suppose [C/Λτ , 1/N +Λτ ] = [C/Λτ ′ , 1/N +Λτ ′ ]. Then, since isogenies are of the

form [m], there is m ∈ C so that mΛτ = Λτ ′ . Hence

[
mτ
m

]
= γ

[
τ ′

1

]
for γ ∈ SL2(Z), from which

τ = γ(τ ′); the goal is to show γ ∈ Γ1(N). We also have mQ = Q′, so cτ ′ + d = 1 (mod N). This
forces a = 1, so we have indeed γ ∈ Γ1(N). Hence ψ1(Eτ , Q) = ψ1(Eτ ′ , Q

′)

We can use these equivalences to create modular forms.

1.6 Extra Computations

The following amounts to exercise 1.1.4. We want to show absolute and uniforme convergence of
Gk(τ) on compact subsets of H, and so holomorphicity on H.

Proof. Let k ≥ 3. Let’s first show that the following series converges :

′∑
(c,d)∈Z2

(sup{|c|, |d|}−k = lim
N→∞

′∑
(c,d)∈[−N,N ]2⊂Z2

(sup{|c|, |d|}−k

≤ 4 lim
N→∞

′∑
(c,d)∈[0,N ]2⊂N2

(sup{|c|, |d|})−k

= 4 lim
N→∞

(

N∑
j=1

1

jk
+ 2

N∑
l=1

l

lk
)

= 4 lim
N→∞

(
N∑
j=1

1

jk
+ 2

N∑
l=1

1

lk−1
) where both terms converge for k > 2.

Now, fix positive number A and B and let

Ω = {τ ∈ H : |Re(τ)| ≤ A, Im(τ) ≥ B}.

We show that there is constant C > 0 such that |τ + δ| > Csup{1, |δ|} for all τ = x + iy ∈ Ω
and δ ∈ R. We consider 4 cases :

1. Suppose |δ| < 1. Then |τ + δ| >
√
B2 + y2 ≥= B = Bsup{1, |δ|}.

2. Suppose next that 1 ≤ |δ| ≤ 3A and y > A. Then, |z + δ| =
√

(x+ δ)2 + y2 ≥ A > |δ|/3 =
1/3max{1, |δ|}.
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3. Suppose 1 ≤ |δ| ≤ 3A and B ≤ Im(τ) ≤ A. Then, |τ + δ|/|δ| takes a nonzero minimum m, so
|τ + δ| ≥ m|δ| = m · sup{1, |δ|}.

4. Suppose |δ| > 3A, then |τ + δ| ≥ |δ| −A ≥ 2|δ|/3 = 2 sup{1, |δ|}/3.

Hence, we can take any positive C less than inf{B, 1/3,m}.
We have then on Ω

′∑
(c,d)∈Z2

1

|cτ + d|k
= 2ζ(k) +

∑
c ̸=0,d

|cτ + d|−k

Using C from above and with c ̸= 0,

|cτ + d|−k = (|c||τ + d/c|)−k ≤ 1

(|c|(C sup{1, |d/c|}))k
=

1

((C sup{|c|, |d|}))k
.

By our first result, this shows that Gk(τ) converges absolutely and uniformly on Ω, and hence is
holomorphic on Ω. Since for any compact subset of H is in some Ω, Gk(τ), Gk(τ) is holomorphic
on H by complex analysis.

The following amounts to exercise 1.1.5, 1.1.7.

Definition 1.9. The Bernoulli numbers are the coefficients in

t

et − 1
=

∞∑
k=0

Bk
tk

k!

Lemma 1.2.

1− 2

∞∑
k=1

ζ(2k)τ2k = πτcot(πτ) = πiτ +

∞∑
k=0

Bk
(2πiτ)k

k!

Hence, by equating coefficients,

2ζ(k) = −(2πi)k

k!
Bk

Proof.

ln(sin(πτ))′ = πcot(πτ) = π
cos(πτ)

sin(πτ)

ln(πτ

∞∏
n=1

1− τ2

n2
) = πcot(πτ) = πi

eπiτ + e−πiτ

eπiτ − e−πiτ

1

τ
+

∞∑
n=1

1

n2
n2

n2 − τ2
= πcot(πτ) = πi

e2πiτ + 1

e2πiτ − 1

1

τ
+

∞∑
n=1

1

n2
n2

n2 − τ2
= πcot(πτ) = πi− 2πi

∞∑
m=0

e2πiτm
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Then, we have the following,

1 +
∞∑
d=1

τ

τ − d
+

τ

τ + d
= πτcot(πτ) = πiτ − 2πiτ

∞∑
m=0

e2πiτm

1 +
∞∑
d=1

2τ

τ2 − d2
= πτcot(πτ) = πiτ +

2πiτ

e2πiτ − 1

1− 2
∞∑
d=1

τ2

d2
1

1− τ2

d2

= πτcot(πτ) = πiτ +
∞∑
k=0

Bk
(2πiτ)k

k!

1− 2

∞∑
d=1

τ2

d2

∞∑
k=0

τ2k

d2k
= πτcot(πτ) = πiτ +

∞∑
k=0

Bk
(2πiτ)k

k!

1− 2

∞∑
d=1

∞∑
k=1

τ2k

d2k
= πτcot(πτ) = πiτ +

∞∑
k=0

Bk
(2πiτ)k

k!

1− 2

∞∑
k=1

ζ(2k)τ2k = πτcot(πτ) = πiτ +

∞∑
k=0

Bk
(2πiτ)k

k!

Proposition 1.11. Let k > 2 an even number. The normalized Einsenstein series have rational
coefficients.

Ek(τ) =
Gk(τ)

2ζ(k)

Proof. We have

1

τ
+

∞∑
d=1

1

τ − d
+

1

τ + d
= πcot(πτ) = πi− 2πi

∞∑
m=0

e2πiτm

Differentiate k − 1 times in τ yields ∑
d

So that

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)q
n

Hence, dividing by 2ζ(k) yields

E2k(τ) = 1− 2 k!(2πk)k

Bk(2πi)k(k−1)!

∑∞
n=1 σk−1(n)q

n

= 1− 2 k
Bk

∑∞
n=1 σk−1(n)q

n

for σk−1(n) =
∑

m|n m>0m
k−1. In particular, the coefficients of qn are rational, and all have the

same denominator Bk.

Proposition 1.12. In the Fourier expansion of ∆, a0 = 0 and a1 = (2π)12 so that ∆ is a nonzero
cusp form.
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Proof. Recall ∆ = (60G4)
3 − 27(140G6)

2.
Now, we know

G4(τ) = 2ζ(4) + 2
(2πi)4

(k − 1)!
(σ3(1)q + q2(...)) = 2

π4

90
+ 2

16π4

3!
(q + q2(...))

(60G4(τ))
3 =

(
2 · 60
90

)3

π12 + 603 · 3
(

2

90

)2(32

3!

)
π12q + q2(...)

Similarily,

G6(τ) = 2ζ(6) + 2
(2πi)6

(6− 1)!
(σ5(1)q + q2(...)) = 2

π6

945
− 2 · 64π6

5!
(q + q2(...))

(140G6(τ))
2 =

(
2 · 140
945

)2

π12 − 1402 · 2
(

2

945

)(
128

5!

)
π12q + q2(...)

Plug these inside of ∆.
∆ = 0 + 4096π12 + q2(...)

So indeed, a0 = 0 and a1 = (2π)12. We wish to emphasize the miraculous equalities at play:(
2 · 60
90

)3

= 27

(
280

945

)2

603 · 3
(

2

90

)2(32

3!

)
+ 27

(
1402 · 2

(
2

945

)(
128

5!

))
= (2π)12
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