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Introduction

This volume contains the first two out of four chapters
which are intended to survey a large part of the theory of theta
functions. These notes grew out of a series of lectures given
at the Tata Institute of Fundamental Research in the period
October, 1978, to March, 1979, on which notes were taken and
excellently written up by C. Musili and M. Nori. I subsequently
lectured at greater length on the contents of Chapter III at
Harvard in the fall of 1979 and at a Summer School in Montreal
in August, 1980, and again notes were very capably put together
by E. Previato and M. Stillman, respectively. Both the Tata
Institute and the University of Montreal publish lecture note
series in which I had promised to place write-ups of my lectures
there. However, as the project grew, it became clear that it
was better to tie all these results together, rearranging and
consolidating the material, and to make them available from one
place. I am very grateful to the Tata Institute and the University
of Montreal for permission to do this, and to Birkhauser-Boston for
publishing the final result.

The first 2 chapters study theta functions strictly from the
viewpoint of classical analysis. In particular, in Chapter I,
my goal was to explain in the simplest cases why the theta
functions attracted attention. I look at Riemann's theta function
'sz,T) for z € €, T €H = upper half plane, also known as 29’

oo’

and its 3 variants 196l,ﬁt0,1%1. We show how these can be used

to embed the torus C/Z+Z-:T in complex projective 3-space, and



how the equations for the image curve can be found. We then prove
the functional equation for 4}pwith respect to SL(2,Z) and show
how from this the moduli space of l-dimensional tori itself can
be realized as an algebraic curve. After this, we prove a beautiful
identity of Jacobi on the z-derivative of 4$. The rest of the
chapter is devoted to 3 arithmetic applications of theta series:
first to some famous combinatorial identities that follow from
the product expansion of 1#; second to Jacobi's formula for the
number of representations of a positive integer as the sum of
4 squares; and lastly to the link between 4% and ¢ and a guick
introduction to part of Hecke's theory relating modular forms and
Dirichlet series.

The second chapter takes up the generalization of the geometric
results of Ch. I (but not the arithmetic ones) to theta functions
in several variables, i.e., to zﬁR;,Q) where z € €9 and
Q€ ’ék = Siegel's gxg upper half-space. Again we show how A%

can be used to embed the g-dimensional tori X in projective

Q
space. We show how, when § is the period matrix of a compact
Riemann surface C, 1% is related to the function theory of C.
We prove the functional equation for A% and Riemann's theta
formula, and sketch how the latter leads to explicit equations
for XQ as an algebraic variety and to equations for certain
modular schemes. Finally we show how from mﬂg,ﬂ) a large class
of modular forms 19P’Q(Q) can be constructed via pluri-harmonic
polynomials P and quadratic forms Q.

The third chapter will study theta functions when & is a

period matrix, i.e., Jacobian theta functions, and, in particular,



xi

hyperelliptic theta functions. We will prove an important identity
of Fay from which most of the known special identities for Jacobian
theta functions follow, e.g., the fact that they satisfy the non-
linear differential equation known as the K-P equation. We will
study at length the special properties of hyperelliptic theta
functions, using an elementary model of hyperelliptic Jacobians
that goes back, in its essence, to work of Jacobi himself. This

leads us to a characterization of hyperelliptic period matrices

by the vanishing of some of the functions 49{;](0,9). One of the
goals is to understand hyperelliptic theta functions in their own
right well enough so as to be able to deduce directly that
functions derived from them satisfy the Korteweg-~de Vries equation
and other "integrable" non-linear differential equations.

The fourth chapter is concerned with the explanation of the
group-representation theoretic meaning of theta functions and the
algebro-geometric meaning of theta functions. In particular, we
show how g&f?.ﬂ) is, up to an elementary factor, a matrix coefficient
of the so-called Heisenberg-Weil representation. And we show how

the introduction of finite Heisenberg groups allows one to define
theta functions for abelian varieties over arbitrary fields.

The third and fourth chapters will use some algebraic
geometry, but the chapters in this volume assume only a knowledge
of elementary classical analysis. There are several other
excellent books on theta functions available and one might well
ask — why another? I wished to bring out several aspects of the

theory that I felt were nowhere totally clear: one is the theme
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that with theta functions many theories that are treated
abstractly can be made very concrete and explicit, e.g., the
projective embeddings, the equations for, and the moduli of
complex tori. Another is the way the Heisenberg group runs
through the theory as a unifying thread. However, except for
the discussion in Ch. I when g = 1, we have not taken up the
arithmetic aspects of the theory: Siegel's theory of the
representation of one quadratic form by another or the Hecke
operators for general g. Nor have we discussed any of the many
ideas that have come recently from Shimura's idea of "lifting"
modular forms. We want therefore to mention the other important
books the reader may consult:

a) J. Fay, Theta Functions on Riemann Surfaces, is the

best book on Jacobian theta functions (Springer Lecture
Notes 352).

b) E. Freitag, Siegelsche Modulfunktionen, develops the

general theory of Siegel modular forms (introducing
Hecke operators and the ¢-operator) and the Siegel
modular variety much further.

c) J.-I. Igusa, Theta functions, Springer-~Verlag, 1972,

like our Chapter IV unifies the group-representation
theoretic and algebro-geometric viewpoints. The main
result is the explicit projective embedding of the
Siegel modular variety by theta constants.

d) G. Lion and M. Vergne, The Weil representation, Maslov

index and Theta series (this series, No. 6) discuss the




algebra
and the
tion on

lifting

xiii

of the metaplectic group on the one hand,
theory of lifting and the Weil representa-
the other. (This is the only treatment of

that I have been able to understand.)

The theory of theta functions is far from a finished

polished topic.

Each chapter finishes with a discussion of

some of the unsolved problems. I hope that this book will

help to attract more interest to some of these fascinating

questions.



Chapter I:
Introduction and motivation: theta functions in one variable

§ 1, Definition of #(z,7T) and its periodicity in z,

The central character in our story is the analytic function ¥#(z, T) in
2 variables defined by

2

&z, 1) = L exp (min“t + 2winz)

nez2

where z¢C€ and T¢H, the upper half plane Im 7> 0, It is immediate that

the series converges absolutely and uniformly on compact sets; in fact, if
‘ Im zl<c and Im T >¢

then

2 n? n
,exp(ﬂ in“t+ 2ninz)|<{exp -me) .{exp 21mc)

hence, if n, is chosen so that
o
(exp -me) . {exp2mec) <1,

then the inequality

ni{n-n )
exp(ﬂin2'|'+ 2ﬁinz)\< (exp -1€) °

shows that the series converges and that too very rapidly.
We may think of this series as the Fourier series for a function in z,

periodic with respect to z —> z+1,
*z,7) = L ap(1) exp (2minz), an('r) = exp (m in2‘|')
neZZ

which displays the obvious fact that

Sz+l, 1) =9z, 1)



The peculiar form of the Fourier coefficients is explained by
examining the periodic behaviour of & with respect to z——>z+7:
thus we have

#(z+7, 1) = T exp(ﬂin2

neZ

T+ 2nin(z+7T))

= T exp(ﬂi(n+1)21‘-ﬂif + 2minz)
neZZ

= T exp(ﬂimz'r-ﬂi‘\‘+ 21 imz - 2wiz) where m = n+l
meZ

= exp (-mWiT - 2miz). &z, 7)

so that ¢ has a kind of periodic behaviour with respect to the lattice
ATC C generatedby 1 and T, In fact the 2 periodicities together are

easily seen to give:
d(z +at+b,T) = exp (-niaz‘r -2miaz)¥z,T).

Conversely, suppose that we are looking for entire functions f(z)
with the simplest possible quasi-periodic behaviour w.r.t. Ay : we know
by Liouville's theorem that f cannot actually be periodicin 1 and T, so

we may try the simplest more general possibilities:
f(z+1) = f(z) and f(z +*) = exp(az+b) . f(z) .
By the first, we expand f in a Fourier series
= 2 acC,
f(z) T a, exp (2minz), n

ne ZZ

Writing f(z+T+1) in terms of f(z) by combining the functional equations

in either order, we find that



f(z+ T +1) = f(z +7) = exp(az+b) - f(z)
and also

f(z + 7 +1) = exp (a(z+1) +b) f(z+1)

exp a, exp (az + b) {(z)

hence a = 2nik for some ke¢Z, Now substituting the Foruier series

into the second equation, we find that

T a, exp (2minT) . exp (27inz)
neZZ

= f(z +7)

exp (21ikz + b) f(z)

L a exp(2mi(ntk)z). expb
nez.

=L a exp b, exp (2winz).
n-k
neZ

Or, equivalently, for all ne ZZ, we have

t 3 = -
(*) a an_kexp(b 2wint) .,

If k = 0, this shows immediately that a # O for at most one n and we
have the uninteresting possibility that f(z) = exp (2miz). If k § 0, we get
a recursive relation for solving for an+kp in terms of a, for all p. For

instance, if k = -1, we find easily that
a =a exp (-nb +1rin(n-1)T) for all neZZ ,

This means that

f(z) = a, T exp (-nb-min T) exp (7 in2 T + 2Mminz)
nezz

= 200(-2 -3t - b/2nmi, T).



If k >0, the recursion relation (*) leads to rapidly growing coefficients

a and hence there are no such entire functions f(z). On the other hand,
if k € -1, we will find a |k | ~dimensional vector space of possibilities for
f(z) that will be studied in detail below, This explains the significance of
¢(z, *) as an entire function of z for fixed T, i,e., #(z, T) is the most

general entire function with 2 quasi-periods,

§ 2. ¥(x,it) as the fundamental periodic solution to the Heat equation.

In a completely different vein, we may restrict the variables z, T

>
tothe case of z =x€IR and T =it, telR , Then

#(x, it) =L exp (- mn2 t) exp (2minx)
nez

=1+2L exp (-ﬂnzt) cos (27 nx) .
nelN

Thus ¢ is a real valued function of 2 real variables, It satisfies the
following equations:

(a) periodicity in x: ¢ ({x+1,it) = #(x, it)

(b) Heat equation:

—‘b—("(x, ith=2 I (-ﬁnz) exp (-ﬂnzt) cos (21 nx)
Tt nelN

ﬁz(o(x,m) = 2 T (-41%n?) exp (-mn%t) cos(2mnx)

dx nelN
Or
2
» = L7 ;
Tt—(t’(X. it)) PR (¥(x,it)) .

This suggests that we characterise the theta function ¥(x,it) as the unique

solution to the heat equation with a certain periodic initial data when t = 0,



To examine the limiting behaviour of ¢(x,it) as t ——>0, we integrate

it against a test periodic function

fix) =L a  exp {(2mimx).

Then

1 1
S ¥x, it)f(x)dx = g z a_ exp(-m n2t) . exp(2 mi{n+m)x) dx
0 n,m

i

1
z a exp (-mnt) S exp (2mi(n+m) x) dx
n,m 0

= ZLa exp(-nnzt)
n -n

Therefore, we get that

1
lim S ¥(x, it) f(x) dx
t—>0 0
=lim T a exp (-m nzt)
t—0 I
= £(0) .

Hence #(x,it) converges, as a distribution, to the sum of the delta
functions at all integral points x€¢Z as t ———>0., We shall see below
that it converges very nicely, in fact. Thus ¢(x,it) may be seen as the
fundamental solution to the heat equatinn when the space variable x lies

on a circle R/ZZ,

§ 3. The Heisenberg group and theta functions with characteristics,

In addition to the standard theta functions discussed so far, there are

variants called 'theta functions with characteristics' which play a very

important role in understanding the functional equation and the identities



satisfied by ¢, as well as the application of ¢ to elliptic curves, These
are best understood group-theoretically. To explain this, let us fixa
and then rephrase the definition of the theta function ¢ (z, T) by introducing
transformations as follows:
For every holomorphic function f(z) and real numbers a and b, let
(Sbf) (z) = f(z + b)

(Ta f)(z) = exp (7 ia2 T+ 2miaz) f(z + a¥),

Note then that
Sbl(Sb2 f) = Sb1+b2f and Tal(Tazf) = Tal+a2f'

These are the so called "1-parameter groups''. However, they do not

commute ! We have:

Sp(T D(=) = (T 1) (z+b)

= exp(w iaz‘r + 2mia(z+b)) f(z+b+a 1)

and
T, (S,0)(z) = exp (m ia” T+ 2miaz)(S N(z +a 7)
= exp (m ia2 T+ 21 iaz) f(z+ar +b)
and hence
(*) Sbo Ta = exp (2miab) Tao Sb .

The group of transformations generated by the T, 's and Sb's is the

3-dimensional group

g s CiXRx R, (c’;={ze¢/(z|=1})



where (\,a,b) ‘g stands for the transformation:

(U(1 ,a,b)f)(z) = (Ta° 5, )(z)
=X exp (m iaz‘r+ 21 iaz) f(zta T + b).
Hence the group law on % is given by
(x,a,b)(A',a' ,b') = A\ X exp (27 iba'), a+a', b+b"),

Note that

center of % = C: commutator subgroup [%,9]

and hence % is a niipotent group.
The group% and its representation as above are familiar from
Quantum Mechanics. Because of this connection, we will callkthe

Heisenberg group. In fact, the relation (*) is simply Weyl's integrated

form of the Heisenberg commutation relations, Now recall that we

have the classical theorem of Von Neumann and Stone which says that %

has a unique irreducible unitary representation in which (X, 0, 0) acts by

X (identity). In fact, this representation is the following: On our space

of entire functions f(z), as in §1, put the norm
2 2 2
el = Sexp (-2my /Im7T) \f(x*'iy)\ dx dy.
C

Let ;{, be the subspace of all f(z) such that [} || < co. Then,it is trivial

to check that U is unitary on?( and it can be shown that 'f( is

X,a,b
irreducible. (In fact, the Hilbert spaces }C and Lz(lR) are canonically

isomorphic as -% -modules where % acts on Lz(]R) by
(U, a,pD(x) = Lexp (27 iax) f(x+b)

xeR,f¢ Lz(lR)). Thus we have in hand one of the many realisations of



this canonical representation of % . However, for the moment, this is not
needed in our development of the theory.

To return to ¢; note that the subset
r=-={(,a,b) c%|a,bez )

is a subgroup of % . By the characterisation of ¢ in § 1, we see that, upto
scalars, ¢ is the unique entire function invariant under I', Suppose now

that £ is a positive integer; set AT = {Qa, ta, tb)} T and

V,® { entire functions f(z) invariant under £T'},

Then, we have the following:

L.emma 3.1, An entire function f(z) is in VL if and only if

f(z) = T ¢, exp (ﬂin21'+ 2minz)
2
such that ¢ = c if n-me£ZZ, In particular, dim vV, = L,
Proof. For a,b¢ R, identify T, with (1,a,o)e§ and S, with
(1, O,b)cg . If feV,, then by invariance of f under S, ¢ 4T, it follows

that

f(zy= T ¢' exp (2 inz).
ne l/zz n

On the other hand; write c;l =c, exp {m inz'r) and express the invariance

of f(z) under T,, a short computation shows that C+s T Cq for all

ne¢ ZZ, as required. (Converse is obvious),

th

*
For melN, let pmgcl be the group of m"~ roots of 1. For

leIN, let %‘ be the finite group defined as



Gy =L, b)rep 5 a,be 2] (mod 4T)
- 1
S By2 XGZ/4Z) % (5 Z[AZ2)
with group law given by
(h,a,b}(\',a',b') = (A\N exp (2miba'),ata’, btb'),

Now the elements Sl/" Tl/ cg commute with £T (in view of (*)) and
2

hence acton V,. This goes down to an action of %‘ on V_; in fact, exactly

‘;
like % , the generators Sl/l of %1 act on Vl as follows:

Sl/j,( L c, exp (n in®e+ 2minz))= T cn exp(2ﬂin/£).exp(n‘inz‘H'Zﬂ'inz)
nel/,z nel/ zZ
2
and
. 2 2
Ty, { L cpexpfmin®t+2nminz)) = T Cn.1/ exp(min” T+21inz)
/‘ncl/LZ nelé 7z 1

as is easily checked, This gives us the following:
Lemma 3,2. The finite group E:“ acts irreducibly on V, .
Proof. Let Wc V‘ be a %L - stable subspace, Take a non-zero element

feWw, say,

2
f(z) = z c, exp(min T+ 2minz), c, # 0,
nelf , Z o

Operating by powers of sl/l, on f(z), we find in W:

T exp(-2w in p/4) . (S f)(z)
o<p<t2a1 ° P/t

L c (Zexp (2mi(n-n_)p/2) exp(ﬂin21+2ﬂinz))
nelf ,Z = P

2
Lte ( T exp (m in2 T+ 2minz)).

n
One¢ n0+.¢z
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Since ®n, # 0, we see that W contains the function

L exp (minZ t+2minz) .
n cn°+ 12Z

Now working with T1 /l instead, we find that W contains similar functions
for every n ¢€1/,ZZ/47Z2 and hence W =V,

In fact, we have also the finite analogue of Neumann-Stone theorem
for % 1 namely, g . has a unique irreducible representation in which
(A,0,0) acts by A, (identity), but we do not need this at this point. For our
purpose, the important point to be noted.is that, because of irreducibility, the
action of %L on V 4 determines a canonical basis for Vv, and g g acts in

a fixed way, The standard basis of V, is given by the so called theta

functions "a p VWith rational characteristics a,be 1/y Z, defined by : for

s

a,belf, 2Z,

"a,b = sta" = exp (2miab) Tasb"
Explicitly, we have:
"a b(z,'\‘) = exp(ﬂiaz'H' 2 ria(z+b)) ¥(z+at+b, 1)

= T exp(mi(aZ+n?)r+2min (z+a 14b) + 2mia (z+b))
neZZ

= T exp(mifa+m)? 1+ 2miln+a) (z+b)) .
neZZ

Now we see that we have:

(0) ¢ =@

0,0
. _ 1
(i) Sbl(oa,b) = ',a,b+b1 for a,bl,bc 1Z

.. _ . 1
(ii) Tal(',a,b) = exp (- 21'1a1b) "al Ya,a,,bes2Z

+a,b' 1 l, z



11

: 1
i 0 = mi Y <
(iii) a+p, btq exp (2 1aq)0a’b, P,4¢Z, a,be 372 .
Hence (iii) shows that oa b* upto a constant, depends only on a,b¢ I/L zZ]|Z.,

In view of Lemma 3.1 and the Fourier expansion just given for "a b’ it is
clear that as a,b run through coset representatives of 1/,22/7Z, we geta
basis of V Ix Note also that except for a trivial exponential factor "a b is

just a translate of ¢,

§ 4. Projective emmbedding of €/ZZ +ZZ* by means of theta functions,

The theta functions "a defined above have a very important

,b
geometric application, Take any 1>2, Let E, be the complex torus C/AT
where A‘r =Z+Z2Zt, Let (ai,bi) be a set of coset representatives of
2
W/, 2/Z)? in (1), z)°, 0s1<4’-1. Write 8, =8 | ,08i<L -1, For
ir 7l

all z¢ @€, consider the Lz-tuple
(oo(lz, ")"--""24(“'2""))

modulo scalars, i.e., the homogeneous coordinates of a point in the projective
2
£24-1
space IPC . {We shall check in a minute that there is no z, T for which

they are all 0). Since

(1’0(2+ £, %), ..., "zz 1(z+ 4, 1) = (!’O(Z, ) ... ,!"2_1(2, 7))
and
(00(2'* 11,7),... ,012_1(2, L7,7) = X("O(Z, ..., 0‘2_1(2. 1))

where )= exp(-mwi 12 T-2mitz), it follows that this defines a holomorphic map

221
¢‘:E*—>IP ,zb————>(....,6i(£z,'r),...).

To study this map, we first prove the following:

2
Lemma 4.1, Every feV,, f # 0, has exactly £ zeros (counted with
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multiplicities) in a fundamental domain for €/ £A The zeros of "a b

are the points {(a+p +3) 7+ (b+q +3), p,q¢ Z, (In particular, "i"’j(i #3)

have no common zeros and so q’t is well defined),

Proof, The first part is by the standard way of counting zeros by cantour integration

choose a parallelogram as shown missing the zeros of f:

Fig. 1
Recall that we have

# £ = L4
2eros o 3w T dz

o +8+ot+ 8"

Since f(z+4) = f(z) and f(z+ £7) = const. exp (-2witz)f(z), we get that
S +S 0 and S S 2\11!
] 6

As for the second part; note that ¢ (z, T) is even in 2z and it has a single

zero in €/ AT . On the other hand, we have:

2
(-2, = LT exp(milntd) 1+ 2miln+iN-z+})
neZzZ

2
T exp (mi(-m -1) 7+ 2mi(-m-3)(-2+})} if m = -1-n
me ZZ

L exp (ﬂi(m+‘) T+ 2mi (m+ 2 ) (z+)) - 21 (m+3))
me 72

L2 (z T
2

»
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and hence ¢, , is zeroat z =0, Itfollows that l’a p has the zeros
hi ’ .E »
stated and since this sum gives 1,2

of them mod £ A v there cannot be
any more.

2
Next, observe that the group %‘ modulo its centre, i.e,, (1/,ZZ/42Z)

2
naturally acts on both E‘r and PP4¥°-1 apd the map @, is equivariant, To

see this; let a,be Z, then itacts on Eq by z —> z +(aT+b)/L (and

this action is free), On the other hand, if

U o= T c;s 9.,
(1,a,b) 7§ 0<j< 221 B3
. 12-1 .
the action on IP is given by

(Z....,Z y—> Le 2,...,20 zZ,),
o £2-1) (j oj’} i 12,3 3
Now we see that

cp‘(z+(a'r+b)/£) = (....,f’i(!z+a‘r+b,‘r),..,)

= Ceena Uy gy 95002, M,

Cover Toydyibn, 1))

and so P, is equivariant,

It is interesting to note that, although we have a commutative group
: 2 zz 2 ;,2-1

(1/,2Z]t22), i,e,, (Z[£ Z)", acting on P , by Lemma 3,2, the
action is irreducible, i,e., there are no proper invariant subspaces!

We now prove that ¢, is an embedding: suppose, if possible,

cpz(zl) = cp‘(zz), z, 4 z, in E,., or that d‘»[Zl) = 0 (the limiting case

when z, — z,) . Translating by some (at+b)/L,a,belf, Z, we find



14

1

a second pair z; , z, such that @, (zi) =9,(z;), or do ‘(zi) =0, Take
2
47-3 further points wl.wz.....wlz_

3’ all points se far being distinct
mod £ A r Seek an feV,,f # 0, sucn that

fz)) = 1(z)) = flw)) = ... =f(w 5 ) = 0.

This is possible because, writing f = T li Oi , Xie C, we get 12-1 linear

2
equations in the £ variables \ ot M and so they have a non-zero

2
solution. Since tpl(zl) = ep‘(zz), it follows that f(zz) = 0, Or, if d¢[zl) =0,
f has a double zero at z;. Similarly, we get that f(z"?) =0 or f hasa
double zero at z'l. Therefore, f has at least 12+1 zeros in C/ LA, ,
contradicting Lemma 4,1,

Thus ep‘(E,r) is a complex analytic submanifold of IP“Z-1 isomorphic
to the torus E‘r . Invoking a theorem of Chow, we can say that it is even
an algebraic subvariety, i.e., cpz(E.‘,) is defined by certain homogeneous
polynomials, Since everything is so explicit, we can even determine this
directly. For simplicity, we will limit ourselves to the case £ = 2 and show
in the next section that Qz(ET) is the subvariety of ]IP3 defined by 2

quadratic equations,

$ 5. Riemann's theta relations.

Riemann's theta relation is a very basic quartic identity satisfied by

#(z, ). A whole series of such identities exist, based on any n Xn integral

2
matrix A such that ‘AA =m In’ Riemann's identity is based on the choice
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A= ,m=2andn =4

The matrix identity tAA =41 4 is equivalent to the identity between
quadratic forms:

2
(x+y+utv) + (X“'y-u-v)2 + (x-y+u-v)2 + (x-y-u+v)2 = 4(x2+y2+u2+v2).

Fix a ¢ and write &(z) =&(z, *) and A=Ay, etc. Now for all choices of
ne 1A /A, we form the products #(x+m)&(y+n) #(v+n) and sum up, putting
in simple exponential factors to make the functions look like:

B(0) : 8(x) 8 (y) # (u) & (v) = T explmi(EZn?)r+2m(Txn)]
n,m,p,qeZ

2, 2

where T n? =n2+m2+p +q° and T xn =x1+ym+up+vaq

B(z): #(x+}) d(y+{) d(u+ P O(v + )

= T exp[ﬂi(2n+2n2)‘f+2‘ni(}:xn)]
n,m,p,qeZZ

Bit):exp[mi(r+lx)]o(xtin)(y+rimdu+inr)d(v+ie

-z exp [,mi( S(n+1)21) + 2mi(Extn+i )]
n,m,p,q€Z

B (1+7) : exp [mi (14T x)100x+ 3+ 500+ 1+ ) O (a+h+ Ty o(vi+ 3)

=z exp (i (Zn) +mil (n+d)2m)+ 2mi (Sx(n+d )],
n,m,p,qeZZ

Calling the exponential factor e and summing up, we get :
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z ef\',(X+ n Hy+n)d(u+n) dv+n)
nN=0,%,27,3(1+7)

=2 T exp[ﬁi(2n2)7+2ﬂi(2xn)l
n,m,p,q¢zZ

n,m,p,qall in Z orallin }+2Z and n+tmt+p+tqe22Z. For simplicity,

let us write

n; =% (ntm+ptq) , x, = Hx + ytytuty)
m, = { (n*m-p-q) , ¥y = 2 (x+ y-u-v)
P = % (n-m+p-q) , u, = 3 (x-y+u-v)

q, = $(n- m-p+q) , vy =3 (x-y-utv) .

Note that the peculiar restrictions on the parameters n,m,p,q of the
summation above exactly mean that the resulting nl’ ml'pl and q1 are

integers. Also observe that we have the identities:
£n®=Zn® and T xn =T x;n, .
1 171
Now substituting these in the above equation, we get:

z ent’(x+n)0(y+'q)6(u+ n)d(v+n)
n=0,%,37,2(1+")

=2 z exp[ﬂi(2n3)1‘+2wi(2xln1)l.
nrml,pl,qlcz

Thus we have the final (Riemann's) formula (using B(0)):

R,): > eqd(xtn) d(y+n) Sut n) dvin) = 2 0(x1)0(y1)0(u1)0(v1).
1 2
n=0,%,37,301+9

2

If we had started with another matrix A such that tha=m In, we

would have found an identity of order n, involving summation over
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translates of ¢ with respect to all the division points 1 of order m, i.e,,

ne },—nA/A . To use the identity (Rl)' it is natural to reformulate it with

theta functions "a with characteristics a,b¢1ZZ; there are 4 of these,

b

namely:

¢ (z,7)= T exp(ﬂinz‘r+ 2ninz) = ¥z, T)
0,0
neZ

8 y(z,7) =L exp(min’r+2min(z+d) = 9(z+}, 1)
s 2

2
b o(z,‘r) =L exp(mi (n+}) v+ 2mi(n+$)2) =expmiT/a+miz)d(z+i 7, %)

1
2,

-’% 1(z, ?) =Zexp(mi(n+ H2r+2 mi(n+1)(z+1))= explmi t/a+mi(z+3)) d(z+1(1+7), T)
2

For simplicity, we write these as "oo’ 001, ',10 and 611. It is immediately

verified that
9 (-z,7)= "00(2. 7)
¢ (-z,7) = 001(2, T)
o (-z,7)= 010(2, T)

611(-2, T) = -011(2,1)

showing that 011 is different from the others, and confirming the fact that

611(0, t) = 0, while the other 3 are not zero at z = 0 (ef. Lemma 4.1). Now

Riemann's formula gives us:
Ry) 1 9 ()9 (7) 3o (w)0 (v) + (x) 3 (y) 8, (u) 9 (v)
+ l’l o(x) 01 0(y) 010(\1) 010(v) +011 (x) 61 1 (y) "l 1 (u) 01 1 (v)

=298 () 8 () ?,0(1) i’oo(vl)
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where x, = } (xtytutv), v 1(x+y-u-v), etc. Now replacing x by x+1
and using the fact that his changes the sign of 01 0 and 011, we get further:
Rg): & (x)0, (3)9,,()  (v)+ 9, (x)9,(¥) 05 (u) &, ()
",lo(x) %o "lo(\l)"m(V) - "ll(x) % 011(\1) \’ll(V)
=29,(xy) 9, (3,) 4 (uy) 95, (vy).
Substituting instead x+ 7T for x in (Rz) and multiplying by exp(nit+2mix)

so that 0oo(x) becomes & (x) again while 94 (x) and ou(x) change

signs, we get:
(R,): Ooo(x) 000(}') l’oo(u) %0 -!’ol(x) "ol(y) %51 (W) &, (V)
=29 (x)) 9 (y,) 9 (u)) 9, (v)).

Finally replacing x by x+ t+1 in (Rz) and multiplying by

exp (miT + 2 mix), we get:

Rg) 1 & _(x)0__(3) 9, () & (v) - &, (x) 9, (y) O (w) 9, (v)

-9, 0(x) 01 0(y) "1 O(u) % 0(V) + 011(X) !’u(y) Oll(u) 011(v)

=20, 00) 9, 0)) 9, ) 9y, 00y)
In other words, we get all 4 theta functions on the right hand side by
putting a character into the sum on the left hand side. More variants can
be obtained by similar small substitutions: viz., replacing x,y,u and v by

x+a,y+B,u+y,v +b where a,8,Y,8¢c4A and a+B+y+seA. We have

listed below in an abbreviated form all the results,
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First we make a table containing the fundamental transformation relations

between the oij' that are needed for a quick verification of Riemann's theta

formulae,
Table 0
(2——>- 2) (z ——>2+})
%002 T =0 (z, ¢) o, (z+%, 1) = 001(2, 1)
001(-2, N =80z, " 95, z* 3, 7)= "oo(z' T)
9,02 =9 (2 ) 9,2+, 1) =9,,(z, 1)
9,0z, =9 (2 9, (z+d 1) =9 (z,7)

(z——>g+3}r)

ooo(z+% 7,%) = (exp (- wi ¢/4 - niz) 010(2. 7

601(z+32--r, 7) = -i( " L CAR )
dolztir, D= " ) 8,z
on(z+§ T, 1) =-i( " ) 9, (z, 7

(z ——>ztir+ i)

ooo(z+% v+1, 1) = -i (exp(-nir/4-niz)) 011(2. 7)

"01( " ) = ( " )010(20 ‘I’)
2 ) = -i( )9, (2
o, " ) == " )9 (= T



Xy = 1 (xH+ytutv), ¥, = (xty-u-v), uy
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RIEMANN'S THETA FORMULAE

e 2Lt 1) (y+n) St n) S (vin) = 29 (x,)8(y,)? (u,}0(v,)

n° exp(miT+mi(x+y+utv)) for n =1 (1+49), and

4 (x-y+u-v) and O (x-y-utv).

II, Via Half-integer thetas:

b4 2 X
= = i +
ooo ox,T) f.exp(ﬂ in t+ 2minx), 001

= Lexp (win’t+ 2min (x+1)),

0% - Texp(mi(n+}) 1 +2mi(n+})x)) and 9% = Lexp(mila+})’r+ 2mi(n+}ctH)

X

(Rz):

ol

. 9X oY
(RG)' "oo"oo 01

0XaY

(R 10) 00 “00

XaY
"oo"oo
"

(RM):

n

oX aY ougY

(R1g): 956 %51%0%1

(Rm):

01

X YU v
z’OO‘,OO "00"00 +9

+

u v
3% O

+

X
+ 601

01

X
01

0101701

01701 0000

"

u v X Y Ju,v
%0 %0 * %01%01°11%11

v u
%190
1"

1]
1"
YalaV
%0°1 %10

Y Uu,v X oY AU,V
a6 d..0 +"10"10"10‘10+

v x
%o +9p?

1010711711

+0750% 0% oV

V, ¢X oY U,V X oY quU gV |, oX (¥ qU WV
+ 007058 +0° 8 4 0 +."11',11610',10

+

10" 10700 00

"

13

+

X, Y u v
+0100n0°°+0 +

oi

X

”11 1711

Tl gV
06611

"

X YU gV
%1%1%:1%:1°

"

Yo,V X U 4V _oaX
P MDA A NORELH,

11711 00 00
"

1"

"

X YUy
%1%0%0%0

-29%ig1y

—20%1971,

= 20219
11
"Z’f)l
= 2971971 yu1 4 V1
- X1 ¢Y1lgulgy Vi
- 200t oY 10%0
= _21’

ul vl
00 00 00 0O
uj . vi
01 ',01

u1
%

a Y01
X1,.¥51 vi
20,10710,, 99
Y121 ,v;
n %

ul ,vi
%0 "oo

11
¥1
%1

00°00 01 01

1 "10 10
10%70 %0 %
2 ":g "03:)1 "1161 "1(‘)1 1
207  oglo 1011
200 o101 o

X14Y14U1, V1
291191 %1 %1

oF 1ol o0t
2031031 o)yl oy
-20,51041 oo‘;l ol
2071971 9! 071
20 0 te0l ot
-2 7103101yt
2071 o5 oo
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We have listed these at such length to illustrate a key point in the theory of
theta functions: the symmetry of the situation generates rapidly an overwhel-
ming number of formulae, which do not hawever make a completely elementary
pattern, To obtain a clear picture of the algebraic implications of these
formulae altogether is then not usually easy.

One important consequence of these formulae comes from specialising
the variables, setting x = y and u = v. The important fact to remember is

that 0“(0) =0 whereas t’oo,l, and ¢, . are not zero at 0 (cf. Lemma 4,1)!

01 10
Then the right hand side of (Rs) is 0; and (RS)’ (Rz) + (Rs) combine to give

(noting that X, = xtu,y, = x-u and u Ty = 0):
2 2 2 2 2 2 2 2
(Al) : "OO(X) "oo(u) +"n(x) "ll(u) = 95, (x) "01‘“’ + "l O(X) "lo(u)

2
=8 Lxrw) s (x-u)d (0) .

Likewise, (R3) + (Rs) and (R4) + (RS) (with x = y,u = v) respectively give:

2 2 2 2

(B,) : 0 (x¥u) 9 | (x-u) 8, (0)° = 0 (x) 8w’ - 8, (%9, ()
- 2 2 2 2

= O (X 9, () -9y ()9, ()

and

(a 2

2 2 2 2
e t’lo(x+u) I’lo(x-u)"lo(o) = "OO(X) l’oo(u) - "ol(x) ‘0 (y}

1

2 2 2 2
=610(x) 010(u) -OII(X) "11(“) .

These are trypical of the "addition formulae" for theta functions for calculating

the coordinates of cp2(x+u), qaz(x-u) in terms of those of q:z(x), cpz(u) and cp2(0).
There are 12 more expressions for the products v’ab(x-hx) ¥.q{x-u) in terms of
l’ef(x)'s, t’ef(u)'s, for ab # cd, which we have written down on the next page.

All are obtained from the formulae (Rn) by just setting the variables equal in pairs,
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11, Addition Formulae

2 2 2 2
(B)) 18, (etu) & (x-w) 0 (0) = & ()02 )+ 9 (x107 ()= 02100 (a)+ 8,2 (0 fw)
2 2, .2 2 a2, a2 2 .2
001 (40 8 (x-w) 92 (0) = 02 ()02 (w)-03(x) 8 () = 82 ()83 0) -0Fx107, (u)
2 2 2 2 2
9, o(xtu) 8, o(x-u) 0/ (0) =0z°(x) 02 w)- O (x)9 fu) = 9, (x)97gfu) 220w

8, (+a) 9y, (x -89, (0)0y, (0) = 9, (x)y; (x)0, () () - &y (x)9); () (M (u)

8, Lrrw)d, (x-u) (0}, (0) = & (x)0, (x)0 fuldy, (u) + 8y, (), (x), ()9, (u)
8 (xru)d, (x-uld_ (019, (0) = O (x), ((x)0 (), fu) +O (x)0,; (x), (W), (u)
% O(Xﬁl)‘oo(x -u)ooo(O)Ol ol® = Ooo(x)t’l o{X)050 ()9 glu) - 4, (x)9) 4 (x)8, ()9, , (u)
81 (eFu)dy o(x-u)dy, (019 0(0) = & ()9, 1 ()0, (w)D fu)ady; (X)) (X} (W) yq(u)

9, o(xru)dg; (x-u)d 1 (009, f0) = -0 ()9, (xI0_ (w9, (b4, (x)0, (x)9g(w)d o)

(B¢ 9, (rru)d, ; (x-udd’ (0) - 02 (00 % ) - 02 (109 () = 9300 fu) -0 2 (193w
931 (ctu)d | (xuly, (0)9, (0) = 8 (x)9),(x)0y, (u)d) 4(u) + 3, 4(x)0, (x)P  (u)?,, (u)
8, (chu)d (x-u) 80 (0) 8 (0) =8, (x), | (X300 (w)d; ofu) - &, ((x)y (xI9_(u)dyy (w)
8, (xhu)d ) (x-u)d, (009, ((0) = 9 (x)3, ((x)30; ()0, (m) + &y, (=)0, ; eI ()9, o(w)
94p xtuld, , (x-u)d  (0)3 o(0) = "oo(x)"1o(x)"01(“)"11(“)+"01(")"11(")"00(“)"10(“)
8,1 (el ((x-uld (0000, (0) = 9 (x)30; ()9 (uldy () +9, ((x)9, ) (XD (w3 (w)
8 (lxru)d, | (x-u)d (009, (0) = -0 (x), (x)9) (u)dy y (w)+ B, o(x} 3 (I (@), )

IV, Equations for ¢

(Bp) : 02,60 02 (0) = 85 (x) 02(0) - 9,4(x) 9% (x) and

4

4 4
. gy = & +8 (0
(Jl) : :900 (1) 01 (0 "o
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Specialising further by setting u = 0, we find that all the above reduce

to just 2 relations:

2
(E,) : o ()79 (0% =8, (x) 9, (0% +8, (0?9, ()

l)

(E,) : 8,07 8 (07 = 05,07 9, (0% - 8, (0?0 (0%,

Finally setting x = 0, we obtain Jacobi's identity between the "theta constants"
(0)
oab , namely:

4 4 4
(M) 8 (0 =95,(0) +9 (0) .

0
We see now that the identities (E,) and (E,) are equations satisfied by the
image ¢2(E?) in IP3. We now appeal to some simple algebraic geometry
to conclude that ¢2(ET) is indeed the curve C in IP‘3 defined by the
following 2 quadratic equations:

2 2 _ 2 2 2 2
000(0) x = 1’01(0) x] + 010(0) x,

2

2.2, 2.2 22
000(0) x, 010(0) xj- ',01 (D) x;

By Bezout's theorem, it is clear that a hyperplane H in IP3 meets C in
utmost 4 points. But the hyperplane )::-).ixi = 0 meets cpz(E,‘.) in the points

where

aodoo(2x) + a1601 (2x) + azn’l 0(Zx) +a (2x) = 0,

3"11
and there are 4 such points mod 2Ar . So 94(E,) must be equal to C!

It is clear that the theta relations give us explicit formulae for everything

that goes on in the curve C,
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§ 6, Doubly periodic meromorphic functions via ¢(z, 7).

By means of theta functions, there are 4 ways of defining meromorphic
functions on the elliptic curve E,, and the above identities enable us to
relate them:

Method I: By restriction of rational functions from IPS: This gives the

basic meromorphic functions
b l2e)
000(22)
on E.r .

Method II. As quotients of products of translates of ¢(z) itself:

i,e,, if al, .. "ak'bl' .o .,bkcm are such that Zai = Xbi , then it is easy

to check that
|’(Z —ai)

1<i<k ¥z -bi)

is periodic for A,‘, , hence is a meromorphic function with zeros at

az+ }(1+7) and poles at bt} (1+7), (If we use 9, instead of &, we get
zeros at a\i and poles at bi)' In fact, all meromorphic functions arise
like this and this expression is just like the prime factorisation of
meromorphic functions on IPI:

(@321 - b2o)

f(z) =
12 i<k (¢;z, -d;z )

z = zl/z0 » 21024 homogeneous coordinates, zeros at z = bi/ai and poles

at z =d;/ec;.
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Method III, Second logarithmic derivatives: Note that log ¢ (z) is periodic

upto addition of a linear function. Thus the (doubly) periodic function

2

2
d log ¥(z)
dz

is meromorphic, This is essentially Weierestrass’ @ -function, To be

precise,

2
g"(z) =4 log ¢ _(z) + (constant),
d22 11

the constant being adjusted so that the Laurent expansion of g’(z) atz =0

has no constant term,

Method IV: Sums of first logarithmic derivatives: Choose

a,.. .,ach and )‘1"" ,XkeC such that T )‘i = 0, Then one checks that
iz xii log ¢ (z-ai) + (constant)

is periodic for Ay, hence is meromorphic with simple poles at a +; (1+ 1),
residues \ i Again, this gives all meromorphic functions with simple
poles and is the analogue of the partial fraction expansion for meromorphic

functions on IPI:

A,
f(z) =L ——* + (@onstant)
i (z -a)
i
We give a few of the relations between these functions: for example, to
relate Methods I and II, we need merely expand each 0ab(22) as a product
of 4 functions 0(z-ai), times an exponential factor (the ai' s being the

zeros of Oab(ZZ))‘. For instance, 011(2z) is 0 at the 4 (2-torsion) points

0, +,3r,1(1+7), and its factorisation:
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9,,(22) 8.,(0) 8, (0)9, ((0) = 29, (2) 8y, (2) 8, () 8. (2)

is the formula (R; o) when x =y =u = v = z, To relate Methods II and III,
we can take the 2nd derivative with respect to u in the formula (Alo) and

set x =zand u =0, We get:
" 2 2 " 2 2
¥, @) 9,(z) -9, (2)) 8 (0) = ou(z)2 9,0(09 ,(0) -2 (z) 9 (0)

(using the fact that 0(;1(0) =0 and 01"1(0) =0 since ¢ is an even

01

function and 01 is an odd function), Dividing both sides by 60 0(0)2011(2)2,

1
we find that the resulting equation is simply

" ' 2 2
L: log 011(2) = 00(®) - 911(0) . 90! X
dz ‘,00(0) ‘00(0)2 ‘ll(z)

hence

G2
¢ . (0) 2
g‘)(z) = (constant) + ———— 2507

One of the most important facts about the @ -function is the
differential equation that it satisfies, In fact, using the obvious facts (from
the above equation) that (i)g“(z) = &’ (-z), (ii) the expansion of J“(z) atz =0
begins with 272 and (iii) the constant rigged so that this expansion has no

constant term, it follows that:
@ (z) = L +az2 +b2t+, .., nearz=o,
2
z
Therefore,

@‘(z) = -_2+Zaz+4b23+...
23
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and hence
Eran®-2 .8 e,
26 z
But
3_4 12a
40(z)" = —+ = +12b+,,
? 26 22
so that

£'@*-4f)° + 202 B(2) = 280 +...
Thus the function 8:’ '(z)z - 465(z)3 + 2035’(2) is a doubly periodic entire
function and hence is a constant, This means we have an identity:

P @ 48@° + gy + gy(m)
which is Weierstrass' differential equation for @ (z). Differentiating

this twice, we also get the differential equations:

£ (2 = 5@+ gy(1)
and

£ = 12(2) .£'(2)

Thus @ is a time independent solution of the (Kortweg-de Vries) KdV

(non-linear wave) equation:

u, =y -12uu_, u =ulx,t)
t XXX p.9
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§ 7. The functional equation of ¢(z, T).

So far we have concentrated on the behaviour of #(z, T} as a function
of z, Its behaviour as a function of T is also extremely beautiful, but rather
deeper and more subtle, Just as ¢ is periodic upto an elementary factor for
a group of transformations acting in z, so also it is periodic upto a factor for
a group acting on z and T, To derive this so called "functional equation"
of # in T; note that if we consider 9(z,?) for a fixed T, then although its
definition invoives the generators 1 and T of the lattice A‘r quite unsymmetri-
cally, still in its application to E r (describing the function theory and projective
embedding of E'r) this asymmetry disappears., In other words, if we had
picked any 2 other generators aT+b,cT +d of I\,r (a,b,c,deZZ, ad-bec = t1),
we cou}d have constructed theta functions which were periodic with respect
to zH>2z +ct+d and periodic upto an exponential factor for z}—>ztat+b,
and these theta functions would be equally useful for the study of E,. Clearly
then however the new theta functions could not be too different from the original
ones! If we try to make this connection precise, we are lead immediately to
the functional equation of #(z, T) in .

To be precise, fix any

@ g) ¢SL(2, Z), i.e. a,b,c,de Z, ad-bc = +1
and assume that ab,cd are even. Multiplying by -1 if necessary, we assume
that ¢ > 0.

Consider the function ¢ ((ct+d)y, ), Clearly, when y is replaced

by y+1, the function is unchanged except for an exponential factor, It is not



29

hard to rig up an exponential factor of the type exp (Ayz) which corrects

¢ ((ct+d) y, 1) to a periodic function for y > y+1,. In fact, let
Yy, ) = exp (mic (c T+ diy2) #((c T +d)y, 7).

Then a simple calculation shows that

Y(ytl, ) =¥(y, 1)
(N.B: a factor exp (micd) appears, so we use cd even in the verification).
However, the periodic behaviour of ¢ for z |—> z+* gives a 2nd quasi-

period for Y, namely,

’!(y+f'-l+‘t-’, T) = exp(-mi attb

-2niy) ¥ 7).
ct+d c®+d iy) Y0y, 7)

We give some of the calculations this time: formally writing we have by

definition:

aT+bh
Y(y+c T+d’ ")

9 ((c T+d)yta T+b, 1)

(a ‘r+b)2

2
= ic(cT+ +2mi T+b) +mi
exp [mic(cT+d)y icy(a ) fe =g

).

But

d((cr+d)y+aT+b,T) exp -n ia27 - 2niay(c T+d) 0 ((c T+d)y, T)
Yy, 1) explnic (c T+d)y2) 8 ((cT+d) y, *)

exp(-ﬂiaz'r -2miay(c 7+d) -mic(cT +d)y2),

So multiplying these two equations and using ad-bc = 1, we get:

atTth
Yy+ ry .7 2
—ctHd . exp (-2miy(ad-be) + mic (a®+b)” ﬂi32 ")
Ly, 7 (c1+d)
: mi 2 2
= - - +d) - +
exp [-2miy c”d(a T(ct+d) - claT+b) )]

= exp [-ﬂiy - c:id(az‘l’d -2abe T - b2c) 1]
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But

a2rd - 2 abe T -b%c = a(ad-be)T - ablc T+d) + blad-bc)

= (a T +b) - ab(cT +d).

Now using ab is even, we get what we want, If we now recall the
characterisation of #(y, T') as a function of y as in § 1, namely, &(y, 1)
is the unique function (upto scalars) invariant under A-r' where #'=(ar+tb)/(cT+d)),

we find ¥(y, *) is one such. Hence we get:

Yy, *) =9(1) 9(y, (a®+b)/(cT + d))

for some function @ (7). In other words, if y = zf(c T+d), then
9(z, 1) = (1) exp(-micz2/(c 1+d)) ¢ (z/(cT +d), (a 1+b)/(c T +d)).

To evaluate ®(T); note that ¥(z, T) is normalised by the property that the

th
0 term in its Fourier expansion is just 1, i.e,,

1
So(y, T)dy =1,
0

Hence
1 1 9
o(T) = SY(y, ?) dy = S exp (mic (ct+d)y )d({(cT+d) y, ") dy .
0 0

This integral is fortunately not too hard to calculate., First note that
@ (1) =d(=+1)if ¢ = 0 and so we can assume c >0, Now substituting the

defining series for ¢ and rearranging terms, we get:

+

e

o)==\ £ exp[ﬂi(cy+n)2('r+d/c) -mi nzd/c]dy
n

eZ

[=4

1
= L exp (-‘ninzd/c) fexp(ﬂi(cy+n)2('r+d/c) dy.
neZZ 0
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But (using again cd even) we have
2 ;2
exp (-mid(ntc)“/e) = exp (-nin“d/c)
and hence we get

[e o]
o)== T eXP(-ﬂinzd/c) S\ exp ﬁic2y2(1+ d/c) dy .
1<n€c -0

To evaluate the integral; first suppose that T=it-d/c. Then we get

e

o
S exp ﬂiczyz('ﬁd/c) dy = S exp(-m czyzt) dy
-QD -0
@
i.e,, if u=ct%y, =%— S exp (-n‘uz)du
ct? -
=1/c t% R

o
2
using the well-known fact that S exp (-mu ) du =1, It then follows by
-0
analytic continuation that for any 7 with Im 1> 0, we have

®
S exp ™ iczy2 (T+d/c)dy =

-0

el (‘r+d/c)/i]%
H

1
where ( )? is chosen such that Re( ) > 0, The sum is a well-known

“"Gauss sum"

Sd e ® L exp(-ﬂinzd/c)
’ 1€n<c

Y
which in fact is just c? times some gth root of 1, This may be proved either
directly (but not too easily) from number theory, or it can be deduced, by
induction on c+ |d|, from the compatibilities of the functional equations, In

fact, the exact functional equation is given in the following:
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Theorem 7.1, Given a,b,c,deZ such that ad-bc =1, ab and cd even,we have

then for a suitable { an gth root of 1, that

( z aT+h

3 2
= +d)2 i
~%7a’ c'|'+d) Clc 1+d)? exp(m icz“fcT+d) ¥(z, 7).

(F

1)
To fix { exactly, we consider two cases: first assume c > 0 or c = 0 and
d > 0 (multiplying (2 2) by -1 if necessary), hence Im{(cT+d) 20 and
choose (c 1'+d)% in the first quadrant (Re ( )20 and Im ( ) 2 0):

(a) if ¢ is evenand d is odd, then

1
.2 (d-1)
=Ty
where (3—) is the Jacobi symbol (to take care of all cases, we set (-(ll) = +1),

(b) if ¢ is odd and d is even, then
~ . d
¢ =exp (-mic/4) (3).

Proof, We have only to see (a) and (b); we first check it for two special

cases (i) and (ii):
(i) (c d) = (0 1) , b even,

Now (Fl) + (a) says the obvious identity, namely,

(Fz): #(z, T+b) =8(z, 1)
(1) @58 .

Now (Fl) + (b) reads as

1
2

(F d(zfr,-1/1) = exp(-mif4). T2, exp(nizz/'r)b(z,'r)

3
which we have already proved since it is trivial that S0 1° 1, We get the

general case by induction on [c| +Idy: if {dl>|c| , we substitute 1t 2 for
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T in (Fl) and use (Fz) to show that (Fl) for a,b,c,d follows from (Fl)

for a,b * 2a,¢c,d t 2¢c. Since we can make Id t Zc\ < ldl , we are done,
Note that '\d +2¢| ¢ {d| or |c| because (c,d) = 1 and cd is even. On the
other hand, if |di< {cl, we substitute -1/7 for T in (F,) and use (Fy)

to show that (Fl) for a,b,c,d follows from (Fl) for b, -a,d, -c: this
reduces us to the case |[d| >{c| again. The details are lengthy (and hence
omitted)but straight forward (the usual properties of the Jacobi symbol, e, g.,
reciprocity, must be used), It is, however, a priori clear that the method

must give a function equation of type (FI) for some 8 root { of 1.

§ 8. The Heat equation again,

The transformation formula for ¢ (z,T) allows us to see very explicitly
what happens to the real valued function ¢ (x,it), studied in § 2, when

t—> 0. In fact, (F3) says:

¢ (x/it,ift) = t% exp (m x2/t) ?(x, it)
hence

-4 2 2
#(x,it) = t ‘exp(-mx“/t) T exp(-mn°fH2wnx/th
neZZ

N

=t 2 T exp(-n (x-n)z/t).
neZ

In completely elementary terms, this is the rather striking identity:

1
1+2 L cos (2mnx) exp(-7 n2t) =t? Zexp(-ﬂ(x-m)z/t),
ne IN meZZ

1
But t? exp (-1 x2 /t) is the well-known fundamental solution to the Heat
equation on the line, with initial data a‘c‘t = 0 being a delta function at x = 0,
Thus #(x,it) is just the superposition of infinitely many such solutions, with

initial data being delta functions at integer values x = n, In particular, this
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shows that #(x,it) is positive and goes to 0 as t-—30 uniformly when

lx>»x>¢,

§ 9. The concept of modular forms.

Let us stand back from our calculation now and consider what we have
got so far, In the first place, the substitutions in the variables z, Tt for

which ¢ is quasi-periodic form a group: in fact, SL(2,ZZ) acts on €XH by
(z, T} —> (z/ct+d, (a 1+ b)/(cr+d)

because

z/(c t+d) a'{(a T+b)/(c 7+d))*+b’

T +0) (G +aN 7@ * or((a 1b)/ (e T+ a

)

= ¢ z (a'atb'c) T +(a'b+b'd) )
Y(ctatd'c)r+{c'b+dd') * [clatd'c) T+ (c'b+d'd)

Moreover, this action normalises the lattice action on 2, i,e,, we have an
action of a semi-direct product
2

SL(2, Z)X{ =

a b
on CXH, where ((c d); m,n) acts by

(z, T) > ((ztm*+n)/(c T+d), (a T +b)/(c T +d)).

Actually; not all of these carry ¢ to itself; we put on the side condition ab, cd

even, To understand this condition group theoretically; note that we have a

natural homomorphism

Yy @ SL(2, Z) —> SL(2, Z/NZ)
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for every N, Its kernel .I‘N, the so called "level N-principal congruence

subgroup” is given by

L= (€ J)eSLE, Z)fb,c 2 0(mod N), a,d : 1(mod N)}.
Before we study the level 2 case explicitly, let us recall that the group
SL(2, ZZ[27Z) of mix matrices

11, 10y 01
)( )(10 GG 7

is isomorphic to the group of permutation on 3 letters (1,2, 3):
(1)(2)(3), (12)(3), (23)(1), (123}, (13)(2), (132).

We define, following Igusa, 1‘l 2

SL(2, Z[22Z) consisting of (; ?) and ((l) 10). Clearly this is the subset of

€SL(2, Z) to be yz'l of the subgroup of

SL(2, ZZ) of elements (2 g) such that ab and cd are even., Note however
that whereas I‘N is a normal subgroup of SL(2, ZZ), I‘l 2 is not; it has

2 conjugates:
v, 0, Dy ana v 1l 9, ¢ 90

described by the conditions ¢ even and b even respectively, They are the

groups for which 00 1 and 010 have functional equations. If we write out
¢ (z/(c v +d), (a *+b)/(c T+d))

a b
when (c d)ﬁl‘

12° we find that it is an elementary factor times 001(2, T)

or 01 o(z, 7). The simplest way to see this is not to try to describe how
an arbitrary (2 z) in SL(2, Z) transforms the Oi].'s - which leads to

interminable problems of sign - but rather to consider the action of 2 generators
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(:’ 11 ) and (‘: 'g) of SL(2,2ZZ). Their action is summarised in the
following table:
Table V

%0(z, T+1) = ’ol("" ooo(z/'r, -1/%) = (-i'r)% exp(ﬂizz/‘r) %0z, ™

t
i
‘('l ),’(") lo( 1] )= " o(ll)
01 00 701 10
L = s " | " - " "
‘10( ) exp(m/4)0m( ) :010( ) "01( )
"11( ") = exp(ni/4)6n(“) : "11( "oy o= "oy "11( ")

From this, the action of any (2 :) can be described, (The formulae on the

left are verified directly by substitution in the Fourier expansion. The 1lst
formula on the right is (F3). The 2nd comes for instance by substituting
z+ 1% for z in the 1stand using the functional equation of ’oo in z; the
3rd comes from substitutions z/* for z, - ‘|"1 for * in the 2nd ; and the 4th
from substituting z+3} T for z in the 3rd).

Geometrically, the reason the funny subgroup 1‘1’ o arises is that
¢(z, 1) is 0 at the special point of order 2, namely, 1 (T+1)¢ %AT/A,r, and
it is easy to check that (: g) cI‘l, o if and only if z }—> z/(c T+d) carries
1(r+1) to $(1'+1) mod Ay, where #' = (at+b)/(c t+d).

However, we shall focus our attention in this section on the behaviour

of the functions Gij(o, T) of one variable T, Note then that the functional

equation of #(0, T) reduces to:
1
#(0, (a T+b)/(cT+d)) = {(c T+d)* & (0, 7)

2
where Ca =1, ¢ as given in Theorem 7.1, This will show that #(0, T)

is a modular form in 7T in the following sense:
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+
Definition 9.1, Let keZ & Ne¢IN, By a modular form of weight k &
level N, we mean a holomorphic function f(T) on the upper half-plane H
such that

b
(a) forall T¢H & (ﬁ‘c a) ey,
f((a t+b)/(cT+d)) = (c '|'+d)kf(‘|‘)

(b) f is bounded as follows:
(i) 3constants ¢ & d such that \f(‘r)\ €c if ImT>d and

s> v c a a4 &
(ii) Yp/qe @, 3 positive reals 0. q dp,q such that

{1l < ®yq \-r -(p/q)l'k if \f -p/a -idp'q\< dy q -

The set of modular forms of weight k & level N is a vector space and is
(N) (N) . . -

denoted by Modk . Thus any fe¢ Modk is bounded outside an horizontal

strip; and the circles of radii dp q centred at p/q + idp q (i.e., touching

)

the real axis at the rational points p/q) are called the horocircles for f.

See
Fig. 2

Note that SL(2, Z) acts on the "'rational boundary points" QU {m} of H

and that if

f{(a T+b)/(c T+d)) = (c 1+d)" £(1) ,

+
then the bound at p/q¢ @ U{w]}is equivalent to the bound at :((p q)) +1;

(the bound at oo being the condition (b) (i) : | f(7 )Y{€ec if Im *>d).
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The condition that makes this definition work is that the factors
(c ‘r+d)k introduced in the functional equation {a) satisfy the '1-cocycle'

condition, i.e., if we write
e (1) = (c‘\""d)k where y = (¢ by
Y ’ c d »

then for all YI'YZ ¢TI, , we have

N ?
e TM=e GgTNe (1.
This same condition, together with the fact that I‘N is normal in SL(2,ZZ),

N
gives an action of SL(2, Z)/I‘N on the vector space Modi ) :if f isa

modular form and y = (2 2) , define

Y(r) = eY('r)-lf(y ).

It is immediate that this is also a modular form of the same kind as
f:in fact, (a) for f implies (a) for ' and {b) for f at p/q implies (b)

N
for ' at v(p/q). Finally note that if f¢ MOdI(( ) and chodf‘N), then the

(N)

Kt * Thus

product fge Mod

Mod(N) = @ Mod

kezzt

)]
k

is a graded ring, called the ring of modular forms of level N. Now we have

the following:

2
Proposition 9.2. 9 (0, 1), ¢ 2 (0, %) and 02 (0, T) are modular forms of
- oo 01 10
weight 1 & level 4.

2

Proof. To start with, condition (a) for 000 (0, 1) amounts to saying that {,
the 8th root of 1, in the functional equation (Fl) is * 1 when (2 3):1‘4. This
is immediate from the description of { {in fact, we only need ¢ even and

d z 1 {mod 4)). We can also verify immediately the bound (b)(d) at oo for
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2
1’00 (0, t). In fact, the Fourier expansion

é (0,7 = T exp(ﬁinz‘\‘)
00
ne Z

shows that, as Im T —3> 00, we have
600(0, T) = 1+ O(exp(-7im 7))

2
hence ‘,oo (0, T) is every close to 1 when Im > >0. Before verifying
2
(b)(ii) at the finite cusps p/q ¢®Q, consider how SL(2, ZZ) acts on 000 (0, 7).
Let O = (:’ i) &8 = (‘; ‘:)) be the generators of SL(2,2Z). Using Table V

above, we check the following:

2 «_ .2 2 8_ .2
W, 0Nl =9 (0N, 30N =12 (01

2 2 B2
9,0.m, [9,(0,n] = -i9 (0,1

2 a
[001(0, )] A

2 2 2 B .2
Lo 0.0 =10%0,m, 180, 91 = 107 (0,1

So these three give an SL(2, ZZ) -invariant subspace of Mod1(4). But then

to check the bound at the finite cusps, it suffices to check it for all 3 functions
at o because a suitable y ¢SL(2, ZZ) carries any cusp to . As for

000(0, 7), by the Fourier expansions, we have:

601(0,7) = 1+O(exp(-7 Im 7))

} asIm *—>m
010(0, 1) = Olexp (-wIm 1/4))

This completes the proof of the proposition. (In fact, a similar reasoning

shows that the analytic functions

1<|i<|u‘omibi(o, kT, a;,b k€@, k; >0
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are modular forms of weight L and suitable level, We will prove this
in a more general context below). The above proof also allows us to point out
the following:

2 2 2
Remark 9.3. The modular forms 000 (0, 7), 001 (0, ) and 010(0, 7) look like
¢ /(ct+d) + (Error term)

when T —> -d/c, where {=0 or C8 = 1. Here T should approach -d/c
in horocircles of decreasing radii touching the real axis at -d/e, and the
error term goes to 0 exponentially with the radius of the horocircle: more

precisely,
2
(Error term) = Ofexp [-constant.Im 1/|c t+d| J).

(This is seen by estimating fy( %) as * —> -d/c in terms of f(T)

as T-—>wm).
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Another simple fact which follows from the discussion aboye and
which we need later is the following:

(N)
k

Remark 9.4. Let fe Mod, ', Then

£9) = 0(tm 0% as Im* —»0
To see this: let us recall the classical fundamental domain F for the action
of SL(2,7ZZ) on H, namely,
F ={reH/|7y 21 and |Re 7|< }}
(cf, Fig, 3, § 10, below), So we have H = LYJ vF, yeSL(2,Z), Let
F'={#eH/Im v > 3%/2 }.
Since FCF', we have H =¥yF' ,yeSL (2, ZZ). Take any TeH. Then
3 veSL(2,Z) such that Im{y 7) 2> 3%/2. Moreover if ¥ = (i 3), either
Im+2 3%/2 or ¢ f 0, Now we make the following:
Claim: 3a constant Cj >0 such that {f(1)]< Co‘c L d\ B whenever
Y= (i 3) €SL(2,22) is such that Im {yr) > 3%/2.

Observe that this claim proves the remark because ¢ # 0 implies

‘c‘r+d\_>_\c. Imel=lc}. Ime2Im »,

i.e., [f('\‘)‘ <C, (Im -r)'k for Im r< 3%/2, as asserted, To prove the claim:

(N)
k

since fe¢ Mod we have:

s

Mie) = (cr+d) Sty ), e Modl((N)

Yooy '
and ' ={ VY ely -
In particular, there are only finitely many modular forms of the type

fY, yeSL(2,Z). Hence (by Def. 9.1, b(i)) 3a constant C, >0 such that

VYeSL(2, ZZ), we have:
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(*) ‘fY(-r)\gCO if Im 123*/2
On the other hand, we have (by definition of fY):
Y'l _ -1 _ _ k
(%*) £ (ym) = ey_l(y'r) f(r) = eY(-r)f('r) = (e T+d) f(r),

Clearly then (*) and (**) imply the claim,
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§ 10, The geometry of modular forms

Just as a set of theta functions with characteristics enabled us to embed
(II/A,', in a projective space, so we can take more than one "theta-null"
Oab(o, 7) and use these to embed H/I‘N in a projective space, We will look
only at the simplest case N =4, Then we saw that 0020 (0, 1‘),603 (0,7 & 0120(0, 1)
were modular forms of weight 1 and level 4. Recall also from § 1 that
1(1+%) is the only zero of Ooo(z, ?), so 000(0, 1), 9,,(0,M) & 010(0, T) are

never zero. It follows that we have a holomorphic map

. 2
Y,: H/I‘4 ~——nIP

defined by
1(r) =820, m, 82(0,1), 9.2 (0, 1)
2 oo 7 01 7 107 °

As in § 4, the point is that in YZ(Y T), each function picks up the same factor
eY(‘r) and so Yz is well-defined, Moreover, Yz is equivariant for the finite
group SL(2, Z)/I‘4 which acts on H/'.!"4 because 1‘4 is normal in SL(2, Z),
and on P? because the 3 functions dizj(o, %) are mapped into combinations

of themselves by every y €SL(2,ZZ). In fact, using the action tabulated in §9,

we find: if 12(1') = (xo, xl,xz), then
= i - _1_ =
Yz('rﬂ) (xl,xo, ixy) and ‘!2( ,‘,) (xo, xz,xl)
Moreover, by equation { J 1) in §5, the image of !2 lies on the conic

2..2 2
A xg = X + X,
but missing the 6 points (1,0, *1), (1,%+1,0),(0,1, ¥ i) where the conic meets

the coordinate axes x; = 0. The missing points are clearly accounted for by
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the cusps: in fact, if Im *—>+ o0, then by the Fourier expansions of

Oﬁ(O, 7), it is clear that

d (0,7) ——>+1,9 (0,%) —>+1 and »_(0,T) —>0
00 01 10

hence 12(1') ——>(1,1,0), Acting by SL(2,2), the other cusps will map
onto the other missing points, The easiest way to "'extend Y, to the cusps"
is this:

(a) define explicitly by "scissors & glue" a compactification H7?4 of
the orbit space H/I:i : H‘./‘I:1 is an abstract Riemann surface, and then

(b) verify the !2 extends to a holomorphic map on all of H’/.‘I‘4 .
For (a), it is useful to recall the classical fundamental domain for the action

of SL(2,7Z) on H: viz., the set F « H defined by

F=¢fc¢H/IT/21 and |Re T[<}])

(cf, diagram below),
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D, ={TeH/Im r>1},

Since

Do U(F+)= U yF,
® bez ¥ =( b}

it follows that :

V‘rl,cr [ Dm, if ol 7?2 for some Y ¢SL(2,ZZ), then

2

b
T, = ttb,y =(“(1) 1) and y(o) =,

Thus mapping Dm to H/I‘4 identifies only the pairs of points T and

T+4k, k¢ Z, Equivalently, if w = exp (dmir), then

H/r43the punctured disc ={w/0<|wi< exp(-3n)}

. 1 by =
Dm/{(0 7)/b =0 (mod4)}.

What we want to do is to glue together H/I‘4 and the full disc | w| € exp(-3m),
identifying these two on the punctured disc, We can do the same thing at the

other cusps, For all p/qe @, let Dy /q be the horocircle:

Dp/a {reH/|t-p/a-1/2q%) €1/24% 3,

Then it is smm easy to check that
Y (Dm) = Dp/q whenever y(m) = p/q, y ¢SL(2, Z),

i T =
Thus, if 'rl, 2ch/q and 2 672 for some 8¢SL(2,72), then § is

conjugate to ((1) tl’), or what is the same,

2

8 =

1-bpq bp
(o

) for some beZ ,
-bq 1+bpq

Let ¥5,q ¢ H——>C be the function defined by
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wp,q(” = exp (-mi/2q (q 7 -p)).

It is easy to see that : ¥ D
Y "1s "2¢Pp/q

Wp’q(‘rl) = wp.q( ) &> 7, =87, for some 8 as above,

Thus, as before, the image of D / in H/ 1‘4 identifies only the pairs

pP/q

and 87 for 8 as above with b 0 (mod 4). In other words, we have:

H/I;:the punctured disc = {wp q/0<|wp'q|<exp(-%ﬂ') }

d

2
. 1-
= Horocircle D_, /{( bp;; bp }/b 2 0 (mod 4)},
P/q -bq l+bpq

Again, we glue the full disc pr’q] <exp (-3mw) to H/I‘4 along the punctured
disc, Clearly, if y(p/q) = p'/aq', veT, , then the above operation at p/q or
p'/q' has the same effect on H/T',. So we need only do it once for each orbit
of Ty acting on @U{w}. Itis not hard to check that T, has 6 orbits on
QU {0} , namely:

() T,(o0) = {w}Ulp/4a]p odd}

(ii) 1‘4(0) = {4p/a|a odd}

() T, (4) = {ip/q)p.qodd}

(iv) I‘4(1) ={p/a|p,q odd and p = q (mod 4)}

(v) T,(2) ={2p/q|p,qodd ]}

(vi)T,(3) = {p/q|p,qoddandpz -q (mod4)} =T (-1
So we define HTI‘4 to be H/I:1 with 6 ""cusps'' adjoined by the above procedure,

one for each of the above orbits, It is & priori not at all obvious that H/T' 4
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is a compact Hausdorff space! Perhaps, the easiest way to see this is to

describe it alternatively by a fundamental domain: for 1 <i <6, let

vy eSL(2,ZZ) carry o to the 6 cusps o, 0, 1,1,2 & 3, For instance, we take
i
Yi to be :

é -

- ).

10 0 -1 1 -3, 1 -2 3
I T I R T i S I N

Ler 6j = (:) jl)' 1 € j €4, be coset representatives in Goo for the subgroup
. . 1b

G, ﬁ!‘4 where G _ is the stabiliser [(0 1)] of o in SL(2,2Z), Then the

24 elements A bj are coset representatives for SL(2,ZZ)/T',, Therefore,

H/ 1‘4 is just the non-Euclidean polygon
1<i<6
8 F
SN Lisiee
with its edges identified in pairs (c¢f, Fig, 4 (*) ). Clearly, the closure of
this polygon meets the boundary R U{o?} at the 6 cusps ,0,%,1,2 & 3, and
we have added these limit points to H/I‘4 to obtain H/~I'4 Thus H7I‘4 isa
compact Hausdorff space,
It is now easy to extend 12 to ¥, H~1‘ —>IP2: in fact, at the cusp

2 4

~
at o, w = exp (3 mir) is the local coordinate on H/I‘4 , and we have:

2
9.,0,1= T exp (min®q)=1+2 T won
neZZ nelN

2
-’01(0, ) = ¥ expln ine+min)=1+2 £ (-1)° w2"
neZ neIN
2
2 +;
3,00 = T expmilath) n) = 2 wh s +w2(n n)
nezZ neZ

(*) In thinking about these diagrams in the non-Euclidean plane, it is good to bear
in mind a comment of Thurston: these diagrams make it look like the space gets
very crowded and hot near the boundary; in reality, however, the space is
increasingly empty and quite cold near the boundary,



8
Fig.4 Fundamenta! Domain for
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2

2
w2n®m) " g

2
[ hence 010 (0, v) =4 w(n fz+

Thus ;2 is holomorphic in w, carrying the cusp w = 0 to (1,1, 0)eP2, But
then it follows, by SL(2,2Z) - equivariance that ;2 is holomorphic at the other
cusps too, Finally, we have the simple:

Theorem 10,1, The naturally extended holomorphic map

~ ~ 2

. . 2 = 2
!2 : H/!‘4 >[ conic A.xo x)+ xy ]

is an isomorphism,

Proof. In fact, both H;i"4 and A are compact Riemann surfaces, and ;2 is

a non-constant holomorphic map, Therefore, ;2 makes H7 I‘4l a (possibly)
ramified covering of A, To see that ;2 is an isomorphism, we need only check
that its degree is 1, But if its degree is d, then over each point of A, there are
d points (counted with multiplicities where ;2 is ramified), Now consider the
6 points (1, £ 1,0), (1,0, + 1) and (0,1, £ i), Only cusps can be mapped to these
and there are 6 cusps, Thus only the cusp t=1i oo is mapped to (1,1,0), But

by the formulae above, we have:

2 2
d
d_;N_,(.’m(o, 1)/000(0,1')) weo to

~ ~
which means that Yz is unramified at i oo, Hence degree of ;2 is 1, i,e,, !2
is an isomorphism, (In fact, it can be checked with the formulae we have at hand
that the cusps ,0,3,1,2 & 3 are respectively mapped to the points

(111;0); (1:0:1): (11 'lgo)p (O,I,i), (1.0, ‘1) and (0,1. 'i)-
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An important consequence of this theorem is:

(4)

Corollary 10,2, The ring Mod of modular forms of level 4 is naturally

isomorphic to

2 2 2 4 4 4
TLd (0, 1), 9,(0,7),8,({0, MI/(3_ - 8;-9,)

i.e,, it is generated by oii (0, ) and subject to only the relation U'l)'

Proof. Let f¢ Modl(:)

~
. Then f/a,:: (0, ) is a meromorphic function on H/I:1
with poles only where 000(0, r) =0, i.e,, only at the 2 cusps 1 and 3, and there
2
poles of order at most k (recall that just as 610 (0, ¢) has a simple zero at
2
r=iom, soalso "oo (0, 7) has a simple zero at 1 and 3), Therefore, it
corresponds to a meromorphic function g on the conic A with at most k-fold

poles at the points (0,1, i), But A is biholomorphically isomorphic to the

projective line P! via the map:

2. .2 2 ,2
X, r—-)toﬂl, x1|—> 2t0t1 and x, b——>to- t1

where (to'tl) are homogeneous coordinates on IPI, Here to =land t, = ti
correspond to the points (xo, xl,xz) =(0,1, ;1 1). So g corresponds to a

meromorphic function h on P! with k-fold poles at to =1, t, =ti, Hence

1
h is a = rational function of t, /t o and by partial fraction decomposition of

rational functions, one checks easily that it can be written as:
2, 2k
= +
h=Qlt, 1)/t +1])
for some homogeneous polynomial Q of degree 2k, Thus
k
x 2)/ x

g:P(xd xl,

for some P homogeneous of degree k., Thus
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2k s a2 22 a2y/a2k
t/0, (0,1 =P@ , 9., 95/ ", .

Finally, there can be no further relations between 0020, 0021 . 61‘2) because
the only polynomials that vanish on the conic xi = x? + xg

x2 x2 -x2 as required
o™ "1 2’ q :

are multiples of

§ 11. &4 as an automorphic form in 2 variables.

So far we have concentrated on the behaviour of ¢(z, ) as a
function of z for fixed ¢, and as a function of ? for z = 0, Let us now
put all this together and consider & as a function of both variables, First
of all, it is easy to see that the functional equations on ¢, plus its limiting
behaviour as Im r ——» o characterise ¢ completely, More precisely:

Proposition 11,1, #&(z, ¢) is the unique holomorphic function f(z, ¢) on

CxXH such that

a) f(z+1, =) =f(z, )
b) flz+7,v) =exp (-wir - 2w iz), f(z, 7)
c) flz+3,7+1) =1(z, )

d) f(z/r, -1/1) = (-i-r)% eXp(ﬂizzl‘r) . f(z, )

and for all z¢C,

e) lim f(z, ) =1,
Im v+ —>+m

Proof, We have used all these properties of #(z, T) repeatedly, except

perhaps (c) which follows from the identity:
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hX exp [ﬂinz(f +1) + 2mrin (z+<l-)]
neZ

o(z+}, v+1)

n“+
T (" exp (minZ ¢+ 2minz)
neZ

o(z, =)

Conversely, to see that these properities characterise #(z, 7), take any

such f: by the results of § 1, (a) and (b) imply that

f(z, 1) = glv) & (2, v)
for some holomorphic function g(t) on H, Now by the results of § 7, (c)

and (d) imply that

g(r+1) = g(r) & gl-171) = g(n),

Thus g(r) is a holomorphic function on H/SL(2,ZZ), On the other hand,
(e) implies that g{r) ——>1 as Im + — >+ . This means that g(r) is
bounded outside a horizontal strip and hence by SL(2, Z)-invariance, it is
bounded everywhere, Thus lg('r)-ll , if not identically zero, takes a positive
maximum at some point of F which cannot happen. So g(‘-r) £1, as required,

The 4 theta functions ',ij(z’ r) moreover satisfy together a system of
functional equations that we have given in Table 0, § 5 and Table V, § 9, To
understand the geometric implications of these, we consider the holomorphic

map:
. 3
8:CXH ——>IP”, (z, 1) ——> (9, (22, 1), 001(2z, 1), "10(22' ), 011(22. 7).

The semi-direct product
2
(: 2)°K sL(2, z)

acts on CxH by
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b z +m t+n artt+b
. . —
(m,n; (= (z 1) { crrd ' owea ),

and we have seen by the tables referred to above) that the 4 generators
&,0;m, 0, L:1), (0,0, X 1) and (0,0; © 1) of this group transform
4 » ’ » s 4 » » » (] 0 1 td » l o

the 4 functions 1’ij(2z, 7) into themselves, In other words, the map & is

equivariant when the same group acts on P via:

(-1- ,0:1) ¢ (xo,xl,xz,xa) '——-—>(x2, -1x3,x , -1x )

(Lp:( " ) b (kL X Xg Xy )

(o, 0;((1) ;): « " ) > (x,,x_,\xg,}x,) where \ = exp(ri/4)
0, (") b xy i),

Now we have the following:
2
Proposition 11,2, Let T*C%Z) X SL(2, Z) be defined by

* A byab -
T —{(m,n,(c d))/(c d)cl‘4 5

(mod 1) & n z & (mod 1)} .
Then T* is a normal subgroup of (i— Z)2 X SL(2, 2ZZ), it acts trivially on P3

and :

$(z,7) = 8(z', 7') €===0(z', 7'} =¥ (z, 7) for some y er* .

Thus § collapses the action of I‘* on C€xH and carries (€ x H)/ I‘* into the

quartic surface F in IP3 defined by

4, 4 4, 4
H = +
F: x, + x3 x 1 X 2
Proof, We give the proof in 6 steps:

(1), That r* is a normal subgroup of (% 2)2 X SL(2, ZZ) is a straight-

are homomorphisms

b
forward verification using the fact that ‘2 ) —y, ¢

>
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from T, >Z[22Z,

(2) Note that I:1 is the least normal subgroup of SL(2,ZZ) containing

*
((1) %)( ) : in fact, if N is the least normal subgroup in question, then the
fact that N = I:l can be seen in several ways, viz,,

(i) Topological way: look at the fundamental domain for H/:l’:1 (cf. Fig.4):

let Yi cr‘4 ,1<€i<6, be the transformations identifying in pairs of the

edges of the diagram, namely,

.l -4 (-3 -4y 10, (9 -4, 5 -4 9 -16
Yo 1 U 500G 1) G ) e (G g emd (g T

It follows that I‘4 is generated as a group by these y 's, On the other hand,
i

it is easy to see thatthe y , 2 £i <6, are conjugates of Yl = (1
i

-4
0 1) and

hence N =T,
4
(ii) Abstract way: recall that SL(2,ZZ) is generatedby a = (:) i) and

b = ((1) "1)) and hence their residues mod N generate SL(2,ZZ)/N, and
modulo N we find that

a.4 =b4

=1 and b2 = (ab)? = (ba)®
Clearly then b2 is in the centre and, mod b2 we have

at = b2 = @ab)° = 1.

But this is a well-known presentation of the Octahedral group of order 24

(cf. e.g., Coxeter-Moser, Appendix Tabe I). Thus

(*) But I;l is not in general the least normal subgroup N containing (‘1) rl’)!

In fact, forn > 6, N is not even of finite index!!
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#SL(2,Z)/N = 48 = # SL(2,Z)/I‘4 .
But Ng!:1 and hence N = I‘4 R
Combining the facts (1) and (2), we get:

as required,

(3) . T is the least normal subgroup of (i Z)z X SL(2, Z) containing z?

and (0,4,(7 ).

(4) 8 collapses the action of T*: this is immediate since the same is true
for the action of Z2 and (0, } ;(3 f’)), as seen from the Tables O and V,

Hence § factors through (Cx H)/T*,

(5). Suppose ¥(z, t) = #(z',7') = P, say, Recall from § 5 that for «

fixed, we have

HEx (1)) =0, (B - c,fcn:3

where C,‘, is the elliptic curve defined by the equations:

2 __ .2 2
aoxo alxl + azx2
(*)
2 =a x2 a x2
Bo%3 T 3% 1%

a2 2 2
(ao,al.az) = (000(0. LR -’01(0,1). 010(0, 7))

Also, C‘r satisfies the further equations:
a x2 =a x2 +a x2

(*) o1l 1%0 273
a x2 = a x2 a x2
o2 270 " 7173

obtained by combining the 2 above equations. (For certain limiting values

of the ai's, like a = 0, a, =1, a, = i; the first two equations become

1 2

dependent, but we can always find two independent ones in this full set of

4 equations),



58

By assumption P¢C, ﬂCT. . Now look at the
Lemma 11,3, For all 7, v'¢H, the curves C,r and C'r' are either
identical or disjoint; in particular, we have (by § 10):
. 2
= 1
CeNCptpe—=>Y (1) =¥, (1) in P
<mwcwmempy 1! =y (7} for some ycI; .

Indeed, any point P = (xo, X4, xz,x3) on the curve C‘r determines the

curve completely because we can solve (*) for the a;'s (upto scalars) in

terms of the xi's obtaining:

- 4. 4
ao-).(x1+x2)
2 2 2.2

% = -
(x*) a, ).(xox1 x2x3)
2 2 2 2

= +
3y = Mxgx; *x) x3)

This gives the ai's in terms of the xi's unless all the expressions on the
right are 0, e.g., when X, "Xy = 0. However, if we solve the 1lst equations

in (*) and (*'), we get:

a = (x2 x2 x2 xz )
] " o2 7173
2 2 2 2
% = -
(*%1) a.:l ;.\(x1 X, - X Xy
.4 a4
a, p(xo - xl)

and there are no non-zero x;'s for which all expressions on the right of
(*%) and (**') are zero, hence the lemma follows,

Coming back to the situation of step 5, we therefore get that
T =y (¢) for some y cl"4 . Now lift y to ¥ eT* and let y(z,v) = (z", ™).
Then

iz, v) = #(z", 1), i.e,, q>2(2') =9,(z") €C,,
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But ?, embeds the torus E,, in P° and so we must have z'-z"cAT'.
Thus 38e¢T” such that 8 (z", ¢') = (2', ') and hence 8y (z,7) = (z', 1),
as required,

(6). Image #< Surface F : this is immediate beacuse squaring and adding

the equations (*), we get

2, 4 4 2 2,, .4 4
+ = + +
aglx_+x,) = (a] +ay)lx; +x,).
e s . - 2_.2 2 ..
But from §5, Jacobi's identify (Jl) gives a = al"‘a2 implying
4 4
x‘; + x; =x 1 + X, as required, This completes the proof of the proposition,

As an immediate consequence of Prop. 11.2, we deduce the following:
Corollary 11.4. The surface F in IP3 has a fibre structure over the
2
conic A in IP,

To see this; define a holomorphic map:

: —_
m:F —>A, (xo,xl,xz,xs) (ao,al,az)

by whichever of the 2 formulae that gives (ao,al,az) #(0,0,0), i.e.

a =x4+x4 a =x2x2-x2x2
o 1 2 o2 173
W22 2 2 - 2,2 2.2
al x x| - x2x3 or a, xlx2 -x x3
_ 2.2 2.2 _ 4 4
a, = xox2 + xlx3 a, = xo - x4
4 4 4 4
(Using X, + X, = x1 + x, , wWe see that the 2 sets of formulae agree and

2

1 + ag ). It is clear that the individual curves C'r <F can be

that az =a
o

recovered as the inverse images under 1 of the points YZ(T Je A, On the

other hand, it is also clear that ﬂ(Fo) = Ao where Fo = Image #and

Ao = (A-6 cusps). In other words, F, is a fibre space formed out of the

various curves C'r lying over Ao’ Further more, FO%(C H H)/I‘*.
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We may summarise the discussion by the following commutative

diagram:
CxH ——>(Cx H)/l‘* ————:———> Fo —— ——>F<:1P3

fibres = l C lET lC,r l'n’

H ——~>ng T >A ——>AclP
2

2

This suggests the interpretation of H/I:4 or Ao as a moduli space which

we will take up in the next section,

§ 12, Interpretation of H/I:1 as a moduli space

We are led to the interpretation of H/I‘4 (or more generally H/T )

as a moduli space when we ask: if r, v'¢H,

when are the complex tori E,r and E,, biholomorphic?

Obviously, any biholomorphic map f:E . —>E - lifts to their universal
coverings €, i;e., it is induced by a biholomorphic map ?: ¢ ——>C

such that (for XcA‘,)
Tz+n) =T(2)+1,00

where f, : A T——>A,‘,. is the isomorphism of the fundamental groups

~

of E,r and E,r. induced by f, Then the derivative {' is a doubly periodic

entire function of z, hence it is a constant, i.e.,

f(z)=Lz+M
for some L,MeC and therefore

L{z+\)+ M =Lz + M +f_(})

i.e., f,(A) = L) and multiplication by L is  a bijection from AT onto
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AT' . In particular, L e¢A o OF L=cr +d for some c¢,d¢eZZ, More-

over, LT‘A'\" , l.e., Lr=as'+b for some a,beZ, Thus

.27 *th
cr+d *

On the other hand, LL and L 7 must generate A'r' which means ad-be = t1,

But an easy calculation gives that

Im (& -r'+b) . (ad-be) Im 7

57— =Im 1.
cr'+d Je v+ d|

So since 7,1'¢H, we must have ad-bc =+1, Thus we have:

€=—=—=5 ¢=Y 7' for some yeSL(2, Z),

E_RE
T e

The converse is clear: if 7= (a ' + b)/(c*' +d), define ?(z) = (¢ o' +d)z,

~

>E_, .

Note that f (A'r) = AT, and hence f induces an isomorphism f:E‘r o

Therefore, we have proved the well-known fact:

Proposition 12,1, Let 7, T¢H, Then t=y(7') for some yeSL(2, ZZ)

if and only if 3 a bijholomorphic map f: E, ——>E p - Or, equivalently,

Set of complex tori E, modulo
H/SL(2,Z) =

biholomorphic equivalence

Now we ask: what then is the space H/I‘;l ?

Something stronger than "biholomorphic equivalence" is needed and it is
done as follows: fix an n and consider the 2 natural automorphisms of
C x H, namely:

o (z, 'r)'-—-—>(z+,1';, ™)

Bt (2, Dr—>(+, M)

Observe that for each fixecl,a.n and Bn induce automorphisms c.n", B:
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of the torus E‘r’ i,e,, a.'r and B' are the translations on E'r by the
n n
2 generators of the group (of n-division points) 11,- A ‘r/ A r Now we have the

following:

Proposition 12,2, Let 7, v'¢H, Then r=y(r') for some Ycrnifand

only if 3 a biholomorphic map f: E.Y —>E - giving the commutative

diagrams:

1
O.‘rof=foa'
n

E'r E
n
T T L4 L4 :
u.n llan u.n Han i,e., . .
an of =fo Bn
E'r E

Or, equivalently,
Set of complex tori E4 modulo isomorphisms preserving

the pair of automorphisms o.;

H/T, ™ {

and ﬁ;

Proof. Let f:E, —>E,, be a biholomorphic map and y =(2 g) eSL(2,22)

be such that T=y(r'). With L and M as above, we find that

L}
foal=alof e====n Liz+t by + M = (Lz+M)+ L+ 2, 2en,,

e+ d-1
----- A,

€=====3> ¢,d-1 = 0 (mod n) .

Likewise,
£0pT =8 t e=c==L(z+ L)+ M = (Lz+M) + —% +peA
n n n n L 4

===z (CT'+d) T-?'

< n eA'l"

<:==;===>(a'1)1"+b A

n T
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Thus both occur if and only if YcI‘n , &8s required,
Let us look at the particular case n = 4: we constructed in the

previous section a diagram:

* -~ 3
CxH——-——>(cxH)/1‘4-—-‘——->FOCFc1P
i | |l
H —> H/T, —~——~>A°<:A<:IP2
Y
2

We can add to this diagram the auxiliary maps (1:1 & 34 from Cx H to

itself. 1f we define @), &B] on P° by

]
0'4 : (xoa x1:x2: xs)‘ (xl' xO’ x3’ 'xz)
v, " -3 -i
B4 : | )"———“>(x2, ixg, x, 1x1)

then § is equivariant, i.e., we have a commutative diagram:

(CxH)/I‘* ——’———> Fy

4

* §
—_— .
(CxH)/T, F,

21
In other words, to each aeA , we can associate the fibre w (a) e Fo

plus 2 automorphisms res a.; & res B; , and we have shown that distinct

points acAo are associated to non-isomorphic triples (ﬂ'la, res aa', res B;),

'} is a kind of universal family of complex tori,

Thus (F,——>A; ¢! , §]

with 2 automorphisms of order 4 which sets up the set-theoretic bijection:

Set of complex tori E, plus automorphisms
A=
° a.Z, BZ modulo isomorphisms

More details on this moduli interpretation can be found in

Deligne-Rapopart, Les Schémas de modules de courbes elliptiques,
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in Springer Lecture Notes No, 349, Similar constructions can be carried

through for all n, but the formulae are much more complicated.

§ 13, Jacobi's derivative formula

We now turn to quite a startiing formula, which shows that theta
functions give rise to modular forms in more than one way. Upto now, we
have considered "ij(o’ 7) for (i,j) = (0,0),(0,1) and (1,0). Since 611(0, 7)=0,

this gives nothing new; however, if we consider instead

L)
——-011(2. T

bz z2=0

2
which we abbreviate as 0'11(0, r), we find, e.g., that 61’1(0. 7)) isa
modular form (of weight 3 and level 4), etc. In fact, this is an immediate
consequence of (Prop. 9.2 and) the following:

Proposition 13.1. For all reH, we have Jacobi's derivative formula, namely,

. 1 Ty = . T
(Jp): 011(0. ) m’oo(o. ) 601(0. ) 010(0. T)
Proof. By definition, the Fourier expansion of 01'1(0, T) is given by

21 (0, 7) = 'L( T explni (n+-.})2 +2mi(n+d)(z+}))
11 ez oo

2ni T (n+i)explnm i(n‘*%)z 7+ mi(n+i)]
neZ

2
2m & (-1 (n+d) exp (mitn+d) 7).
neZ

In terms of the variable q = exp (miT), the local coordinate at the cusp
ioo, we get:

1 9/4 25/4
0'11(0,7)=-2ﬂ[q /4-3q/ + 5q /4.

So the formula (Jz) reads as
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25/4
1/4 , 9/4, 5/ _7q49/4

-3q 5q +...1= [1+2q+2q +2q//9
4.9 1/4. 9/4 . 25/4
[1-2q+2q9 -2q +...]1[q / +q/ +q /+...]

which the reader may enjoy verifying for 3 or 4 terms (we have taken the

[q

expansions on the right form page 1,16, § 5 above), We may prove this
as follows: start with the Riemann theta formula (R1 0) above and expand it

around the origin, getting:

w2
Cotia x*... 00 +hoyy +...][o 1Y u+ I v+gu_v+
‘-’1
6

2 - 2
+ +1ia" x"+ +ig" 2, 't 3, +l “a+,
[001 1), ...][000 2 N ...][61111 . ][0 95U o]

1 QM L2 ’1:'1 L g 2 14" 2
+[8 + + ¢ y+ALl3, +1 + + +
C VIR 1000 ot o AL SRR 1€ s L I TP 1 WL YRASEED

+ 191 X+_llx +... 100, +l"1"y+...3ro ST UL | WS TURCISN

"'
=200, x+—l—1—x+ IO NS ...]to S 001u1+ S O T 2 ]

where x, = J{xtytutv), y, = %(x+y-u-V),u1 =} (x-y+u-v), v; = § (x-y-utv),
3

Now comparing the coefficients of any cubic term, say x , on both sides

(the result is the same for all the cubic terms), we get

"

1
§ %11 %10%1%o0 54 %0%1%0%1 " 5 %0 %01 "10"11

1
+1 s &
l3"’00 "01"10"11 8°, o"m 10%11

Or, equivalently,
¢ - — e———
"1 1 %0 %1 %o

But in view of the Heat equation
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2

2 = i 9
—_— 3. "4nil— ¢
222 3 T )

the above is also equivalent to

;)
0 = —2— [ 9 - -
N [ 10g 011 log o log 001 log 010] ,

0’ ; . .
or
11/ 600 001 61 o s @ constant function of ®(on H), Letting *—>iom,

we see that asymptotically

0' ~ - i -~ i
1 2mexp (mivt/4) and ,’00601010 2 exp (i «/4), hence the

constant is -m, This proves the formula (Jz),

As a consequence of this formula, we have:
Corollary 13, 2, 0'11(0, 7)2 (besides being a modular form of weight 3 and
level 4) is a cusp form, i.e,, it vanishes at all the cusps (since at each
cusp one of the 3 modular forms o;‘; (0,7, (i,j) # (1,1), vanishes),

We shall find later a large class of differential operators which
applied to theta functions give modular forms., However, only isolated
generalisations of Jacobi's formula (J;) have been found

and it remains a tantalising and beautiful result but not at all well-

understood!

§ 14, Product expansion of ¢ and applications

We shall devote the rest of this chapter to discussing some arithmetical
applications of the theory of theta functions, No one can doubt that a large
part of the interest in the theory of theta functions had always been derived
from its use as a powerful tool for deriving arithmetic facts, We saw this
already in § 7, when we evaluated Gauss Sums along the way in proving the

functional equation,
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We will divide the arithmetic applications into 3 groups consti-
tuting the contents of this and the subsequent sections, The first group
consists in a set of startingly elegant evaluations of infinite formal pro-
ducts which go back to Euler and Jacobi. Their connection with theta

functions comes from the idea of expanding #(z, 1) in an infinite product.

However, these product formulae are special to the one variable case.

Since the zeros of ¢(z, ) break up into the doub'y infinite set
z=%+it+ntme; m,neZ,

it is natural to expect that ¢ will have a corresponding product decom -

position,

In fact, note that
exp{mi (2m+1) ¢ - 21riz) = -1 @===>2pmiz-n(2m+1) ¢ =(2n+1)mi,neZ

<—=>z =1 (2m+1) ¢+ 1 (2n+1) ,

This suggests that ¢(z, t) should be of the form

[T (1+explni2m+1) r- 2miz])
meZZ

upto some nowhere vanishing function as a factor. To obtain convergence,
we separate the terms with 2m+1 >0 & 2m+]1 €0 and consider the infinite

product:

plz,m =T | +{(1+exp[ﬂ'i(2m+1)T-2ﬂi2])(1+exp[ﬂ'i(2m+l) 2niz))}
meZZ

To see that p(z, ) converges (absolutely and uniformly on compact sets),

we have only to show that the 2 series

T exp [mi(2m+1) vt 2miz]
meZt

have the same property: in fact, if Im z €c &Im ¢ 2d >0, then
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’exp mi2m+1) ¢t 2'rriz]|$ (exp 2w c)(exp -'rrd)zm+1

etc., hence pl(z, 7) converges strongly, Clearly p(z, T) has the same
zeros as ¥(z, r). Now we have the following:
Proposition 14.1. An infinite product expansion for ®(z, T) is given by

(J3)t ¥z, 7) =TT (1-expmi(2m) v) l I +{(1+exp[ni(2m+l)-r-2 wiz]l).
melN meZZ

(1+explmi(2m+1) v+ 2miz])].
Proof. We write the right hand side as c(r) , p(z, ). Observe that the
convergence of the function

c(r) = T—T (1- exp mi(2m) =)

m elN
is immediate, and is no_where vanishing on H, On the other hand,
p(z, *) has the same periodic behaviour in z as ¢: in fact, we see that
a) p{z+1, v) = p(z, r) (clear from definition of p(z, 7)),

b) plz,+1 9 = T_‘- (1+exp [mi(2m+1) v - 2ni(z+r)IN1+exp[mi ¢ -2mi(z+7)]).
melN

U1 +(1"¢xr>[ﬂi(2m"'l) o+ 2mi(z+)])
meZZ

TT a+explri2m-1) v - 2miz]) {exp(-nir -2miz),
m ¢elN

(1+ exp[mi¢+2miz])} ‘ ‘ +(1+exp[ﬂi(2rn+3) +2miz])
m eZ

exp (-mif- 2wiz), plz, r).

Therefore, we must have

(*) 0(z, v) =c'(v) p(z, 7)
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for some (nowhere zero) holomorphic function ¢'(t)., To show that
c*{1) = c(r), we will use Jacobi's derivative formula (Jz) from the previous
section! In fact, substituting z+i ,z+ir,z+3+ 1% for z in (*), we get:
¢ (z,7) =c'(7) I ’ {(1-exp[mi(2m+1) ¢-2niz])(1 -exp[mi(2m+1)r+2wiz])}
01 meZ
90z 7 = c'(1) (exp mi #/4) [exp wiz + exp (-miz)].

TT {(1+expmi2m v-2miz))(1+exp{mi 2m ¢+2miz])}
me N
Ou(z, 1) = ic'(1) (exp mi 7/4) [exp miz - exp(-miz)].

TT {-explmi2me - 2miz])(1-explni2m e+ 2niz])}.
me

Thus we get:

"00(0, ) = c'{r) T_].+(l + exp i (2m+1) '|')2

meZZ
2
4 (0, 7) =c'(r) l | . (1 -expmi(2m+l) v)
01 meZ+
o (0, 1) = 2c'(7) (exp mri/4) ﬂ (1+exp mi(2m) -r)z
10 m ¢IN

2
¢! (0, 7) = -2mc'(7) (expwir/4) T | (1-exp mi(2m) «),
u melN

(The last one is obtained by writing

n’u(z, 7) = [exp niz - exp (-miz)])f(z)

and noting that simply ol'l(o, ¢) = 2m™if(0)). Now substituting into

Jacobi's formula (Jz), we get:



70

-2mc'(1)(expmi 7/4) T—[ (1 - exp mi(2m) )2
meIN

=.2 c'(‘r)s-]_T (1+expmi(2m) '1')2 TT (l-exp'rri(4;m+2)-r)2
m ¢IN +

meZ
or
. 2
! I (1-exp mi(2m) )
c'(",)2 - m ¢IN
nI—J—n\‘.(lﬂaxp mi(2m) ) ml c]Z,*(l -exp Mi(4m+2) ¢)

Now cancelling 2nd part of the denominator against the terms in the numerator

corresponding to m =1,3,5,..., we get:

TT (1-exp ni(4m) )
m eIN

l | (1+ ex mi(2m) 7
m ¢IN P

2

c‘('r)2 .

Writing 1-exp ®i(4m) 7= (1+exp mi2m «¢)(1-exp mi2m ¢) and cancelling gives
2 2 2
c'(m” = ‘ l (1 -expmwi(2m) v} =c(n .
m ¢eIN

But since lim c(¢) =1, this shows that
Im *— >0

em = TT @A -expritzm) 1),
m eIN

as required, This proves the formula (J3).
Some applications: In terms of the variables q = expni ¢ and w = exp niz,

the formula (J 3) reads:

2
i T amw ™ s TTa-a®™ TT fas®™ ehia®™ ey,

meZZ m eIN meZ

(P,

An elementary proof of this striking identity can be found in Hardy and

Wright, p.280, Setting w = 1 and w = { respectively give equally striking
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special cases:
m?2 2m 2m+1 2
(PZ): L q = H(l-q )H {1+q )
meZ me meZZt
m m2 2m 2m+1 2
(Py): Z(-1Y q = [ [(1-q )] [ (1-q ).
meZ melN me2zZ*
However, the most striking variant of all arises when we look at
01_ 1 (0,3 ¢): we have
6

01 {0,37) = (exp mi/6)(exp mir/12) 1’00(% +37,37)
E:

[N

= (expmi/6}{expminr/12) ﬂ(l- exp wi{2m) 3 7).
m ¢IN

! [ R {(Q-exp [ni(2m+1) 3¢t it ]) }
meZ

= {exp wi/6}exp miT/12) TT(I -exp mi(2k) v ).
keIN

On the other hand, we have

9, (0,3%) T exp [mi(m+ 1-)2 3¢+ 2mi(m+ L)1)
%.‘;‘ meZ 6 6

= (exp mi/6)(exp mir/12) T -n™ exp mi (3m2+m) L

meZZ
Thus we get in terms of q:
m 3m2+m 2m
(P4): T (-1) g = ! ‘ (1-q¢“™
meZZ melN

which was first proved by Euler, A final identity of the same genre

is found by returning to the formula for ¢ ' and substituting c( ), we find:
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87.(0, 1) = 27 (exp wie/4) T (1-expmi(zm) m)° .
m eIN

But we have (from § 13)

0‘11(0, T) = -mlexp mir/4) Z (-l)m(2m+1)(exp ﬂi(m2+m) c).

meZ
Thus we get in terms of q:
m m2+m 2m 3
(Pg) : T (-1) (2m+1) q =2 f [ (1-¢" ) .,
meZZ melN

Combining (P4) and (PS)‘ we deduce that

3
S BN
(s, ,(0,37)] "oy %10 1)

»

(=] ol

hence that 4 l(O, 3 1) has value zero at all the cusps, It is the simplest
gn 2

d with this property, Among higher powers,

a,b
24
{8 1(0,32)] = exp(2miT) l | (1- expwifek) 1)
62 k elN
is the famous A-function of Jacobi. The reader can check easily

from (Ps), (Jz) and Table V that it is a modular form of level 1, It is the
simplest modular form of level 1 vanishing at all the cusps! (P4) and (P5)
are in fact the first two of an infinite sequence of evaluations of the

ffici a in:
coefficients m k I

k
2m,\"© _
I Iv(l-q ) = L am,kq
m ¢IN melN

discovered by I. Macdonald whenever k is the dimension of a semi-simple
Lie group! (cf. M, Demazure, ldentités de Macdonald, Exp.483, Séminaire

Bourbaki, 1975/76; Springer Lecture Notes No. 567 (1977)).
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These results may perhaps be considered more combinatorial than
arithmetical, They have interesting applications in the theory of the
partition function p(n): we refer the reader to Hardy and Wright, An

Introduction to the Theory of Numbers, Oxford University Press, 1945,

Chapters 19 and 20.
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§ 15, Representation of an integer as sum of squares

The most famous arithmetic application of theta series is again due

to Jacobi and is this: let
k, 2 2
= + =
r () #{(nl'...,nk)cz /n1 ...'i'nk n}
= number of representations of n as a sum of k squares

(counting representations as distinct even if only the order or sign is changed).

Thus, for instance, r2(5) = 8 as

5=22+12 =22+ ()% = (202 + 12 = (.2)% + (-1)?

2

c12422 - (2422 =12+ (20 = (12 4 ()2,

In terms of q = exp wi 7, recall that we have

2
80, 1})= T q"
ne 2Z
and hence
k n+ | 4nf
80,7 =T ,... T q!

= T r, (n) q"
nez’ k

i.e., #(0, -v)k is the generating function for these coefficients rk(n). For
k = 4, we have the following:
Theorem 15.1 (Jacobi);: For neIN, we have
8T d if n is odd
din
r (n)=

4 24 T d if n is even,
d|n & d odd
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Proof. One way to prove this result is to deduce it from infinite product
expansion of &, but a more significant way (the significance being in having

4
more generalisations) is by relating 4 to Eisenstein series following Hardy

)

and Siegel We proceed in four steps.
(1). Eisenstein series: the basic Eisenstein series are the holomorphic

functions

1 1

E(n- I —l - 4.
K7 mnez  mrmt ae Ak
{m, n) £ (0, 0) 1Y 0

Here k is a positive even integer, and k >4 to ensure absolute convergence,

In fact, as the lattice points are evenly distributed, the sum

T lxl'k
0# 'uA,r

behaves like the integral

S‘ f ‘x+iy('k dx dy

jx+iy| >1
-k

which converges only if k »2 (for, the integral = const, j t dt).

Note that if (: 3) ¢SL(2, ZZ), then: !
E,GTR)- T
_—-FF'——R_
P cr+d (m,n)#(0,0) [ (——)+n]
= (c r+d) > 1

{m, n)#(0, 0) [(am+cn) ¢+ (bm+dn)] k

= (cr+d) E (1)

(*) The proof given here was explained to me by S, Raghavan, and it follows
an idea of Hecke.
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because the mapping from Zz to 222 sending

(m,n)———(am + ¢m, bm +dn)

is a bijection. Moreover, its Fourier expansion is easily calculated: we group

the terms as follows:

E ()= T —-lk—-+ Ty —t
g nfo® m#f0 neZ (m #+n)
= i 1 . )
2nz;1N nk zmzelN( nz‘E {m 7+n)f ) (since k is even)
=2[¢)+ £ (L LI

PR 3
melN nezz (mt+n)
(where {(s) is the Riemann zeta function), Already the terms in the

parentheses are periodic for t+———=2+1, To expand them, start with the

well-known infinite product expansion:

sinmz=mz | | (1- )%).
nelN n

Taking the logarithmic derivative, we get:

nmcoswz 1 2z
—_—= =+ Z (‘2—2')
sin nz z neIN 2°-n

(the series on the right converges absolutely and uniformly on compact subsets

in €). This can be rewritten in a series which converges if Im z > 0 as:

u

-im(1+2 T exp 2ninz) = - in Lre€Xp 2miz
nelN l-exp2miz
cosmz
sinnz

1 1 1
+ T +—).
¥ Z
z nc]NZ n zZ-1N

(The term in brackets cannot be broken up , otherwise convergence is lost).
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Differentiating this (k-1) times, we get:

Kk k-1 X 1 1
-(2mi) T n*"" exp 2ninz = (-1) (k 1) [ ( + —],
nelN nclN( +n)k (Z-n)k

As soon as k 22, the term in brackets can be broken up, so we get:

kK
* : T L (2wl (v 51 exp 2minz),

k' pez (z+n)¥ (k-1 N
Thus if k >2, we get:

(( 21’:1) T k-1

Ek(T) =2[{¢k)+ T n exp 2min(m 1))

m elN (k-1): n¢lN

2[C(k)+( 2"1? { 2T (T nk-l)epoﬂiN-r)]
(k-1 "NeWN niN

[C(k)+( 2"1) ( Z o, _1(n) exp 2mine) ]
{(k-1) eN

k
(where ck(n) = T d° =sumof kih powers of all positive divisors of n).
d|n
This identity still remains valid even for the case when k = 2 if only Ez('r)

is summed carefully, i,e., sum first over n and then over m, in whichcase,

this calculation shows that it converges conditionally. In particular, this

shows that

Hm  E(n)=2¢K
Im # —3» @

hence Ek( ¢) has good behaviour at the cusps, and therefore if k >4, Ek('r)
is a modular form of weight k and level 1, Note that its Fourier coefficients
are the more elementary number-theoretic functions ok(n). Our plan is
ultimately to write 04(0, ¢) as an Eisenstein series related to Ez('r) :
first notice that 04(0, 7) is a modular form of weight 2 whereas E2 does

not even converge absolutely, so our proof of the functional equation for Eg
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breaks dov'n(*)! However. recall that 24 s only a modular form

for T] 95 80 what we can do is ta:

(2). Modify the Fisenstein series E, slightly,

thereby loosing intentionally a bit of periodicity but gaining absolute con-

vergence. Let

?
Ej(r)s T [———s. .
m,n¢Z (2m 1+ (2n+1)) ({2m+1) ¢+ 2n)
Since
1 1 | _ | (4m+1) v3+(4n-4m) 7 - (4n+1)]

(2m ‘|‘+(2n+1)2 i ((2m+1) 7+2n)2‘ (2m1+2n+1)2((2m+1) o+ 2n)2 ‘

< Am + Bn C
s (m2+n2)2 (m2+ n2)3/2 ’

we get that Eg (1) is absolutely convergent on compact sets, Moreover,

if we sum over n first, then both the series

1

1
and _
L, Gmrean)? n}:.z ((2m+1) 1 +2n)2

neZ

are absolutely convergent and so:

o 1 1
E (tr)= T [ T —y - ) S
2 meZ nezz(2mr+2nt+l) neZ ((2m+1) ¢ +2n)?

Let us now evaluate the inner sums:

™) 1n fact, E2 defined by conditional convergence, is not a modular form:

cf, Weil, Elliptic functions according to Eisenstein and Kronecker,
Springer, 1976,
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18t term:

M m=0; T —L =2 | 5(1-52) -20-0 ] ash

nez (2nt1) p odd prime p prime
2
=201-1 .3 n?_m?
21-4)C@ =5 . =7 .

1

(i) if m>0; T 1 -1 5 —
4 ez [ma+d)+n)

nez (2m r+ 2n+1)2

12 I nexp2min(mr+d) (by (*),)
nelN

=-T!2 T (-l)nnexp 2mi(nm) *

nelN

H

(iii) if m <0 ; changing m,n to -m, -n-1, we see that the same formula as

above holds with -m instead of m. In other words, for m # 0, we have

n+l
—1 _-n? T (D" exp2mi(min)e
nezZ (2mer +2n+1) nelN
2nd term:
1

z — = n? T exp min (2m+1) ¢
nez {((2m+1) ++2n) nelN

(i) if 2m+1>0:
(ii) if 2m+1 <0 : changing m,n to -m-1, -n, we find that the same formula
holds with -m-1 instead of m,

As each of these can be summed over m individually, we get:

2
E;(T)=%—--2T‘I‘2 T (L (-l)nn exp 2minm 'r)+2'rr2 z + T n expmin(2m+1)e
melN nelN meZZ ne¢elN
2 +
sTion? T ((T (1) 1n)eXpﬂiN'r)*Zﬂ2 Z (Z nexpmiNe

4 NeN nlN NelN nlN
Neven godd
n
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2
=U4—{1+8 T LZ-n+ ZIn+ ZInlexpniNe+8 T (In)expniNe}
NelN n|N niN n|N NelN n|N
N even n,geven n odd %I odd N odd

2
="T{1+24 L (( ZnlexpniNa}8 T ( T n)expniNe}

Ne n|N Ne¢IN n|N
N even\n odd N odd
s : r ,r-1 ,r-2
(where we have used the identity 2 -2 -2 -ee.-2%1 = 3 to conclude that

r
Td2f- T 2%+ ¥d=3%T dfor N=2 N,,r>0and N, odd).
dlN;  1<s<r-1,dIN;  dIN, dIN,

(3) Eg (¢) is a modular form:

As an obvious consequence of the above, we have a functional equation

4
for E, (), namely,
P P
E,(r+2) = Ez('r) .

Moreover, we have:

Ug 1 1
E,(-Ly= I -
20T mnez [(' 2%"2"*”2 (- 3’—’:11+ 2n)2}

L L ! 5 - L z1)
m,neZ 2n¢-2m-1) ((2n+1) v -2m)

- - 22 E) (142)

because

] 1 1
E,(r1+2) = z 7 - 5
m,neZ | 2m T+4m+2n+1)®  ((2m+1) e +4m+2n+2)

and now replacing m by n and n by -2n -m-1, we see that this sum is

precisely the previous one,
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Thus
L4 2.0
E (-1)=-¢°E
2 ( 1_) T E, (1)
4 . 4
This shows that E2 (v) has the same functional equation as ¢ (0, r)

for the subgroup I‘l o< SL(2, ZZ), namely,
9 art+b c 2 9
%* —) = (. +
*) E, Co3g) = (1) (er+a)” Ej(n).

Now modulo T,

9 there are 3 cusps, i,e,,

{p/alp odd, q even }U{oo}, {p/a|p,q odd Jand {p/a|p even, q odd},

or o,1and 0 for short. Notice that the extra substitution ¢ —> - IT

in I"1 2 carries 0 to oo. On the other hand, by its Foruier expansion,

’

E'z’ is bounded for Im r2c, 8o Eg has the bound for a modular form

at oo and hence at all rational points representing the cusps o and 0.
0
As for 1, we must expand E, (- 1/ +1) (in a Fourier series) as we did

for E"

2 and check that its only terms are exp ntin Nv,N > 0, But

E'§<-2;+1)=«2 T K((z +i) Tom)? . 2}

n, m ez {{2n+l) T+im ((2n+1) 7+2m-1)
and this can be expanded in a Foruier series just like Eg (). (In fact,
since (2n+1) 7 is never 0, there is no constant term either), The
conclusion therefore is that E: (v) is a modular form, The final crucial

step is the following:

J
(). | E (1) = (m 2/4) 9,0 7)4 Note that this identity at once implies the

theorem by comparison of the Fourier coefficients, On the other hand,
a for

to prove (4) itself, direct verification of Jacobi's theorem, say the first
0 4

10 coefficients r4(n), shows that E, (1) - (11’2/4) 000(0, r) has a zero

of order 10 at the cusp i o, i.e., that the meromorphic function
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3 4 2
f=E -
2/000 n°/4

on H/T' has a zero of order 10 at the cusp io. But z’o is zero only at

0
the cusp 1, and there has double zero: so f can have at most 8 poles which
is a contradiction to # poles = # zerog unless f = 0,

This might be considered a lazy man's way to finish this argument!
In fact, there are more elegant ways to go about: viz,,
(a) it is quite easy to check that the space of modular forms f for I‘l‘ 2 with

the functional equation (*) in (3) above, is one-dimensional. So merely

knowing that the values of E"

o and (112/4)0:1)0 at the cusp ioo are equal

is enough to conclude that they are equal everywhere; or,
{b) one could note that E; is zero at the same cusps where 600 is, Hence
Lg
E2/":° is bounded at all cusps, and so by Liouville's theorem it is a constant,

Most important point here is {0 see the underlying philosophy of

modular forms: these are always finite dimensional vector spaces of
functions characterised by their functional equations and behaviour at

the cusps. Thus between functions arising from quite different sources
which turn out to be modular forms, one can expect to find surprising
identities! In particular, Jacobi's formula has been vastly generalised
by Siegel, We shall describe without proof Siegle's formula in Chapter II:
it shows that for any number of variables, certain weighted averages of
the representation numbers r(n) of n by a finite set of quadratic forms

can be expressed by divisor sums 0 ; or equivalently, that certain

k;

polynomials in the "a pare equal to Eisenstein series,
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§ 16, Theta and Zeta

The most exciting arithmetic application of madular forms, how-
ever, is one which is partly a dream at this point: a dream however that
rests on several complete theories and quite a few calculations, The
dream has grown from ideas of Hecke, taking clearer shape under the
hands of Weil, and now has been vastly extended and analysed by Langlands,

The germ of this theory lies in the fact that the Mellin transform
carries the Jacobi Theta function to the Riemann Zeta function and that in
this way, the functional:equation for # implies the one for {. We want to
explain this and generalise it following Hecke in this section, postponing

Hecke's most original ideas to the next two sections. The Mellin transform

>
M carries a function f(x) defined for x¢IR~ with suitable bounds at o

and oo to an analytic function Mi(s) defined by
e d
Mf(s) = 5 f(x) xs Tx , a<Re(s)<b
o

and it is inverted by

1 ctioo s
fx) =5 j Mi(s) x °ds, ce (a,b).
c-100

It is just the Fourier-Laplace transform in another guise because
X = expy carries -oo €£y< o to o< x < o0, and in terms of f(expy), we

have:

©
Mfi(s) = j\ f(expy) exp (ys) dy
-

which for Res=0 is the Fourier transform of y——>f(expy) and, with
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suitable bounds on f(expy) as y >t w, Mf(s) is analytic in s = utiv

when u is in the same interval (a,b), The usual inversion gives

o
f(exp y) exp cy =2_:T f Mf(ct+iv) exp(-ivy) dv
-

or
c+ioo

flexp y) s N ‘j- Mf(s) exp (-sy) ds

2mi A :
c-ioo

as asserted, In particular, apply this to

fix)=2 T exp (-mn2x) .
ne N

Note then that
. . 2
1+f(-ix) = T expmin x = #(o, x)
neZ

or

f(x) = &(o, ix) -1,

As we have already seen (in § 9), recall that

‘f(x)[gc exp (-mx) as x >
‘f(x)[5Cx'% as x >0
Thus provided Re(s) >1, we have:
o e)
2
M(8 (o, ix) -1)(3s8) = 2 j( T exp (-mn"x)) xés %’E .
0 nelN

Since this integral converges absolutely, interchanging the order OfJ and
T gives:

® 1s d
M( " Ys)=2 L (S exp(-ﬂnzx) x38 &%y,
nelN 0 x
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2
In the nth integral, we make the substitution y = mn x, obtaining

5 ¥s @ 1
M( " Y@ds) =2 T (mnd) J‘ exp(-y) y*© QyX
nelN 0
Y 1
=2n ¥ £ 08 £eXp(-y) y?* &
n ¢lN y
P Cls) T: s) .
Thus we have the fundamental formula (for Re (s) >1):
-1 1
(*) 21 7% ()T s) = Sb(o(o, ix) -1) x° 9}_{{ .

This can be used to prove in one step the most well-known elementary
properties of ((s):
Proposition 16,1, The Riemann zeta function ((s) = T n's, Re(s) >1,

nelN
has a meromorphic continuation to the whole s-plane with a simple pole

at s = 1 and satisfies a functional equation, namely,

l

g(s) = 8(1-s) where &(s) = i ¢(s) T(s)
Proof, Recall that we have
1 >
¥ (o,ify) = y? 8(o,iy), y eR

We use this in (*) above as follows:

oo 1 is
Ses)Tds) = § (8o, Dx)-1) x>+ 5<o<o ix)-1) x75
1

The first integral converges for all se € and defines an entire function.

As for the second:



1 1 ‘ .
§ @, x) -1 a®dx. (gﬂg%dnggs%) - { sty
0 0 x )

= (

80, 1y) y? 1% W -2

.(y=%)

=() (8, iy) -1) y H(1-s) Qx +S -%(l’fs) )'é

z(l-s)gx) 2 2
y’'“1-8 " 8§

= () #o,iy)-1) y

HV‘DS

= entire function - —>-- 2
1-s 8

Thus

-1 1
8(8) = S (eIr e - - L - fiord § Mo, b)) S x9S

=g

which shows that £(s) is meromorphic with simple poles at & = 0 and 1,
and is unchanged for the substitution s ——>51.3, Recall that T"(s) has
a pole at s = 0 and hence ((s) is analytic at s = 0, This completes the
proof of the proposition,

Dirichlet series: The above considerations can be generalised as follows:
fix (for simplicity) an integral weight k > 0 and a level n > 1, and suppose
that f(z), zeH, is a modular form of weight k and level n, (N, B: we are
replacing the usual variable ¢ by z here). Then f(z) can be expanded:

first we have

f(z) = L a_, exp(2mwimz/n)
mez*

because ((1) rll)el‘n and hence f(z+n) = f(z), etc., We associate to f, the

formal Dirichlet series, defined by

Z(s)= £ a_m"S,
f m eIN m

Then we have the following:
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Theorem 16.2(Hecke): The Dirichlet series Zf(s) converges(*) if

Re (s) > k+1 and has a meromorphic continuation to the whole s-plane with
one simple pole at s = k, Moreover, there is a decomposition of

n
Modl(( )’ Vﬂ@ V_, such that whenever feV, (e=*1), Zf(s) satisfies a

functional equation, namely

(@) 1612 (s) = el K8 Plic-s) Z{kc-s),

Proof, Let us first find bounds for the growth of the coefficients a_ :

Lemma 16,3, There exists a constant C such that

Iam‘Ska, VYmelN,

Proof. Let us evaluate the m'P Fourier coefficient of f by integrating f

along the line z = x+i/m, 0 <x <n, We have

n
S f(x*+i/m) exp(-2mimx/n)dx
0

n
ay Sexp [ 2T L(x+i/m)- 2nimx-de
0

LeZ"'" n

"

na exp(-2m/n) ,
On the other hand, by Remark 9.4, we have
. k 4

‘f(x‘h/mﬂ <C,.m" for m>2(>2/3%

for some constant CO, Thus
. n
|am\ < 5 exp (2m/n) S(-)lf(xﬁ/m)ldx

k

< exp (27/n) . Co.m

€C.m , Ym>21,

(*) In fact, it converges if Re(s) >k but we won't prove this,
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as asserted,

Proof of Theorem 16.2. The convergence of Z¢(s) is immediate for
Re (s) >k+1 (by Lemma 16,3), Now we relate f and Z; by the Mellin

transform as before:

(L a . exp (-2 mx/n) o dx
melN

M(f(ix) —ao)(s) "

o8

@ s d
T a_, Sexp(-anx/n) x Tx .
melN 0

th

Replacing x by y = 2%mx/n in the m'? integral, we find:

[s.4]
M(f(ix) -a_Ns) = I S exp(-y) (Z:m)
melN 0

Ssg&
Yy

s - s d
=2y ( Ta_m 8) exp(-y) y ¥
2n chm S(; Y

- (N 8
—(ﬁ-) Zf(S)I‘(S).

(Here we are assuming Re(s) >k+1 and we can interchange the order of

¥ and 5- because the calculation shows that

®
T ‘amIS exp (-27 mx/n) xRe(s)gf—<oo) .
m eIN 0

(n) (n)

Now since f(z)¢ Mod, ~ , we see that g(z)cModk where

gz) = &) 1(- 1)

"

I b, exp(2mimz/n), say.
+
meZl

But then we have:
n & _ :
'2—") Zf(S) T (s) = M{f(ix) - aO)(s)

® 1
= {0 ~ag) x° x, g (t(ix) - )x® I
1
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dx a

dx %o, s dx
X s

x —kg(ix) x Ty

(f(ix) - ao) x>

n
MVSS
[ T

"

Q a b o0} k-s
s d ° o : dy -1
_g(“)x L-3 +s—1_§+_g(g(1y)-bo)y ¥ =)

This shows that Zf(s) has a meromorphic continuation as asserted, Since
T(s) has a simple pole at s = 0, Zf(s) has a simple pole only at s =k,
Finally, the map f}——-=g obviously defines an automorphism of

{n)
Modlin) of order 2, so decompose Mody,  into the 2 eigen spaces

Vi ={g=fland VvV, ={g=-f}
and the above identity gives immediately the stated functional equation,
This completes the proof of the theorem,
Examples of Dirichlet series, What sort of Dirichlet series do we get as
functions Zf(s)? Here are 2 simple cases:

Example 1, (Epstein Zeta function): Let

f(z) = &(o, z)2k

T exp (mi (nf +...+ ngk) z
Ny,0eeDy € y74

z r,, (m) exp mimz
2 .
mezt ¥

We know that f(z) has a functional equation for 1‘1 2 including z o z+2
2

and z p———3» - % ; and upto a root of unity in its functional equation, it is a

modular form of weight k and level 2, The associated Dirichlet series is
Z (8= £ r (mm™®= ¢ 1
2k 2
’ m eIN k 2 )s

Ni,e.e,Ng eZZ (n% +... 45
(o), ...,n9)f(0,...,0)



90

This is the simplest Epstein zeta function., It is a particular case of the

zeta functions
g _1_
where Q is a positive definite quadratic form and A is a lattice.
1t follows from what we have proved that Z& 2k(s) is a meromorphic
function with a simple pole at s = k, and has a functional equation for the
substitution s p—>k-d,

Example 2, (Dirichlet series associated to Eisenstein series): Let

f(z) =Ep(z) = T (mz+n)-k , ke2IN
m,neZ
(m,n) #(0, 0)

Recall that Ek is an Eisenstein series introduced in the previous

section, According to the calculations made there of its Fourier expansion,

we have
k
- -2mi
Zg (s) =¢, T og.1(m)m ® Where o fm) = T dt,ck=2%—;?— .
k melN d{m aied
On the other hand, we have
-8 -gtk-
C8)Cls-kt) = T m S StK!

m,nelN

T nk-1 . (mn)-s
m,nelN

=S
= L o (82,
telN

Thus
ZEk(s) =cp. C(s) g (s-k+1),
We can now state the central theme of the dream referred to at the

beginning of this section: it is to say that the class of Dirichlet series that
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arise naturally in arithmetic (viz,, Artin's L-series attached to finite

representations of Gal(@/®@), Hasse-Weil (-functions attached to algebraic

varieties over @ by considering their points mod p, and generalisations

(*)

thereof

) is the same as the class of modular form Dirichlet series Zf

plus their generalisations associated toerfain types of modular forms(**):

Now by their very definition, every arithmetic Dirichlet series is equal to

an Euler product:

Z(s) = | l (rational function of p's).
primes p

A pre-requisite for the coincidence of the 2 classes is that Zf(s) has an

Euler product for a set of modular forms f spanning Mod' ’: this is the

{n)
k
main point of Hecke's further ideas that we now turn to (in the last 2 sections

of this chapter),

(*) cf, J.-P, Serre, Zeta and L-functions, Arithmetical Algebraic Geometry:

Proc. of a conference held at Purdue University (1963), Harper & Row,
Publishers, New York, 1965,

(**) cf. A, Borel, Formes automorphes et séries de Dirichlet, Séminaire
Bourbaki, 1974/75, Exp. 466; Springer Lecture Notes No, 514, 1978,

As Serre has explained to me, for the Dirichlet series Z_ to be part of this dream,

f
one wants to put some restriction on the eigenvalues of tte invariant differential
operators acting on these forms, e.g. most of Maass' non-holomorphic forms are

not included.
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§ 17, Hurwitz maps
Let us describe abstractly the group-theoretic background to theta
functions and modular forms:

(a) for a complex torus, we have:

(i) lattice A acting on € by translation
(ii) the orbit space E = C/A
(iii) functions on €, such as ¢{(z), automorphic for the action of
A, i.e,, periodic upto a factor ex(z), AeA.
The basic idea in unwinding the function theory of E is to shrink the lattice
A to LA, vary the function ¢(z) to the functions "a,b(z)’ giving an interplay
of the group-theory and the function-theory, A key fact here is that when the

automorphic equation

(*) f(z+1) = e)\(Z) £(z)

is required only for \efA, then g(z) = f(z+p) for u in the larger lattice

liA again satisfies (*) for all \e£A. Shrinking A further, eventually trans-
lations with respect to all points in Q. A are incorporated in the function-
theory.

(b) for modular forms, we have:

(i) SL(2,Z) acting on H

(ii) the orbit space H/SL(2, ZZ)

(iii) modular forms on H,
As before, we can replace SL(2,ZZ) by the smaller groups I‘n. Then in place
of the one Riemann surface H/SL(2,ZZ), we obtain a whole fower of Riemann

surfaces, namely:
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H/T, /T, H/Tyg  cevveeniinnnnn,
N N \ «
H/t:1 H/T, H/rg....,.....H/r;,p.. ..
I, H/T, /T H/T ...
H/SL(2, ZZ)

The group SL(2, Z)/T = SL(2, Z/nZ) acts on H/T  and on the basic
(n)

function-theoretic entity, namely, the ring Mod of modular forms of
level n,

However, notice a difference here: we are not enlarging the group sL(2,z).
Just as Ac Q.M also SL(2,Z) < SL(2,Q). Actually it is better to think
of SL(2,7ZZ) as GL(2, E)+, the elements of GL(2, ZZ) with positive determinant,
Then SL(2, Z) < GL(2,®), is a bigger enlargement of "integral' by "rational”
elements, To incorporate GL(2,Q)+ into the picture; note that ycGL(Z,Q)+
does not map any H/I‘n to itself unless Y Tny-l = rn which occurs

only in the trivial cases, i.e.,, ¥ (g g)cSL(z, ZZ), aeQ, Instead, what occurs

is that yI‘ny'l €L if n= (ad-bc) m where
kK0, _oab .
(o K (o g s a,b,c,deZ, (a,b,¢c,d) =1,

We therefore get a new map which we call a Hurwitz map:

~ -1 ——ny
. —_——
TY : H/I‘n H/Yl‘nv (canonicalH/rm
covering)

Z b————>yz

acting "sideways'' on our tower, In view of the elementary divisor theorem,
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the new maps are all compositions of SL(2, Z)/I‘nacting on H/l‘n and the

basic maps

T,= TY: H/rzn —>H/T
given by translation by y = (; (1)) , i.e,, T—> L,

Hurwitz studied these in the form of the "modular correspondences',

i,e., we have 2 maps:

e

T Hn
e

#%> BT,

H/T

hence we can consider the image
H/I‘L ———»c!c(H/rl) X (H/I‘l)

Clearly Cl, is just the image in (H x H)/(I‘1 X I‘l) of the locus of points

(v, £7)in H xH, It is called the £ modular correspondence, If H/l‘1

is taken as the moduli of complex tori, then it is easy to check the following:
Progosition 17.1, Let 'rl, 'rzeH. Then

Ja covering map m: E'\‘ —-—>E.r whose covering
E, )€ Cy s 1 2
2 group is translations on ET by a cyclic group of order £
1

E,,

™

Currently, the most fashionable approach to this new structure is to
consider the inverse limit

I - im n/T
-— n

n

of all the Riemann surfaces in the tower, This ?f is not the same as H just
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as the real line IR is not the same as the compact abelian topological

group (Solenoid)
lim R/nZ

¢—
n

i,e,, the induced map H —— g:( is not even bijective!

The important point is that the Hurwitz map

T : H/T
Y / N(ad-bc)

——>H/T_
between different spaces passes up through the tower and induces a bijective map

TY of ?f to itself, Thus GL(2,Q)+ acts on the space ?( .

Appendix: Structure of the inverse limit %

(1) Firstly, }( has a kind of algebraic structure, In fact, H/rn is
canonically an affine algebraic curve: abstractly this is because we can
compactify it by adding a finite set of cusps, and a compact Riemann surface
has a unique algebraic structure on it, Concretely, if n = 4m, we consider
Rn the ring of holomorphic functions

2K p e Mod™

IC I ) , k

oo 01 10

which can be characterised as the T -invariant functions with "finite order
poles' at the cusps. Then H/I‘n is the maximal ideal space of R . If

n = 4m, then Rm, R‘cRn, Let

6{ holomorphic functions f on H invariant for some T, and
=UR
g " which have finite order poles at the cusps,
Then }f is isomorphic to the maximal ideal space of Q , i,e,, yf is
the scheme Spec &, - {generic point }, i.e., Spec (R minus its unique non-

closed point corresponding the prime but not maximal ideal (0), (Notice
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that & is a ''non-Noetherian Dedekind domain'"),

(2) Adélic interpretation: let us first recall the concept of adéles:

the ring of rational adéles A is by definition

the subring of the product R x i | @ of elements
A = p prime

(X0 3 XgsXgssassXp,0..) Such that x, €Z, for all

but a finite number of primes p

where Zp is the ring of p-adic integers in the field % of p-adic numbers,

A is a topological ring, if a basis of open neighbourhoods of 0 is given by

= ; n(p)
Ueln(p)} = (XepieeesXpe- oM x| <e.xpep 2 ¥p]

for various €>0 and sequences {n(p)} of non-negative integers such that
n(p) = 0 for all but a finite number of p's, We embed @ in A diagonally,

i,e., as the subring of adéles (x

® ;...,xp,.,,) such that x = xp=a/b¢Q

for all p, This makes @ into a discrete subgroup ofA because if a/be®
and | a/b‘ is small, then some non-trivial prime occurs in the denominator,
so p-adically a/b¢ EP,

The adéles frequently arise in studying inverse limits, The simplest
case is the solenoid mentioned above:

Proposition 17,2, There is an isomorphism of topological groups:

() : im R/nZ ~A/@
-
nelN

Proof. Let n ;"Tpn(p) be the prime decomposition of ne¢IN, Define a

P
subgroup K(n) of Aby

K(n) = {{0; ...,xp,...)/xpcp“(p)zp,Vp],
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Then Ki(n) is compact and IQ.K(n) = (0), hence

A & tim AKX,
n

Therefore,

A/Qz lim A/(Q+ K(n))

n

Now (*) will follow once we verify that the map

(), ¢ R/nZ——=> A/(@+ K(n))

given by

Xp—>(x...,0,...)

is an isomorphism, This map makes sense and is injective because

{n;...,0,...)=(n;...,n,...)*+(0;...,-n,...)eQ+K(n),

Surjectivity follows immediately from:
Lemma 17, 3 (Approximation for @) : Given a finite set S of primes, integers
n(p) 2 0 and p-adic numbers aper for peS; there exists a rational number
a¢ @ such that
(i) a-a ¢ pn(p) Zp ,YpeS
(ii) ae Zp for all p¢ S,
The reader may enjoy checking this,
This example should serve as motivation for the more complicated

adelic interpretation of Jf . For this we consider

' = GL(2, @\GL2,A)/K . Z

o]
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where Koo and Z,, are the subgroups of GL(2,) of matrices

X=(Xm;...,xp,...) given by
x _cose,sine) 6 X =LY
XeKy co_(-sine,coso ancé Sp 7 TP
and
XeZ &=====nX =’)'°30 ), A em*and X =1Y%
© ® Yy * o p 20 P°

(]
Note that determinant gives a map

det : ' >\ £ /R” - /@5 R,

Vsing the unique factorisation of a fraction a/b cQ*, namely,
ap=(tn || P
p prime
where ni{p)e¢ZZ and n{p) = 0 for all but a finite set of primes, it is easy to

see that

A we T =z

p prime
which is a compact totally disconnected space, Now we see that the connected

components of S’C‘ are contained in det'l(a), a eA*/Q*. ]R>, Define
GL(2,A)° = { X¢GL(2, A)det X e @*, R}

o o - -1

gfo GL(2, @\GL(2, A [K e 2o, = det™ (1)
1

Then ;(o is in fact connected as a corollary of:

] ]
Theorem 17,4, %z 3»'{' and in this isomorphism TY :J"fo -————>rdr(° becomes
B — o

right multiplication by

AY= (Iz;y,...,y,...)
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(i.e., identity on the infinite factor and right multiplication by y on the finite
factors),
Proof, An easy generalisation of the proof of Prop,17, 2: we need the

Lemma 17,5 (Strong approximation for SL(2,®): Given a finite set S of

primes p, integers n(p) and matrices ch SL(2, Qp), pe S; there exists an
X ¢SL(2,Q) such that
1 +pn(p)ap ) pn(p)b

(i) X = P X for suitable a, b

,b ,cn,d €Z , YpeS
pn(p) ¢ - 1+pn(p)dp PPt PP TP

(i) X eSL(2, Z) forall p ¢S,

(For a proof see Lemma 6,15 in Shimura's : Introduction to the arithmetic

theory of automorphic functions, Tokyo-Princeton, 1971),

We now analyse }f; in a series of steps:

Step I: The natural map
) SL(2, @\SL(2, A)/K | ——>GL(2, \GLE,A°/K 4. Z,,

is an isomorphism,

1t is clearly surjective because modulo suitable elements (a‘/)b ;’) in
A, O
GL(2,®) and ( 80 N )in Z_, we can alter any X in GL(Z,A)O until its
(-

determinant is 1, To see injectivity, say X X,¢ SL(2,/A) have the same

1°*

images, i.e.,

X1 = AXZBC for suitable A ¢GL(2, @), BcKm , Ce Zoo .

But then we get:
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1 =det A, det C,
>
On the other hand, we know that det A CQ* , det CelR but these two have

nothing common in A*. SodetA =1, i,e,, AeSL(2, @), hence det C = 1,i,e,,
=(x (1 0y
C = (0 1)...., 12, ved)
Thus CeKoo . This means that Xl and X2 define the same element in
SL(Z,Q)\SL(z,A/KOD , as required,
SteR II: For nelN, let n ="lTpr(p), Define a subgroup K(n) of SL(2,A) by

p

K(n) = {(Iy....X ,...)/XpeSL(Z,Zp) Vp and

p

1+pr(p)a px-(p)b

P’ P
LR 1+p"Plg

X =

P dpeZ 1.

, ap.bp, Cps
P
Then it is easy to check that K(n) is a compact subgroup of SL(2,A) and that

N Kin)={1},
n ¢eIN

Consequently, using (as before) the fact that SL(2,A) = lim SL(2, A)/K(n),
“n
we get:

%) SL(Z,Q)\SL(Z,A)/KOO__:_, lim SL(2, ®\SL(2, A)/K . K(n),
<n_

Step III, The natural map

(%1): I \SL(2, R)/K , —>SL(2, @)\ SL(2,A)/K . K(n)
induced by the natural inclusion SL(2,R) C—> SL(2, ) given by
X —(X;..., 12, ...) is an isomorphism, To see this: let us write

SL(Z,Af) ={X€SL(2,A) IXw = 12}, i.e.,the 2X2 matrices formed from the

“finite' adeles, Then strong approximation (Lemma 17, 5) says that
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SL(Z,Af) = SL(2, Q). K(n)
hence the map in (*') above is surjective, As for its injectivity: let
Xl’XZ eSL(2, R) have the same image, then for some A ¢SL(2,Q),B¢e Km R
C ¢ K(n), we have

(Xl;...,Iz,...) =A(X2;...,12,...). (B

wivrer Ippee )y, Cyill)

preee

= (A X,Bg, ..., AC,... ),

-1
Therefore VYp, we haveACp =I,, hence A= Cp ¢SL(2, Zp) and A =Iz(mod pr(p))

where n = pr(p)no with p{no. Thus AcQSL(z,Zp) = SL(2,ZZ) and hence

Ae¢T , Since X, = AX,B _ , X, and X, define the same element in
n 1 2 m 1 2

I‘n\SL(z,IR)/Km as required, Finally:

Step IV. H&SL(2, lR)/Km because SL(2,R) acts transitively on H and Koo

is the stabiliser of ieH, Thus we get:

H - tim T\H=lm T \SL(Z,R)/K

n n

xlim  SL(2, ®\SL(2, A/K . K(n) (by (*"
n

=SL(2, @N\SL(2,A)/K , (by (¥¥))
TGL(2, @N\GL2,A° /K .2 (by ()

o

as required,

Lastly, to check the action of TY on J{; : it is clear that it suffices

}
to check for the basic ones T,, i,e,, when y = (0 (1)), Le¢IN, Now look at the

right translation on SQ’; defined by (é 2), i,e.,
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X, —>x . x (20 )

(Xoo:..., p i e Bl gloees

This is the same as
P
0

10)

10 0 10
. — . X
(X GeeesX ,en) €y ™ol z%)""’(o 1") olo 2l

p
which in this form carries SL(2,f) to itself, Restricting this to SL(2,R),

the action is

(X 1 ‘*0 X . 1
00,...,2,...)~———>((0 z'!’) m,...,z,...)

and acting on H this is the map
>l 1=X_ (i)

defining T Ix
This comples the proof of the theorem, We give a 3rd interpretation of H :

(3). ;( as a_ moduli space: we state the result (without proof):

Isomorphism classes of triples (V,L, ¢) where

V = one dimensional complex vector space

¥ =

I, = Lattice in V
QL = Q

2
@ = an isomorphism : =4=- -—-—-,(,z) of ""determinant 1"

To explain "'determinant 1" : note that the complex structure on V orients V
and enables us to distinguish "orientation preserving' bases of L, i.e,, those

bases el,e of L such that if iey = ae1+be2, then b >0, Any two such bases

2
€4,y and fl,fz are related by

fl = ae1+be2 & fz = ce1+de2

with ad-bec =1, Any such basis gives us an isomorphism



103

L®R.L = Q 2
° . ——> &z .

Now ¢o cp;l is given by a 2 X2 matrix (: ‘Z) with entries in Hom(®Q/ Z, Q/ZZ)
(which is well-known to be Af, the ring of finite adéles), The requirement is
that xt-yz = 1. In this model of {{, T, is the map (V,L, ) ——>(V,L',9")
where L'e@.L’ is given as the inverse image of (]"-Z/Z x (0)) in (Q/Z)2

under the map
nat, map ? 2
QL = =, Q.L/L —>(Q/Z)

and ¢' is given by

Q.L/L > (@/z)?
\ X Y=(‘ 0).
v 01

Q.L'/L —2 5 (@/2z)?

§ 18, Hecke operators

We shall now study the action of the Hurwitz maps defined in the previous
section on functions, The simplest way to define this action is to consider

- (n)
Modk = \J Modk .

nelN

These are modular forms of indefinite level: the ratio of any two functions here

is a function on Ff=1m H/T . Now GL(2,R®) acts on this vector space by
< n +
n

- +

f =>1Y where (%) = (crtd) k i L4

ce¥d ) -

Thus, in the limit, we jump up from having an action merely of a quotient of

SL(2,Z), to having one of GL(Z,Q)+ . This action has been much studied of
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late in the context of the decomposition of GL(2,/A acting on

LZ(GL(2,Q)\GL(2,A)). Hecke looked however at the reflection of this group

(n)

action on M0dk : take any yeGL(2, @), , any ne¢IN; then decompose I‘nyl‘n

+ »
into disjoint I‘n left cosets:

(*) T,vT, = (I‘nyl)U(I‘nyz)U... U(Ty,) yjeGL(Z. @), .

Lemma 18,1, The number t of the cosets in (*) above is finite,

Proof, Let LeIN be such that

L 0,,.4a b
(o Y= ¢ »2abrc,deZz,

= -1
and let m = ad-bec, Then we know that Y!‘nmy [ rn , hence Yl‘nmcrnv .

Soif ' = U T §,8¢l" , then we have:
n lstr nm] j n

Tyl = U T KT ). U T ys.
n''n ISj_<_I'n nm’ °j lstrn

and this proves the lemma,

(n)
Kk’ let
* A * *
T ()= T fYJ, Then T (f)eModl((n) (i.e,, TY is a map of Modl((n) to
1€ j<t Y
itself, called the Hecke operator associated to y eGL(2,Q)+),

Lemma 18,2, Let y, y, be as in (*) above, For fe¢Mod

Proof, We have only to check the I‘n-invariance of T; (f): so let 8 cl‘n, then

from (*) above, we have:

U T Y=Tyr=T yT 8= U T y.8,
1<jet nj n'‘n n''n 1<j <t n'j

hence for some permutation ¢ on {1,...,t} and for some ai cl‘n , we get:
Yj §= aivo(j) .

But then we get:



s s 8y
@ -y - o g el og foln Lt
Y j j j i Y

as required,
This procedure is best illustrated by the following basic example:

Lemma 18,3, Let p be a prime, Then the following 3 sets are the same:

[ X ¢GL(2, ®)/X integral & det x=p] the double coset suz,zzx(‘) :)SL(z, z)

0
={sLe, Z)(’; ) U suezid j)}(= union of p*l left cosets)
0gj<p-1 P

Proof, Let GL(2,@) act on row vectors (a,b) by right multiplication, Then
an integral X with det X = p, carries Zz onto a sub-lattice chz of

2 2 -1
index p. Moreover, Z%.X =2 X, if and only if z? -z (XX ) or

2
1

- -1 -1
X X_"eGL{(2,Z), Since det (XIX2 ) = det XlldetX = 1,X1X2 eSL(2,7Z2),

172 2

Thus we have an isomorphism
SL(2, Z)\{XeGL(2,@)/X integral & det X=p}~ {sub-lattices L& Z? of index p}.
But such an L necessarily contains p Zz, so it is determined by a 1-dimen-

- 2
sional subspace L of (ZZ/pZZ) , There are p+l of these and the corresponding

L's are the span of
{(1: 0)) (01 P)} s { (1: 1). (0’ p)}l LR ¥ {(1’ p'l)n (0» p)} & {(pl O)n (01 l)} .
These arise from the X's respectively given by

10 ,1 1 1 p-1 p 0
@ @ pheeeslp Bhead Oy,

This proves the equality of the 1st and 3rd sets above, On the other hand,

for any LeZ? of index p, Y, ¢SL(2,Z2) such that L,Y_ = span of {(1,0),(0,p)}

1
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and hence, if Xe¢GL(2,®) is such that L = zz.x, then we get:
2 210 _-1 10,.,-1
=2 =
Z°. X (0 p).Y1 or X YZ(O p) Y1 for some YchL(z,Z),

Thus the 1st and 2nd sets are equal, This proves the lemma,

This lemma enables us to explicitly compute the Hecke operator

(1)

*
T(l 0 (= T; for short) : let fo:Modk , i,e,, f is a modular form for the

0
full group SL(2, Z), and let the Fourier expansion of f(r) be given by

fle) = L a_exp(2minw),
ne Z* n

*
Now by definition of 'I‘p {cf, Lemma 18,2), we have:
po i)
(o 1)
Ty nm =101+ T 1%
0€j<p-1

=f(pr+HE [£(1/p)+H((+1)/p)+, . . +((+p-1)/p)]

-k
=L ajexp2minpn+[ L 2P <>

nezzt neZZ
T exp (2minj/p). exp (2min v)])
0<€j<p-1
= Z a exp(Z\'\’inﬂ')*-p1 kit a ,€XP 2min 7)
ne Z+ P n€Z+ P
pin
= T b exp(2rin )
nezt
where
pl'k, a if pin
(*): b = pn
n Lk, L.
p apn a  if pn

An immediate consequence of this formula is the:

* *
Corollary 18,4, For all primes PysPys the operators Tp and Tp commute,
1 2



107

Indeed, if

T (t* = T c_ exp(2min 7)
pz pl n.ez+ n p

then we have

1-
P2 Ppn if p,{n
cn =
1-k .
+
Py” Pp ot Pn i Pyln
2 P
1-k _1-k .
Py 'P1 ®pipon if pyfn and p;{n
1-k , 1-k .
+ f
P, (py %p,Pn apz%) if p,{n, pIn
= 1
1-k , 1-k 1-k .
(p; " a )*+p."a n if p|n, p{n
2 1 PyPon 1 Py 2!
1P2 1Py
1-k, 1-k + + 1-k + :
Py (P %p,pyn” Pp, n) P apl_g- 2 ifppy[n
Py 2 P1P2

i

symmetric in p 1 and Py» as required,

Therefore, we can expect to find simultaneous eigenfunctions f for all T;,

In fact, suppose that
* 1-k
T f-= f,Y
p' P Gp TP

Then substituting in our formula for T; f, we find:

a if p{n
P k-1

apn+p aB if pjn

Clearly, these formulae enable us to solve recursively for all a asa

polynomial in the o.p's times a They are best solved by going over to

1°

the Dirichlet series
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Zys)= T a nto.
n ¢eIN n

More precisely, summarising the discussion above, we have:

1
Proposition 18, 5, (Hecke): Let fe¢ MOdl(( ) with its Fourier expansion

fir)= T  a,exp(2min r),
nezzt

Then the following statements are equivalent:
-(k-1)
(1) f is a simultaneous eigen function of eigen value a.p. P for the

*
Hecke operators Tp ,P prime,

(2) for all ne¢IN, we have

) ‘apn if p{n
%p?n k-1 .
a_+p "a if p|n
pn 3

(3) the associated Dirichlet series has an Euler product expansion, namely,

-1
-8 - k-1 -2s
L an =2(s)=a . ‘ l (1-ap+p .p ) .
1 . P
nelN p prime

(In particular, for such an f, the Fourier coefficients a,n> 0, are deter-
mined completely by al),

Proof, We have seen that (1) ======(2) and it is a straightforward

verification to see that (3) =======(1), Assuming (2), (3) follows once we

show that for any prime pand any q¢IN, p ‘\'q , we have:

k-1 528y T

p a n®) = T an ,

(1-a, 5% +p . n
nelN, (q,n)=1 nelN, (pq, n)=1

Let us calculate the expression on the left hand side, i,e.,
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T an®. ¥ a an(pn)~s+ T pk'latn(pzn)_s

(@,n)=1 " (q,n)=1 P (q,n)=1
N - - k-1 -s
= T anS. Zaa(pn)s- > aa(pn)s'*fp a_, (pm)
(q.n)=1n (@n=1 7" (@,n)=1 " " m=np B
pin pin (q, m)=1
= T an®. T apn(pn)-s- L (a n+pk'lan)(pn)-s+ Zpk'lan{pm)'s {by (2))
(q,n)=1 (q,n)=1 (q,n)=1 P (@, m)=1 P
p{n pin p{m
= T an®. £ a_(m™®
(q,n)=1 " (q,n)=1 pn

= I -8 ired
a, n ", as required,

(pq, n)=1

From this it follows that

T (-ap™®+ pk".ﬁzsﬁzf&s) -a,,

p prime P
as asserted, This completes the proof,
We do not want to develop Hecke's theory at greater length but only to
give a few examples and to state his main result and the dramatic conjecture
that has been made in this connection, For full proofs and details, cf, A, Ogg,

Modular forms and Dirichlet series, Benjamin, 1969, To state Hecke's main

result, we need some more notation: let

m: SL(2, Z) ---->SL(2, Z/nZ)

be the natural map and let
(1) -1 e . R
rn = " {Diagonal matrices in SL(2, ZZ/nZZ)}.

We have
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1)

T = ker nal . )/
n n

and T, [T, = diag SL(2, Z/nZ) =(Z/nZ)"

(n)
k

by f+—>R,_(f) = ¥  where mw(y) =a I, ae (z/nm*. Hecke's main result

i.e,, '.!‘n(l)/il‘n is a finite abelian subgroup of SL(2, Z)/I‘n and acts on Mod

is:

Theorem 18, 6 (Hecke): Consider the operators on Modl((n) H

*
a) TY S Y= (i g), a,b,c,deZ, ad-bc > 0 and gcd (ad-bc,n) =

-
0
where 8$e¢SL{2,Z) and 8: (: a ) (mod n), ae (Z/nZ)*.

b) ﬂ-—>f5

Then

(1) all these operator commute,

(n)

(2) Modk has a basis “a} of simultaneous eigen functions for all of them,
and

(3) the Dirichlet series Z_, has an Euler product:

f

a
rational function k-1 _2g.-1
ch.(s) =(of -5 51 I I (l-a. 5° + elp)p .p %)
P ,pPin p{n
where
-(k-1 * *
G-pp Ge-1) eigen value of Tp = T(1 0)
0
and

¢ (p) = eigen value of R(p mod n)

What are these fa's? The prime example is the Eisenstein series: we saw

in € 16 that
Zp (8) = ¢, C(s){ (s-k+1) where ¢, = 2 2"1)
k

k (k-1);
-s,-1 k 1 -8, -
see 11 (@55 .a-p" 55
p prime
-1
- - -2s
= ¢y [T a-aepk-hyp®+ okt 5%,
p prime

Hence, by Prop. 18,5, it follows that



k 1, -(k-1)
p

) E

* _ 1-
T3 (E)) = (1+p .

k-
E = (1+
JE = (1+p
In fact, it can be shown that the fa‘s in the theorem break up into 2 disjoint
groups:

(1) cusp forms and

(2) generalised Eisenstein series

¢(m,,m,)
f (1) = z — 2
k

ml,mzcz (m l|'+m2)

(m,,mg)(0,0) 1
where the c(ml, m2)’s depend only on the mi(mod n}, The latter forms fq
have Dirichlet series Zf (s) of the type

a
Z, (s) = L{y_,s) . Ly, s-k*1
fo.( ) (xl ) (xz )

where L is the Dirichlet L-series (cf, Ogg for details). In particular, we

get a direct sum decomposition

(n)

Mod, = (Cusp forms) L (Generalised Eisenstein series),
4 N
We can use the results of §§ 13-16 to fit ooo into this picture., In fact, we

saw in § 15 that

Zyy (8)=8 T (T dn%+24 £ ( T d)n"®
nelN din nelN djn
n odd n even d odd

=8 L (£dn%32 T (L d@n°
nelN din nelN d|n

using the easily verified fact that if n is even
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T d if afn
3% an
d = .
din £ d-4 L d if 4|n
d odd din d%

Thus

z, (s)= 81-41°%) T (£d)nS
"oo nelN din

1l-s
=8(1-4" ") ((s).C(1-5)
and hence, by Theorem 18,6, we get:

ot

00

LV -1
T, (35,) = (1+p™)

Unfortunately, the generalisations of Jacobi's formula to other powers dozok

are in fact not so simple; e, g,, S, Ramanujan guessed (cf, his collected works,

paper 18) and Rankin proved (Am. J. Math., 1965) that:

e’Zke

<€==>k <4,
oo

"subspace spanned by the
Eisenstein series

The identification of the eigen functions fa. of the Hecke operators as poly-
nomials in the functions ﬂ—)q’a b(0, n T) seems to be quite hard to describe

except in the case of weight k =1 or 2, For example, take the case:

(4) SSpace of homogeneous polynomials of
Mod =

k degree k in & 2

2 2
o ,001, 610 modulo

. 4 4 4
multiples of 600 - "01 - 191 0

Then in this space, the subspace of cusp forms is the set of multiples of

',:o 19021 0120 . But it seems hard to describe in any reasonably explicit and

elementary way the subspace of Eisenstein series, let alone the set of eigen

functions fa. (cf. B, Schoeneberg, Bemerkungen zu du Eisensteinchen

Reihen und ihren Anwendungen in der Arithmetik, Abh, Math., Seminar Univ,



113

Hamburg, Vol, 47 (1978), 201-209; for some calculations for small n), In
the case of degree 1 or 2, i,e., polynomials in the "a,b(o'n +) of degree 2
or 4, the eigen functions fa. can be more or less found - modulo a knowledge
of the arithmetic of suitable quadratic number fields, respectively quaternion
algebras, This is because the theory of factorisation in imaginary quadratic
fields K and in certain quaternion algebras D allows one to prove Euler

products for suitable Dirichlet series

T x(a@) . Nm(a)™®
aeM

where M is a free Z-module of rank 2 in K, respectively of rank 4 in D,
and y is a multiplicative character, just as one does for the usual Dirichlet

L-series

L ymn%,
neZ.

But Nm(e) is a quadratic form in 2 or 4 variables in ‘hese cases, and so
there are Epstein zeta functions, Taking the inverse Mellin transform, we can
express these as polynomials in 0a‘b(0,n ) of degree 2 or 4, For the case
of quaternions where everything depends on the so called '"Brandt matrices",

cf, M, Eichler, The basis problem for modular forms, Springer Lecture

Notes No, 320(1973),
In connection with Hecke's theorem, we want to conclude by describing a daring

conjecture which arose from the work of Weil, Serre and Langlands, asserting which
Dirichlet series arise from modular forms. Their conjecture is this:
Conjecture, Let K be a number field, K, its 'f -adic completions, Consider.

the continuous representations

py: Gal@/@) ------- >GL(2,K,).
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Suppose for almost all A, a Y is given. We say that the px's are compatible
if there is a finite set S of rational primes p such that

a) if \ lies over a rational prime £, py is unramified outside SU{4},i.e.,
py is trivial on the pth inertia group Ip cGal (®@/®), hence P (Fp), Fp the
pth Frobenius element, is well-defined and

b) for all ).1, \, lying over £,, £, andall p¢SU[£1, 12},

Tr pxl(Fp) =Tr PXZ(FP)

det pll(Fp) = det p)‘z(Fp)
and these traces and determinants are integers in K, We say that A is odd
if px(c) is conjugate to ((1) _01) where c¢Gal(®/®) is complex conjugation,
Such compatible families of representations (at least in GL(n), some n) arise
in great abundance from the theory of étale cohomology of algebraic varieties.

For any such family, we can form the Dirichlet series:
- _9g.-1
22 4@ =TT (-Trg (7)p7® + det, (7 )p72) "
{en pés » o\
We may be able to supply suitable p-factors for p¢S. Now building on partial

results of Kuga, Sato and Shimura, Deligne proved the following:

(n)
k

Hecke operators T;, P f n, Let Z:.; be the product of the p-factors in zfa.

Theorem, Let fe¢ Mod and suppose that fc. is an eigen function for the

for p{n., Then there exists a compatible family [P'L} of odd 2-dimensional
representations with S = {primes dividing n}, such that

o]

Z

(s) = 2°

o P 1)
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The case k=1 is analysed in Deligne-Serre, Formes Modulaires de poids 1,

Annales de Sci. Ecole Norm. Sup., t. 7(1974), 507 - : precisely in this case, all

the p, 's coincide and come from one
p: GalQ/@) ------ > GL(2,K)

with finite image. The conjecture in question is the converse to this theorem, i.e.,

every series Z{:} }(s) is Z: (s-m) for some o, m3» 0!
A o
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References and Questions

For many of the topics treated, especially for several
treatments of the functional equation (§7) an easy place to read
more is:

R. Bellman, A Brief Introduction to Theta Functions, Holt, 1961.

For a systematic treatment of the classical theory of elliptic

and modular functions, nothing can surpass

A, Hurwitz, R. Courant, Vorlerungen tiber Allgemeine

Funtionentheorie und Elliptische Funktionen, Part II,

Springer-Verlag (1929).

For modular forms, a good introduction is:

B. Schoeneberg, Elliptic Modular Functions: An Introduction,

Springer-Verlag (Grundlehren Band 203) (1974).

We have avoided, in this brief survey, the algebraic geometry of
the objects being uniformised elliptic curves and the modular curves.

Two general references are:

S. Lang, Elliptic Functions, Addison-Wesley (1973) where analytic

and algebraic topics are mixed (but the series I exp(ninzr) is
scarcely mentioned), and

A. Robert, Elliptic Curves, Springer-Verlag Lecture Notes

326 (1973).
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There are many open problems of very many kinds that could be
mentioned. I want only to draw attention to several problems
relating directly to theta functions, whose resolution would

significantly clarify the theory.

(I) Which modular forms are polynomials in theta constants?
More precisely:
Is every cusp form of wt. n > 3 a polynomial of

degree 2n in the functions /ﬁt b(O,-r), a,b € @?
’

(II) Can Jacobi's formula be generalized, e.g., to
3 - . Ca1 .
(az)dg'b)(O,T) {cubic polynomial in dﬁ;,d s}

for all a,b € @? Similarly, are there generalizations
of Jacobi's formula with higher order differential

operators (see Ch., II, §7)?

(III) Can the modular forms 1}5 b(O,nr) be written, e.g., as
r

Quadratic polyn. in 19; a's
I
Linear polyn. in 23 .'s ?
c,d

(Iv) Can all relations among the 1}; 5 (0, T) 's be deduced
’
from Riemann's theta relation, or generalizations thereof?
A precise statement of this conjecture is given in Ch. II,

§6.
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Chapter II: Basic results on theta functions in several variables

§1. Definition of 2% and its periodicity in z.

We seek a generalization of the function 1% (z,1) of Chapter I
where z € €@ 1is replaced by a g-tuple z = (zl,-~-,zg) € ﬂig, and
which, like the oild ¥, is quasi-periodic with respect to a lattice L
but where Le@?. The higher-dimensional analog of T is not so obvious.

It consists in a symmetric gxg complex matrix Q@ whose imaginary
part is positive definite: why this is the correct generalization
will appear later. Let ﬂyg be the set of such Q. Thusf%rg is an

open subset in cg(g+l)/2. It is called the Siegel upper-half-space.

The fundamental definition is:

Nz, = 7 exp(rithon + 2nfR.2).
nez?
> > t> :
(Here n,z are thought of as column vectors, so n is a row vector,
tﬁ'; is the dot product, etc.; we shall drop the arrow where there

is no reason for confusion between a scalar and a vector.)

Proposition 1.1. A% converges absolutely and uniformly in z

and £ in each set

©1
max |Im z,} < o= and
. i 27 —
i
Im Q > c21 :
- g

hence it defines a holomorphic function on a9 x@g'
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Proof:
(ni®haioni®h) | < (~1c, (znd)+c In,|) = g exp (-t n+e In.|);
expln < Spimmey N ITe Ny i=1 PRE R Lk LA

\g

hence the series is dominated by( Z exp(-nc n +c n)} and

c 2
Z exp (- nc2n2+c n) = const. z exp[-nc2<n—§—%—) ] which converges
n>0 n>0 - T2

T 2

like J e ® ax. 0.E.D.
0
Note that vQ, 3% such that $(%,Q) # 0 because

is a Fourier expansion of \9, with Fourier

nLthn 2nitnz
;e e

. £
coefficients o'l néin # 0.

9 may be written more conceptually* as a series

S,0 = [T _ expo@+L(m)
ned?

where Q is a complex-valued quadratic function of n and £ is a
complex~-valued linear function of BA. To make this series converge,
it is necessary and sufficient that Re Q be positive definite.

Then any such Q is of the form
o) = mitx.0.x, Q€4
1 ‘qg
and any such & is of the form
> .t g
2({x) = 27i x-2z, zZ €EC

*
6 was explained this way in a lecture by Rey Smith.
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hence any such 19(2,0) equals 9(;,9). (This gives a formal

justification for the introduction cof {99).

To 2, we now associate a lattice LQ c r9;

. =27 4+

Q

i.e., Lq is the lattice generated by the unit vectors and the
columns of §. The basic property of \9 is to be "guasi-periodic"
for 2z +—>2z2+a, a € LQ. Here qguasi-periodic means periodic up to a

simple multiplicative factor. 1In fact,

9 G, = 8 (Z,0

9 (Z+am, ) = exp(-mitmom - 27itmz)d (z,2) vm € 79
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Proof. The lst equality follows from the Fourier expansion
of ¥ (with period 1)}; the 2nd one holds because of the symmetry

of Q:

exp[ni%unn+2ni%uz+9m)] = exp(ﬂithn+ﬂithm+nithn+2nitnz)
= exp[nit(n+m)Q(n+m)+2ﬂit(n+m)z—nithm—2nitmz]

> > . g >
and,as n+m varies over & sy 0 does too; so

) exp[nithn+2ﬂitn(z+Qm)] = exp(—ﬂitmﬂm—21dtmz).z exp(witnﬂnﬂnitnz).
nEZZg ne&g

Q.E.D.

In fact, conversely, if f(;) is an entire function such that

N
f(z+m) = f(z)
£(zZ+om) = exp(—nitﬁﬂﬁ—Zﬂitﬁiz)I(Z)
then f£(Z) = const. ¥(z,9).

Proof: Because of the periodicities of f(;) with respect to

> . . .
z9 , we can expand f(z) in a Fourier series:

t;z);

f(z) = c, exp(2Ti

!
> n
n

now the second set of conditions gives us recursive relations among

the coefficients c,t
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£(z40) = nG};xgcnexp 2witn(z+Qk) ) Cnexp(ZWithk)exp(2ﬂitn'z)

(Qk = kth column of (), hence

exp(—wiﬂkk—Znizk)- ZCnexp(znitnz) = Ecnexp(Zﬂi tnOk)exp(ZTrith~z).

Comparing the two Fourier expansions for f(z+Qk), we obtain:

2mi PR +mi th

c> = c;e g, = k unit vector.

n+e¢
k

Thus f is completely determined by the choice of the coefficient cy:

Q.E.D.

This result suggests the following definition:

Definition 1.2. Fix Q €4Dg' Then an entire function f(;) on c9

is LQ—quasi—periodic of weight 2 if
£(z+m) = £(2),
> > . t o t >
f(z+Q-m) = exp(-wifs m-Q-m - 27il-"z.m).f(2)

for all me€ z7. ILet Rg be the vector space of such functions f£.

As in the previous Chapter, one of the applications of such
functions is to define holomorphic maps from the torus Eg/LQ to

projective space. In fact, if fo,---,fn are LQ-quasi—periodic of
the same weight £ and have the extra property that at every 2 € cg,

fi(g) # 0 for at least one i, then
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Z — (fo(E),---,fn(Z))

defines a holomorphic map
cr‘-’/LQ _ s ",

By a slight generalization of49 known as the theta functions

9[;] with rational characteristics, we can easily find a basis

of Rg. These are just translates of 3’ multiplied by an

elementary exponential factor:
3 - t> > t-> > > -> >
G[i](z,m = exp(mi a0 + 2mita- (z+b)) -9 (z+0a+b, Q)
b
for all ;,3 € mg.
Written out, we have:

-
Q[i](E,m = ] exp[mit@edra@+d) + 2mitmed) 24B)] .
b nez9

The original A9 is just'S{g} and if a,B are increased by

integral vectors, \9[g] hardly changes:

> >
9 [i+2] (z,0) = exp(Z'nitg-ﬁ)g[
b+m

](;,Q).

oYy mi

Finally, the quasi-periodicity of 19[;] is given by:
-

> a
9[3]Gdm = expani®Ed 8] |G 0
b b

9|

\
a

](Emﬁ,m = exp(-21i%B-M) -exp (~rimom-27it®-2) -Q[J(Z,m
b

o0 IR
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0
which differs only by roots of unity from the law for-9[ ]. All
0
of these identities are immediately verified by writing them out,
but should be carefully checked and thought through on first

acquaintance. Using these functions, we prove:

Proposition 1.3: Fix @ eeyg. Then a basis of Rg is given

by either:
a/e
i) £2(2) = 9[ ](z-%,z-m, 0 < a.< 2
a 0 —_—
9_£
> 0 > -1
ii) a3 =9 L ](z, 27, 0 <b< g -
b/a 1

>
a

‘e > [ >

iii) hg,g(z) = \9 x } (L.2,Q), 0 < ai’bi < k.

These bases are related by

gg = 2 exp(27i Z_I-tg-g)-f+
- a
a
hy p= 1 exp (2mik T 2B €5 .
ar g mod k ¢
Proof: As above, we expand functions in RQQ as Fourier series
in z. By gquasi-periodicity with respect to Q~Zg, we check that

Q

a function £ lies in R 9

if and only if f can be expressed as
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£ = 7 x@exprig 0.8 + 2m 9.3
Z

where x 1is constant on cosets of 2-z9. Taking x to be the

characteristic function of §+kzg, fX becomes fg; taking ¥x

to be the character n %——>exp(2ﬂi£—l-tg-g), fX becomes 9p

and if 2 = kz, taking X to be the restriction of

B —sexp(2rit - 5-B)  to 3+k.zY, £, becomes hz . QED
14

Let us see how these functions can be used projectively to
embed not only (‘Cg/LQ but "isogenous" tori Eg/L, L a lattice

in LQ'Q.

First some notation: fix Eéh and identify ®rY x®rI  with

t9 via Q by
ag: RrY x rY -—->ccg, (:-E,;) 4——-——>Q§+§ = E.
Note then that oy identifies 2z9x2z9 with 1o =29 +029%.
Define
2g 2g * > o s
e: IR x IR — El, e(x,y) = exp 2miA(x,y)

where A is the real skew-symmetric form on IRZgXJRzg
defined by
£t -> - >

> > > > -> > >
Alx,y) = "xy-y, = (xy,%5), y = (yy,¥,).

|
(%)
—
i
N
wy
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It is immediate that

e(x,x) =1, e(x,y) = e(y,x) *

and

e(x+x',y) = e(x,y)e(x',y).

Thus e is bi-multiplicative and so we can talk of the perpendicular

VJ' of a subset V ¢ ]R2g , namely,

1

v: = {x €]R2

9 letx,a) = 1,Va € V}.

We shall be particularly interested in the perpendiculars LJ'

within (ng of lattices L « ng, i.e.,

L= {x € (qu e(x,a) = l,Va € L}.

It is immediate that

(i) @9 = 229, i) Ez?9)t = az?9, nex.

In fact, more generally, for lattices L,L L2 in QZg, we have:

1’

1

oyt = nct, @t

1 1 1
) —L,L15L2<==$ ngLz,etc.

In particular, if L ¢ ZZg is of index s, then 2229 c L~L is of
index s. Further, notice that in this case aQ(L) S L, = un(ZZg)
is also of index s in LQ. Let ai’bi€ LJ', 1 <i< s, be coset

representatives of Ll/zzzg. Let us call the set
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a

By(L) = {zemgiﬂ[ i] (z,Q) =0, 1 <ic< s}/aQ(L)
b, - -
1

the set of "base points" in the complex torus ¢g/aQ(L). Now the

"rational morphism" @ is given in the

Proposition 1.2. For all L < ZZg of index s, via the 0{b

we have a canonically defined holomorphic map

o [09/ag(L)] - By (L) ——> P51

namely

- [%1]
0y (2) = (...,&lbij(z,n),...).

We have only to check that ¢_ is well-defined. We do this as

L
follows: let (a,b) € Ll and (a',b')€ L. Then by the quasi-periodicity
al,
of \}{bj'

ﬁ;ra](z+u a',b'),Q) = lyia}(z+ﬂa'+b',9)
Ib'l Q Lb

exp[Zﬂita-b'-Znitb-a'-nita'Qa'—Znita'z]f;[;](z,ﬂ)

= Aa',b',2).e((a,b), (a',b)). ¥[2] (z,0).
b

But e((a,b),(a',b')) = 1 and A(a',b',z) is independent of a,b

and this proves the result.
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The main result concerning this map is this:

Theorem 1.3 (Lefschetz): Let L < 129 be a lattice of index s

and assume that L < r.Ll for some r € N. Then:

=
[
Hh
~
v

> 2, By(L) = @, i.e., o is defined on all of €9/a, (L),

L

~
-
h
]

v

if r > 3, ¢; is an embedding and the image is an algebraic

s-1

subvariety of P , i.e., the complex torus Eg/aQ(L) is embedded

as an algebraic subvariety of Ps_l;

(3) every complex torus that can be embedded in a projective space

(or, more generally, whose points can be separated by meromorphic

functions) is isomorphic to mg/uQ(L) for some @ Qﬂgg and some L.

For a full proof, the reader may consult §3 of the author's

book, Abelian Varieties, Oxford University Press (1974) . Here we

shall skip completely the proof of (3) and outline the proofs of

(1) and (2). Note that it is (3) which explains why we have focussed
attention on the special type of lattice LQ in €9: these and

thelr sublattices are the only ones which lead to complex tori which
are also algebraic varieties. It would be impossible to find entire
functions f(z) quasi-periodic for more general lattices because of

this result.

The first step in the proof of (1) and (2) is:

Lemma 1.4: Let f(z) be any holomorphic function such that

£(z+Qa'+b') = exp(-mita'a'~2nita'z) £ (z)

for all (a',b') € L. Then f(z) is a linear combination of the

a.
functions ﬂ}[bl}(z,ﬂ), 1 <1< s
LYy
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This is proven by a variation of the argument used to prove
that 49 is characterized up to a scalar by its functional
equation: one makes a Fourier expansion of f for the lattice
aQ(L)nZg in Gg, and expresses the remaining functional equations
as recursion relations on the Fourier coefficients. These leave
only s coefficients to be determined and it's easy to see that the s
functions z —— ﬁ}[z% nd

Lri
step is a little symplectic geometry over Z:

J(Z,Q) are linearly independent. The 2

Lemma 1.5: For all L < Zzg such that L c rLl, there is a lattice

= rLl. Such an L, has a standard basis:

L, with L < Ll and Ll ] 1

1

(0,89) s 7", (0,8 ), (£],£]), =, (£, £0)

with
A((o,ei),(fé,fg)) =—r'6ij

A((fi,fi),(fé,fg)) = 0.

In fact, we can even find 2 such enlargements: L < Ll’ L c Li

= 1] = -L 1 - T 4L
such that L Ll n Ll and L1 rLl, Ll rLl .
. e = M " LR = ' " i
Thus e, ey and f; Qf1+£7, ,Eg S?fg+fg are a kasis
of aQ(Ll). We then define a linear map

s: @ ——> Y

by requiring that:

(0,*+*,1,°°-*,0), the ith unit vector.

n
)
n

Let

w0
I
e
[
)
QD
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In matrix notation, if we write E,F',F" for the matrices whose

columns are ei,fi and f;, then the lemma says

E.F' = rl

F'.,FP" = tF"-F' or tF'.F" symmetric.

Thus S is given by the matrix E_l and

Q' = SF
= S(QF'+F")

= %(tF'QF' + tF"F")

so Q' is again symmetric with positive definite imaginary part.
Note that the linear map S carries the lattice aQ(Ll) to the
lattice LQ.. The purpose of this construction is to take the
function ¥ (z,0') quasi-periodic with respect to the lattice LQ'
and form from it the function 4L(SZ,Q'), quasi-periodic for aQ(Ll).

We check:

Lemma 1.6: For suitable B € mg, the function

£(z) = ¥(sz+b,0")
satisfies:
a) f(z+ei) = f(z),
b) £(z+0fl+f]) = exp (-1 Cerogr - 3}& teiz)-£(2)

for 1 < i < g. Therefore for all

al,~--,ar€ a9 such that

§ a, = 0, the functions g(z) =
=1 i=1

=

f(z+ui) satisfy
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a) g(Z+ei) = g(z)

] n _ - .t ] (I .t v
b) g(z+in+fi) = exp(-wi fiﬂfi 27i fiz)g(z),

for 1 < i < g, hence g satisfies the hypothesis of lemma 1.4.

The proof is quite straightforward. Without any E, we use the
functional equation for % to find the law for f, but come up with
a root of unity in (b). Adjusting the E, we get rid of these roots
of unity. The second part is an immediate consequence of the first.
This is now Lefschetz's central idea: that there is a related

4&-function f such that all products
f(z+a1)~-""'f(z+ar)

(for al+---+ar = 0) are linear combinations of the functions

a,
ﬂy[bl](z,ﬂ). We next show that:
i

Lemma 1.7: a) If r > 2, then for all u € mg, there is a product

g(z) as above such that g(u) # 0.

b)If r > 3, then for all u,v € t¢9 with u-v ¢ aQ(Ll), there is

a linear combination h(z) = ZCigi(z) of products gi(z) as above

such that h(u) = 0, h(v) # 0.

c) If r > 3, then for all u € @9, and tangent vector

) d; 327 # 0,there is a linear combination h(z) = Zcigi(z) of
i

products géz) as above such that h(u) =0, z di %%—(u) # 0.
i
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This clearly finishes the proof: by (a), BQ(L) =g if r > 2.
By (b), if x,y € Eg/aQ(L) and wL(x) = wL(y), then provided r > 3,
X-y € aQ(Ll/L). Applying the same argument to Li and products g'
constructed similarly, we deduce x~y € aQ(Li/L) too. Thus x = y.
By (c), the differential of @, is one-one if r > 3 too. The proof
of the lemma is not difficult: we take r = 3 for simplicity of
notation and see how (b) is proven. For the other parts, we refer
the reader to [AV, pp. 30-33]. To prove (b), take u,v € 9  and
assume h{(u) = 0 == h(v) = 0. Then there is a complex number Yy

such that for all a,b € Eg,
(*) f(v+a) f(v+b) f(v-a-b) = vyf (uta)f (u+b)f{u-a-b).

This is because the linear functionals which carry the function
f(z+a)f(z+b)f(z-a-b)} to its values at u and at v must be multiples
of each other if one is zero whenever the other is zero. Now in
(*), take 1logs and differentiate with respect to a. If w

is the meromorphic l-form df/f, we find
w(v+a) - w(v-a-b) = w(u+a) - w(u-a-b), all a,b € €9.

Thus w{v+z)~w(u+z) is independent of z, hence is a constant
l1-form 2wi Zcidzi. But w(v+z)-w(u+z) = 4 log f(v+z)/f (u+z),
so this means that

2 i
mi Cc+-2
e

f(z+v-u) = <, f(z)

for some constant Tyt In this formula, you substitute zte; and

z+in+f; for z and use Lemma 1.6. It follows that
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c.e, € &
feliuew) ,
T = c-(in+fi)mod zZ .
Now write u-v = Qxty, X,Y EIRg. Take imaginary parts in the
2nd formula, to get
L Im .x N
- = c.Im Q-f), all i.
r i

Hence ¢ = x/r. Putting this back, we find:

t X
(—-)-ei € Z
t.' Ly, tew, X
fi (r) fi (r)€ Z .
This means that (%,%) € Ll, or (x,y) € rLt = Ll, hence

u-v = dn(x,y) €aQ(Ll). This proves (b).

For further details, we refer the reader to [AV,832]. Finally,
what can we say about the complex tori Gg/aQ(L) for L c ZZg such

L

that L ¢ rL~, r > 2, or even for arbitrary lattices L c ng?

In fact, we do not get more general complex tori in this way,

because of the isomorphism:
g ~ g
[ A 4
C /aQ(L) C /aQ(nL)

given by
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Because of these isomorphisms, the theorem has the Corollary:

Corollary: A complex torus Eg/L can be embedded in projective

space if and only if

aw) « g + of

for some g X g complex matrix A, and some § €z%§.
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§2. The Jacobian Variety of a Compact Riemann Surface.

It is hard on first sight to imagine how the higher-~dimensiocnal
generalizations of 19 of the last section were discovered. The main
result showed that the complex tori G:g/LQ and their finite coverings

¢9/L, (L ¢ L, of finite index) could be embedded by theta functions

Q
in projective space, but no other tori can be so embedded. This

justifies after the fact considering only the lattices LQ built
up via eﬁ%b. If g > 2, these are quite special: @ has Sl%il)

complex parameters, whereas a general lattice is of the form
z9 + q-z9

193 any gxg complex matrix with det(Im Q) # 0, hence it depends on
g2 complex parameters. However, these particular tori arose in the
19th century from a very natural source: as Jacobian Varieties of
compact Riemann Surfaces. Much of the theory of theta functions

is specifically concerned with the identities that arise from this
set-up. The point of this section is to explain briefly the
beginnings of this theory. In Chapter III, we will study it much
more extensively in the very particular case of hyperelliptic

Riemann Surfaces.

Let X be a compact Riemann Surface. As a topological space,
X is a compact orientable 2-manifold , hence it is determined, up to
diffeomorphism, by its genus g, i.e., the number of "handles". It is
well known that the genus g occurs in at least 3 other fundamental

roles in the description of X. We shall assume the basic existence
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theorem: that g is also the dimension of the vector space of
holomorphic l-forms on X*. An extensive treatment of this, as well
as the other topics in this section, can be found in Griffiths-

Harris , Principles of Algebraic Geometry.

The first step is to analyze the periods of the holomorphic
1-forms, by use of Green's theorem. To do this we have to dissect
the 2-manifold X in some standard way: 1i.e., we want to cut X
open on 2g disjoint simple closed paths, all beginning and ending
at the same base point, so that what remains is a 2-cell. Then
conversely, X can be reconstructed by starting with a polygon with
4g sides (one side each for the left and right sides of each path)
and glueing these together in pairs,in particular all vertices

being glued. The standard picture is this, drawn with g = 3:

*These are the differential forms w locally given in analytic
coordinates by w = a(z)dz, a(z) holomorphic.
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homologous
to A,

homologous
to B,
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+ .
Ai = left side of Ai
A, = right side of A,
i - i

+ _ .
Bi = left side of Bi
B. = right side of B,
1 1
+ + - -
9x, = -JA;-]B;+JA;+]B]
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Note that if I(o,T) is the intersection product of 2 cycles o,T,
then

I(Ai,Aj)

]
-
—~
)
[
-
o]
.
]
o

f
©r
.

I(Ai'Bj)

Theorem 2.1. (Bilinear relations of Riemann): Let X be a compact

Riemann surface of genus g, with canonical dissection

X = XO LA M- uA #B u---UB

1 g 1 g
as above.

a) for all holomorphic l-forms w,n,

b) for all holomorphic l-forms w,

i=1

[ S—
Im ( Z fw . fw ) > 0
Ai Bi
Note that if we let F(X,Ql) denote the vector space of holomorphic

l-forms, and if we define the period map

per: T (X,0Y) —» Hom (H, (X,Z), €©) = ut (x, @)
by

0 — {the co-cycle ¢ —— [u }
o

then (a) can be interpreted as saying that with respect to cup

product, the image of per is an isotropic subspace of Hl(X,E).
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In fact, U on Hl is dual to I on Hl’ Thus if we associate

to w the l-cycle
% J % [
d{w) = ( w)- A, - ( w) B,
i=1 i I{ *

then d(w) satisfies

I(d{w),c) = J w, all l-cycles C.

c
So per{w) Uper(n) is equal to I(d{(w),d{(n)), which is exactly
the thing which (a) says is zero.

To prove the theorem, since X, is simply connected, there

0

is a holomorphic function f on X0 such that w = df. Then f.n

is a closed l-form, so by Green's theorem

0 = j d(fn)
X

0
- J £
BXO
= E (—J+fn + J—fn - J+ fn + J_ fn)
Ai Ai Bi Bi

+] J[ [-(f on BI)+(f on B;)In .

1B
1
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As df has no discontinuity on Ai or Bi' f on AI must differ from
- . . + -
f on Ai by a constant, and likewise for Bi’Bi’ But the path Bi
- + . . .
leads from Ai to Ai (see dashed line in diagram above) and the

path Ai leads from BI to B;. Thus

which proves (a). As for (b)

Jd(fw)= J[_u) =—§

X0 8X

as before . The right-hand side is

ZiIm(:ZL Jw-Jw)
A

. B,
1 1

and d(fw) = df A df. Whenever f is a local analytic coordinate,
let f = x+iy, x,y real coordinates. Then
df A df = (dx-idy) A (dx+idy)
= 2i dx A dy.

Since dx A dy is a positive 2-form in the canonical orientation

ImJ df A df > 0.
X QED



142

I1f we now introduce a canonical basis in F(X,Ql), a matrix

Q in Siegel's upper half space appears immediately:

Corollary 2.2. We can find a normalized basis Wy of P(X,Ql)

such that

I w, = .

] 1]
L,
i
Let Q.. = .. Then Q.. = Q.. and Im Q.. is positive
- 1] J mJ i] Jjir — 13“——£L‘”—————
By
definite.
Proof: The pairing between w's of lSt kind angé Ai's is non-

degenerate because of b) in 2.1. By applying a) to w = wj’ no= oWy

we get jS - Qij = 0; finally, in order to prove that, for any

a > 0, we let w = Zaiwi. By b)

1710 real, Im 1} a.Q.

a
itx i“ikk
0 < Im Z a; ( ) @ Q). QED

i k
We may understand the situation in another way if we view the

periods of l1-forms as a map:
per': H (X,Z) ——> Hom(F(x,2%),0)

I J —— {the linear map w +—> I w}
o

or, if we use the basis w ,---,mg of F(X,Ql):

1

per': Hl(X,Z) — s g9

o —2> (ojwl,---,g'mg) .
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Corollary 2.3. The map per': Hl(x,z) —> 9 is injective and

its image is the lattice L generated by integral vectors and

the columns of Q.

The fundamental construction of the classical theory of compact

Riemann Surfaces is the introduction of the complex torus:

Jac (X) Tot ¢g/LQ.

By Corollary 2.3, if Po is a base point on X, then we obtain a

holomorphic map

X — Jac({X)

w > mod periods.

4
P > (J’ wl'...’ 5
PO

g—r

o

This is well-defined: pick any path y from Po to P and evaluate
all the integrals along y. If y is changed, the vector of integrals

is altered by a period, i.e., a vector in LQ. More generally, if

o= ] kP,

1

is a cycle of points on X of degree 0, i.e., Z ki = 0, then we can

associate to U a point

I(h) € Jac(X)
given by

1) = ( J ml,--~, I wg) mod periods,
o o
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0 a l-chain on X so that 3¢ = EkiPi. The map  —— I({{) plays
a central role in the function-theory on X because of the simple

observation:

Proposition 2.4: If f is a meromorphic function on X with poles

d d
¥ P, and zeroes ) Q; (counted with multiplicities), then
i=1 =

Proof: For all t € @, let D(t) be the cycle of points where
f takes the value t, i.e., the fibre of the holomorphic map of
degree d

f: X —> Pl

over t. If Po is a base point, consider I(D(t)—d.PO) as a function
of t. Because the endpoints are varying analytically, so does

D(t)

] "

dp
o

hence t — I(D(t)—dPo) is a holomorphic map

St Pl ——> Jac({X).

But Pl is simply connected, so this map lifts to
¥ bl — 5 9.
Since there are no meromorphic functions on !ilwithout poles,

except constants, E and § are constant. In particular §(0) = &§ (=)

and  §(»)-8(0) = I(ZPi-ZQi). QED
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The beautiful result which is the cornerstone of this theory is:

of the same degree,

d d
Theorem of Abel: Given cycles | P., |
i=1

Q.
i=1 *

then conversely if I(IPi—ZQi) = 0, there is a meromorphic function

f on X with poles [P., zeroes 19; -

We shall prove this in the next section.
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§3. % and the function theory on a compact Riemann Surface.

We continue to study a compact Riemann Surface X. As before,
we fix a basis (Ai,Bi} of Hl(x,z), obtaining a dual basis Wy of
holomorphic l~forms, a period matrix Q E%@’ and the Jacobian
Jac (X) = mg/LQ. We also fix a base point POE X. By the methods
of §1, we have the function 19(3,9) on Eg, quasi-periodic with

respect to LQ. We now ask:

1) Starting with 19(;,9), what meromorphic functions
on Jac(X) can we form?

2) Via the canonical map

> Jac (X)
P+

P +—> J w
P

X

(o]

what meromorphic functions on X can we form?

Starting with (1), we may allow  to be an arbitrary period
matrix in 1%,9. Then there are 3 quite different ways in which
A . . g
we can form LQ—gerlodlc meromorphic functions on €7, from the

Lﬂ—quasi—periodic but holomorphic function ﬁ}.

Method I: n
I L9(Z+§i,9)
£(3) = =2 :
n 1 (z+B,, Q)
i=1
where ;i’gi € ¢¥ are such that | ;i = Zgi mod z7, is a

meromorphic function on XQ, since the denominator doesn't vanish,
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i1}

identically and the condition Zé'i zgi provides us with

Q-invariance:

exp (-] [ni Ham+2mi & (Z+3,) 1)
£(Z+am) = = £(2) = £(2).

exp (-] [nihoitr2mi 5 (2+5,) 1)
i

A variation of this method uses theta functions with characteristic:

1

If 5,5,3',3' € E?Zg , then

>
S22, )
—_— is a meromorphic function on Xq+
131 (N2, )

. . . — ] - n
Likewise, if Ja; = Ja;, ]b; = Jb: mod Z", then
a.l,»
H\Q[gi](z,ﬂ)
1 _}l is a meromorphic function on X_.
. Q
nG[ai}(z,m
i LB
i

(the 1st one because

&[g] (N(z+m+Qm*') ,&)

\9[g:] (N(z+m+Qm') ,R)

exp (2nitaNm) exp (—2nithm') fexp (—ﬂiNztm'Q m'—21riNtm' 21 [?)](Nz )

exp (2nita ' Nm)exp (=27 itb'Nm') [exp (—TriNztm' Qm '-Zni_Ntm' z)] l9§',](Nz . )

and (a-a')N, (b-b')N € Zg; similarly the an one) .
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Method II:
2 gz 2@,
Z. 92, S (242
[ i _ i _ .3 log( (Z+a,Q))
3 (2+3,9) 82+, 0) 3%y ¥(2+5,9)

F21 (2,2

. . . . 3 { b
is a meromorphic function on XQ as is - log\——a—.—-————
i 1.1 (z,9)

(because the ratio of the 2 ¥'s is multiplied bv a constant when

z is replaced by z+Qn+m).

Method III:

>34
<e

§ %
32,032,
iy

3 &
3zi

(9]
N
k-
|
~

192 Bziazj
is a meromorphic function on X

Q

2
(it increases by E)z—a'()z_ log exp(-nithm—Zﬂitmz) when 2z > z+0mHm' and this
;9%

is zero).

This is the Weierstrass gs—function when g = 1.

Now let  be the period matrix of the compact Riemann Surface X
again. The applications of ¥ to the function theory on X are based

on a fundamental result of Riemann who computed the zeroes of
P

£y = (2 + J J,Q) (Z fixed).
o

Note that f(P) is a locally single-valued but globally multivalued
function, which is invariant around the A-periods, but, on prolongation

around a B-period B, f is multiplied by

P
exp[-niﬂkk - 2wi( J’ oy + zk)].
Fo

k,
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Theorem 3.1 (Riemann): There is a vector K € Qg, such that for all
P

; € Gg, f(;) = f}(; + J 5,9) either vanishes identically, or has
P

0
g zeroes Q1,~--,Qg such that

je]

>
Z

Il 203

. + % (mod Ly) -

o —
EY

Proof: This is another application of Green's Theorem. We
cut open the Riemann Surface X as before. We may assume that
Qi € X0 and P0 € XO' Let Ai be a small disc around Qi' We
consider the l-form df/f on XO-UAi. It is holomerphic, hence

closed, so

af
0 = J d(_f)
Xg-Uby
= af
£
8 (X,-A;)
af g as g af
e’ J EE kzl J . £ * kzl J £
1 = - = -
94, (A =By ) BBy

Now f is invariant under the A-periods, hence it has the same value

+ - R . s s - +
on Bk,Bk. And f increased by —2ﬂ1wk on Bk which joins Ak to Ak.
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Thus the middle integral equals

9
kzlzﬂi ka = 21!ig

B

and the last integral is zero. Since J Q% = 27i{mult. of zero Qi),
ab;
this proves that the number of zeroes of f is exactly g (counted
with multiplicity if necessary).
Next, let W = dgk with gk(Po) = 0 on x0 and repeat the same
argument with the 1l-form gk-ggz

£
_ df
0= I d(gk_f)
XO—UAi
g af g af g af
=- 1 Jgk_f+2 9%Ft 1 9%F °
i=1 =1 ™~ p+) =1 $_-B+)
8b; 2 3
Taking these terms one at a time:
93
[ .
J 9 % = 2mi g (0 = 2mi [ .
BAi P0
- . +
Next 9, on BZ is g, on Bi plus Gkﬂ because the path AQ
leads from B; to B;. So
| at
%k TE k2 l 3
BBy 3
= § (change in value of log f around B )
ke p 2
[ (inceger)]
- s Cos iz +2mil
sz[ migQ, ., 2ni wy ZWlZl 27k 1n;eger
P, 2

(where P1 is the base point of the paths B and AQ).

L
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is g, on A; plus (-Q,) because the path B, leads

+
L 12

- +
from Ak to Ak' So

Next g9, on A

af _ - ag_, . _ Jaf
AL -A ) A
( LR L

_ ég - . :
= le J+ t 27i J+gkmz + 2n19k2 J wy
A A A
L "% L
some
= +Qk£ 2ﬂ1(1nteger) - 27i J Iy Wy + 2n19k£.
ny At
2
Putting all this together, we find:
P
g % U
) I “’k"'zk+[' 2 ’J we * L P, ngkwl]
i=]l ) p 2 A+
0 0 2
+ oy +§ka“z)
which proves the theorem. QED

To exploit this theorem, we make a few definitions: let
Symm X be the compact analytic space constructed by dividing
X x--+x X (n factors) by the action of the permutation group in

n letters, permuting the factors:
nx
n ,—__/\___ﬂ
Symm "X = X x ve- XX/E;n
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This is well-known to be a manifold, even at points where G;I] is

not acting freely. In fact, if

n
(x ---,xn) € X

l'
and

X, =«--=x =P, RKpppet T oXy #P.
(this can always be achieved by permuting the xi's), then let U
be a neighborhood of P disjoint from an open subset X0 c X

containing LA S Then Symm Ny contains the open set:
k n-k
(U /@'k) x (XO /Gn_k) -

Let 7 be a coordinate on U. Then coordinates on Uk/@;k are
given by the elementary symmetric functions in ;(xl),-~-,c(xk),

hence Uk/@;k is an open subset of ¢k.

By induction this proves
that Symm Ny is a manifold.
Points of Symm Ny are in 1-1 correspondence with so-called

"divisors" on X, positive and of degree n. These are finite

formal sums:

of points of X, with
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We will usually write divisors as:

Il e~ 3
o

1

allowing the Pi's to be equal. As in §2, we have a canonical map
I_: Symm "X — > Jac(X)

n

given by

P
Sk
In(zPi) = ( z mod L )
P
Clearly, In is a holomorphic map from Symm % to Jac (X) .

To exploit Riemann's theorem, define E c Jac(X) to be the

proper closed analytic subset:

€- {:

&(K—Z+ j&):o,aupex}.

Let U = Jac(X)- €. Then I claim:

Corollary 3.2: For all Pl,---,PgE X, ; € Eg:
P, .
g 1 1
} J&z%mod Lo=> ¥ (&% + J ©) = 0 for all i
i=1
PO Po
. > g
and if 2z ¢ € . then the divisor )) P, is uniquely determined
1Y
by z by: !
oy z by: i
>
g j w = zmod L, .
i=1 &
P
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Hence

Ig: Symm 9% — > Jac(X)

is bimeromorphic. More precisely, it is surjective and

res I_: 1. 4(U) —> U
g9 g

is an isomorphism.

Proof: Let W < Symn 9% x Jac(X) be the closed analytic

subset defined by both conditions

and

is zero on % Pi' Consider the projections

i=1
w
p
pi/// \\\\\f

Symm Ix Jac{X)

By Riemann'stheorem,p;%u) —> U is an isomorphism. In particular,
pz(w) is a closed subset of Jac(X) containing U, hence equals Jac(X).
Thus dim W > g. But Py is injective because the Pi determine z.

So dim pl(w) > g, hence Py is surjective, hence Py is bijective.
Therefore W is nothing but the graph of Ig, i.e., the first condition
implies the second. This is the first assertion of the Corollary and

the rest is a restatement of Riemann's theorem. QED
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We next investigate the function

b4
E, (x,y) = % (g + J %)
e

X

where e € €7 is fixed and satisfies (&) = 0, and x,y € X.

As with f, E, is locally single-valued, but globally multi-valued,
e

being multiplied by an exponential factor when x or y are carried

around a B-period.

Lemma 3.3. For any P €

X

i :

b, =18 € cg/LQl'@‘(e + w) =0, all y € X|
p

is an analytic subset of Jac(X) of codimension at least 2. Hence

for any finite subset P,,---,P of X, there is an & such that

1 n .
y
V@ =0, £, = Y@+ I 2) 3% 0 for all i.
Pj

Proof: Let D be an irreducible component of Dp and let

Xp c Jac(X) be the locus of points 3, all y € X. Consider

P
the locus of points a+b, a ¢ D, b € Xp and call it D+Xp. Then

D+Xp is an irreducible analytic subset of Jac (X) containing Dp
and contained in the locus of zeroes of U . Hence
dim D + Xp < g-l. If dim D = g-1, it follows that dim D = dim(D+Xp),

hence D = (D+X_ ). But then D + X_+ X_ ++--+ X = D. By the
P P p p
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Corollary, Ig is surjective, i.e.,

gx
e N
Xp LEICE 3 XP = Jac(X).

Together these imply D = Jac(X), which is a contradiction. Thus

dim D < g-2. QED

>

Lemma 3.4: Let e € Y satisfy ﬁ}(g) =0, E, (x,v) Z 0. Then
e

there are 2g-2 points R € X such that

1'.'.'Rg—l’sl'.'.’sg-l

E,(x,y) =0 & a) x=yY
e

Il
Pl

or b) x

or c) y =8

More precisely, including multiplicities, the divisor of zeroes of

E, 1is the sum of
e

a) A , the diagonal

b) {R;)xX, 1 <4 <g-l
c) X x{s:}, 1 <i < g-1.
Proof: Let R € X be any point such that E (R,y) = 0. Then
e
by Riemann's theorem, there are g points YyrtroaY, such that

ﬂﬂg+ J 3) = 0 and by the Corollary:
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unique unordered g-tuple such that

. P
(Yyrtooay) = g Yi 0
i ) ) J =2 -(g + j ;)mod L
i=lp R
1]
R
Since é}(g + J 3) = 0, we may assume vy = R. It follows that:
R
unique unordered (g-1l)-tuple such that
(yz,"',yg) = ¥y
Po[u-a-z .
i=2
Py

Therefore yz,---,yg depend only on é: set Si = yi—l’ v
There is a finite set of points R € X such that é;(g + Jz) = 0.
R
To investigate their number, choose S0 # Sl,---,Sg_l. Then
5, Yy
$@ o+ f&) = 0 if and only if x = S or T (& + }[&) =0, all y.
X

But 0(-z) = $(2), so
S

o] x
&@+jm= &uz+ﬁ>
S,

X e

has g zeroes by Riemann's theorem. So there are g-1 points

y
R; € X such that S+ I @) = 0. QED

R,
1



158

With these functions E,, we can now prove Abel's Theorem

q
(see §2): given cycles )} Py
i=1 i

4d
) Q, of the same degree, assume
=1

I (Qry) = 15(J0;).

Then we want to construct a meromorphic function on X with poles

ZPi, zeroes ZQi. In fact, we choose & € €9 so that

$@) =o

E _(P.,y) 2 O
=]

Bg(Qi,y) Z 0.

Consider the function on X:

(3.5) fly) = i=1e =~

We fix the sheets of the multivalued functions E, a little more
P
precisely as follows:

Choose paths o, from PO to Pi’ T from PO to Qi so that

Il ~100

—
€V
1

Il ~100
€+

1 1
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Note that for any Oy Ty by our assumption Id(ZPi) = Id(ZQi),
the above sums would be congruent mod LQ' Hence altering one

of them, we can achieve equality in c9.

Define f as:

d Yy
I $@E + IG)
i=1
- 9
fly) = 3 v
I 9@ + JG)
i=1
P.
1

where the paths from Qi, resp. Pi’ to y are ~T;s LeSP. -0y

followed by the same path from P0 to v in all integrals. If we do

this, let us examine the effect of moving ¥ around a path in X or
of altering the path from P, to y. If the change is by Ay, nothing

happens. If the change is by Bk' f is multiplied by:

a Yy
'E exp Pﬂlﬂkk - 2n1(I we + ek)]
i=1
Qi
a Y
-E exp[-nlﬂkk - 2"1(I wy, + ek)]
i=1 P

1

1

wk)]

10,
i
g

a Y
exp[-Zni( ) Wy
i=1J(; k
i

1.
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Thus f is single-valued. By Lemma 3.4, its zeroes are precisely
the Qi and its poles the Pi' This proves Abel's Theorem.

The beautiful function E, plays the role for X of the
function x-y for the rational giemann Surface Pl : namely on Pl ,
every rational function can be factored

H(Y-Qi)
fly) = ¢ ———
My-p;)
(3.5) is a generalization of the formula to all compact Riemann
surfaces. E, is called the "Prime form" because of this role in
factoring meiomorphic functions.

We conclude the section with one last consequence of Riemann's

theorem:
Z g
Corollary 3.6: For all e € C

BE) =0 & Py, ,P

€ X such that

g-1
P.
> <> g-l l—>
e = A - Z J w
i=1
Py 4
Proof: << In fact take any Pge X and apply (3.2) to
P.
> >
z = ? J w. It follows that
1
o
i
g-1
oE -3 j 5) =0 .
i=1 P
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Conversely, to prove "==>" note that (&) = 0 defines a codimension 1
subset of Jac(X) and the right hand side defines a closed analytic

subset of Jac(X). Moreover by (3.3},

{;.

has codimension 2. So if we prove "= " for &'s such that

y
9(§+j W) =0, all ye€ X
Po

$@) =0

y
I ovex, U@ a)xo,
P

N
it follows for all e. Take such an €. By the surjectivity of Ig’

we can write it as:

Py
g-i-31] @
i=1
0
Consider
£ly) = 0‘(5+T &).
Fo

By (3.2), the divisor of zeroces of f(y) is exactly % P, On
i=1

the other hand, ﬁ}(é3 = 0 so P, is a zero of f(v). Therefore

0
and & has the form required by the Corollary.
QED

some Pi equals PO,
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Appendix to B3: The meaning of 3

In the preceding discussion, %t comes up as a strange
bi-product of an elaborate Green's theorem calculation. We would
like to apply the Riemann-Roch theorem on X to give another point
of view on the Corollaries to Riemann's Theorem (3.1), leading to a
determination of X from another point of view. We need some of

the standard terminology connected with divisors on X:

Definition 3.7: 2 divisors D, ,D, on X are linearly equivalent

1’72
if equivalently I(D1~D2) =0 or 3 a meromorphic function f such

that Dl--D2 = (zeroes of f) - (poles of f). This is written Dl =D

An equivalence class of linearly equivalent divisors is called a

5*

divisor class. Under +, the set of divisor classes is a group,

called Pic X (thus the Jacobian Jac X is isomorphic to the

subgroup of Pic X of divisor classes of degree 0).

Definition 3.8: Let w be any meromorphic 1-form on X. For all

P € X, let z be a local coordinate on X near P and write

n
w =z p-u(z)-dz

where npe Z , u(z) is holomorphic and u(0) # 0. Then the divisor

w) = § n_-p.
pex P

Note that if Wy sy are 2 such l-forms, wl/w2 = f, a meromorphic

function on X, so

(wl)*(wz) = divisor of £ = 0.
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Thus these divisors (w) all lie in the same divisor class KX, called

the canonical divisor class on X.

Definition 3.9: The set £ of divisor classes D such that

2D:Kx

is called the set of theta characteristics of X.

Note that I is a principal homogeneous space under (Pic X)2, the

group of 2-torsion in Pic X (i.e., Y Dl’D € I, there is a unique

2
E € (Pic X, such that D, = D,+E), hence card.Z = card.(Pic X),.

Moreover, all D € (Pic x)2 have degree 0, so

. _ - L >~ 29
(Pic X)2 = (Jac x)2 = 2LQ/LQ = (m/2%Z) ,
and both &, (Pic X) , have 228 clements.

The main result of this appendix is:

Theorem 3.10: Let 0« (rg/LQ be the analytic subset defined by

§(z,9) = 0. We consider all translates a+0 of the subset 0

by a point of mg/LQ. Then:

a) The map

D +————— (locus of points I(P1+-~+Pg—1-D)) < a:g/LQ

for all Pl""Pg-l€ X

is an isomorphism

set of translates e+0 which are

] ——— symmetric, i.e., invariant under ) .

-+ 2>
Z — -z
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b) The map

locus of zeroes of

19{2.'.1 (Z,0)

(:‘].'.).-——> ( )c: <n‘3/LQ

is an isomorphism

> .
lz2g 29 ~ set of translates e+® which
7 /Z _—'—9 .
are symmetric .

Proof: Note that 4%(-2Z) = &(Z) (this is immediate from the
formula defining 0‘), so O itself is symmetric. But ﬂ}[gll(g) =0
is the translate of @ by an'+n". If n',n" € %Eg, then
Qn'+n" € d:g/LQ is of order 2 and a translate of a symmetric subset
of a group by an element of order 2 is symmetric. In fact, a

translate of a symmetric subset 0 by an element a is also

symmetric if and only if © is invariant by translation by 2a:
-(0+a) = O0+a <« 0P+2a = 0O .
Thus to prove (b), we need to check that 0 # 0+3, for all & # 0.
This is proven similarly to Lemma 1.7: say & € €7 satisfies:
WE) =0 = V3E+3) =0

+> >
Consider Qﬁéﬁgl: the zeroes of

a’ 83)

numerator and denominator cancel out*, hence this is a nowhere

and we must show & € L

zero holomorphic function on e9. 1f f(z) is its logarithm, we have

—_—
Note that by (3.6), ﬁh;) = 0 is an irreducible analytic subset
of G:g/LQ and that by (3.1), 19 vanishes to 1st order on it:

otherwise the f(E) in (3.1) would always have multiple roots and
by (3.2), we can take the Pi's distinct in general position.
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9 (Z+8) = exp £(z) - D (2).

In this substitute z+Qn+m for z and use the functional equation for

ﬁ> on both sides. We find that

exp(—nithn—Znitn-(z+e) + £(2)). 9 ()
= exp(f (z+Qn+m) - nithn—2nitnz)19(z)
hence
(*) £(z+Qn+m) - £(z) = -2mitne + 27i- (integer)

for all ; e a9. Therefore, af/azi is invariant by z +—— z+Qn+m,
i.e., is a holomorphic function on Eg/LQ. But then af/azi nust be
a constant, hence f is a linear function. If f£f(z) = cO +2nit3-§,

then (*) says

tZQ-K = —tn-e + (integer), all n € z9
tg.a = (integer), all m € z9 .

By the 2nd formula, ¢ em? , hence by 1lst

& = -q.¢+ (integral vector)
€ LQ.

This proves (b).
To prove (a), we use the following consequence of the Riemann-

Roch theorem: For all divisors E of degree g-1,
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Therefore if D € I, VPl,--,Pg_le X, 3 Ql,--,Qg_le X such that
2D - (Pl+--+Pg_l) B Ql+--+Qg_l

or

I(P1+--+Pg_l-D) = -L(Qp+re+Q D).

This proves the symmetry of the locus in (a). By (3.6), this locus
is a translate of 0. Finally, I has 2Zg elements in it and by

part (b), there are 22g symmetric (6+3)'s. This proves {(a).
QED

Corollary 3.11: K = I(Do—(g-l)Po) for some Do € z.
Proof: Let Do € £ map under (a) to © itself. Compare 3.6

and 3.10: it follows that

{locus of pts I(Pl+--+Pg_l-Do)}={locus of pts I(Pl+--+Pg_l—(g-l)Po)—Z}

Therefore translation by Z+I((g-1)P°—DO) carries 0 to itself,

hence is O. QED

v 1
Corollary 3.12: Let D € I and (2") € 7329/229 correspond

to the same symmetric translate of © in (3.10). Then
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i Q

(&[2.'.] (0,9)=0 ><=>(19(9n'+n",9)=0) <m===> (3?1,--,1: € X such that)
D

-1
I*s

Proof: Immediate from 3.10.

The set of theta characteristics has an important 2-valued form

defined on it:
L]
Definition 3.13: For all ¢ = (g..) € %Zzg/ zzzg , define
L] ™
ente) = (-4 ETET
L L}
For all g = (2,,), n = (2..) € %2229/2229, define
t ' "__t [ "
e,(g,m) = (-pntteintmnt.gh
We want to think of e, as the exponential of a quadratic form
on (ZZ/ZZZ)Zg with values in Z/2%Z, and of e, as the exponential of a
skew-symmetric form (z/ 2z)Y9x(z/ 22)°9 —> =/2@. Since +1 = -1

in Z/2%Z, a skew-symmetric form is also symmetric and these 2 are

related by:

e, (z+n)

m = e,lg,n) .
The importance of e, rests on

Proposition 3.14: For all ¢ € %zzg /Zzg

G[é.’.](—é,m = e*(c)-@[gf.l(%,m.
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Proof: This is an easy calculation:

St -2, [ gexplni®nrc)ainec)+2mi® (negt) (-2+g)]

neEz

gexp[nit(m+;')Q(m+c')+2nit(m+c')(z—c")]
me 72

if m= -n ~ 2¢'

exp(4ﬂitc'-é“)-19[§.'.](E,Q). QED

Corollary 3.15: For all ¢ € %Zzg /Zzg

e,(g) = +1 == /the divisor19[§](z,Q)=0 does, <= ,0 does not contain
\not contain 0, or else has ) ( an'+n" or else
a point of even mult. at 0 has a point of
even mult. there
e, () =

contains 0 and has a point

of odd mult. at © of odd mult.

Here a divisor D on a complex manifold is a locus defined by one

equation f(zl,--,zn) = 0 in local coordinates, and 0 is a point of
ky k k
multiplicity k if all terms (azllz22---znn) in f of total degree

kl +e-4 kn < k vanish while at least one term in f of total degree
kl +oot kn = k does not vanish. The Corollary comes from the fact
that if f(-z) = f£(z), all terms in f have even total degree, while
if £(-2z) = -f(z), all terms in f have odd total degree. The
Corollary shows that © always passes through all odd points of

order 2: i.e., Qn'+n" € %—-LQ/LQ such that e,(n) = -1. One can

=] e=== <the divisor1}[;](z,n)=0 ) = (O contains OQn'+n"

and has a point

there

)

\
/



169

count how many points of order 2 are even and how many odd, by

induction on g. Thus they divide up like this:

even odd
pts  pts
g=1: 4 = 3 + 1
g=2: 16 = 10 + 6
g=3: 64 = 36 + 28
general

genus: 229 = 297439y 297129y

This is a nice exercise. For large g, there are nearly nalf
of each kind.
Using the Theorem, we likewise divide up E into even and

odd parts: I, UL_. The middle lines in (3.15) show that this

division of I does not depend on the choice of Ai’Bi and all the
rest: it depends merely on the multiplicity at 0 of the locus of

points I(Pl+---+P 17D) in Jax X. 1In particular, if De€r_, it

g-
follows that D Z P.++..+P
1 g-1

I_ have a simple meaning in terms of the function theory on X,

for some Pi €X. In fact, I, and

which we describe without proofs. This depends on a further

theorem of Riemann which complements (3.6):

>
Theoxrem 3.16: For all Pl,---,Pg_l € X, let 3 = A

Let I(ZPi) be the vector space of meromorphic functions on X with

at most simple poles at P ---,Pg_l (oxr higher poles if several Pi's

1'
coincide, the order of pole bounded by the multiplicity of Pi)' Then

) . g-1 multiplicity of the zero of
dim L [ Py = ( FE) at z=28 >
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Corollary 3.17: For all D € I:

1

D € I, <= [ either 3 PyrteiPoy € X such that D = P +°-+Pg_1)
or if such Pi exist, dim ;f,(Pl+--+Pg_l) is even

D € I <= 3p,,,P € X such that D = P ++++P
- 1 g-1 —_ 1 g-1
and dim 3{ (P1+--+Pg_1) is odd

For "almost all" X, it can be shown that in fact if D€ Z+, the
Pi's don't exist and if DEIL_, ,}8 (P1+--+Pg_l) contains only

constants, hence is l1-dimensional.

Corollary 3.18: Do and hence & can be determined from the function

theory of X by the property:

YE € (Pic X),, let I(E) = @n'+n", n',n" € %zzg. Then
(*) aim £ (0 +E) = 4%n'.n"(mod 2).
Proof: In the bijections of 3.10, we have:
(D,*E) <—> zeroes of ‘\9’[2:.] (z)

so we have just expressed in (*) that even and odd elements should

correspond. This characterizes D0 because if a',a" € %zzg and

4% (nr+aty-(n+amy = 4%ntont (mod 2)

for all n',n", then one sees that a',a" € 29 in fact. QED
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§4. siegel's Symplectic Geometry.

The other direction in which the theory of theta functions
develops is the analysis of 19(;,9), esp. 1,9’(0,9), as a function of Q.
Before describing these results, however, we must understand the
Siegel upper half space £Xg better. It is convenient to view

glg+ly2 and in

in several ways, e.g., both as an explicit domain in €
a coordinate-free abstract way too. We base our analysis on a

very useful elementary lemma in linear algebra:

Lemma 4.1: Let A: ]qu x ]RZg —> R be the skew-symmetric

form

Zt, . -t .
A((xl,xz),(yl,yz)) = XY, Ky Yy

Then the following data on ]RZg are equivalent:

a) a complex structure J: m?g<——+ RZg (i.e., a linear map

with J2 = -I) such that A = Im H, E a positive definite

Hermitian form for this complex structure. (The existence

of H is_equivalent to:

A(Jx,Jy) = A(x,y) all x,y € R%9
A(Jx,x) > 0 all x € ®29- (0)),

b) a homomorphism 1i: ZZg — V, V a complex vector space,

plus a positive definite Hermitian form on V such that

Im H(ix,iy) = A(x,y),

c) a g-dimensional complex subspace P c ng such that

Amix,y) =90, all x,y € P
iAm(x,§) < 0, all x € P-(0)

(Am = complex linear extension of A),
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a
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g x g complex symmetric matrix £ with Im Q positive

definite.

The links between these data are:

a

a

o]

—_—

—

L

L

L

L

’

a

b

H{x,y) = R{Jx,v) + iA(x,y)
i: 2%%c (%9, 9) = v

P = locus of points ix - Jx

i induces by & IR: .'IRZg ;V, hence a complex

Rr%Y

structure on

i induces by @C: ng —>>V with kernel P

Coordinatize V so that ilg +k)th unit vector) =

kth unit vector. Then kth column of Q =

i(kth unit vector).

the complex structure on leg comes from

R e« ¢?9 —» ¢®Ip

and i is
229 c¢?9 —» ¢’

Q@ is defined by (0'”:t'h ;0,0 —Qil,—ﬂiz,---,—ﬂig) €Pp
i-*spot

P = set of points (xl,—Qxl)

2g

the complex structure on R is induced by

requiring x = Qx, + x, to be complex coordinates

1 2

H((0,%,),(0,y,)) = “xye (Im ) Loy,

We may set V = a9

1(nl,n2) = Qn, + n
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The reader is advised to study this lemma until the different
facets of this structure are quite familiar. The proofs of the
equivalences are easy.

It is clear from a, b or c that the symplectic group
Sp(2g,R) acts on this set of equivalent data. Thus if

Y € Sp(2g,R) , then <y carries

J r——— J' = YJY_l
(V,i) —— (V,i') where i' = ioy
P+———>P' = y(P).

Now we can write such a vy as:

Y = (2 g) , A,B,C,D nxn real matrices
such that:
Eaeaen- (0
cp/\-10/\cD/ " -1 0 .
Therefore
b4
. _ _ A B ( l) gl
F v (P) {(c D) —axJ| *1 €@
Ax. -BQ
- {/ * xl)lx e o L.
\Cx,~Dx, /{71 f
51
But this is the space of points (_Q,yl> ;¥ € €9, so

Q' = (DR -C) (-BQ +A) "L,

This defines therefore an action of Sp(2g,R) on ﬁa g Note that

A B

c D) acts by a bi-holomorphic map

every symplectic matrix (

,Qg - %Ig'
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We may make the formula look more familiar if we compose

with the automorphism vy +—— tY_l of Sp(2,R). 1In fact

V(38 - (23)

SO

Thus after composing with this automorphism of Sp(2g,R), the

action is:

Q> Q' = (AQ+B) (CO+D) L.

In particular, this shows that (AQ+B) (C&'H-D)_:L is symmetric.

Another way of phrasing the result is this:

Lemma 4.2: Let 1i: z?9 —» Vv be data as in (b) above corresponding

to © in (d). Let P4 '“’ng be the unit vectors in qu and let

1’

->

-*, - ->
o= A..e. + B..e.
ei In; 585 IB;154g

>

>, _
g = Zcijej + ZDijej+g

>

be a new symplectic basis of ng' Let 1i' be the composition
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Then i': z°% —» v corresponds to (AQ+B)(CQ+D)—1.

We reprove this to get another handle on the situation:

we may let V = €% and let i be

L, > _ -> >
l(nl’n2) = in+n2.
Then
s 2 -
ilej)y = § Aty ¥ Biy
= (AQ+B)ik
by the symmetry of & . Likewise,
3 _)I —
ilej gly = (CA¥D) 5y -
Therefore

itmyny) = 1(ng); (AQ¥B) 4y + (ny); (CRHD) 4y .

We change the identification of V with ol by composing with

the automorphism t(CQ+D)—1:

-1

-1
(29,0002 — ( ]Z< (CQ+D) | 12 s """ ]Z< (CR+D)y 2y ) -
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Composing, we find

i (m,,n,), = 7 [ (a0+B) (co+D) T +
it{n;,ny), = (nl)i ) ( D) ]ik (nz)k .
Because of the symmetry of (AQ+B)(CQ+D)_1, proven above, this can

be written

s _ —l.+ -+
i'(n;,n,) = (AQ+B) (Ca+D) n, +n,. o)

Here is a diagram that summarizes in terms of matrices the

situation relating i and i' constructed via Q,Q':

(Xl,Xz) b Qxy+x,
z %9 1 c?
(4.3 t(é g) (_g _f\) t (ca+p) t(cQ+D)_l = -Q'C+A
%29 it c9
(Xl, 2) i Q'xl+x2
Q' = (ap+B) (CQ+D) L, (2 §>e sp(29,%) .

<We verify

Y¥a B\ /D -C .
a) that (C D '(B A) are inverse to each other because

(2 g) being symplectic means

o BRENED (2



in

b) that t(CQ+D)—1 = -R'C+A Dbecause t9' = @' so this means
tcarp) ™t = ~F(ca+p) Tt Eag+Bic + A
which reduces to
tac = ®ca ana tpa - YBc =1

a
which in turn follow immediately from (*).

The commutativity is straightforward. )

We note for later use the following consequence:

Proposition 4.4: The group Sp(2g,R) acts on the space
g
c? x by the maps:

49@ y p

1

(z,9) ———> (Y(ca+p)"t-Z, (an+B) (CQ+D)_1

).

Proof: For elements of Sp(2g,Z) , the fact that this is a
group action follows from diagram (4.3), by putting together the
diagrars for i1 and i', i' and i". In fact, the same diagram holds
if Z is replaced by R, by the same argument, so we need not

restrict to elements of Sp(2g9,Z). QED

We can use the action of Sp(2g,R) on Aﬁ g to give a purely

group-theoretic definition of 4%’g as a coset space. In fact:

Proposition 4.5. Sp(2g,R) acts transitively on A?g and the

stabilizer of iIg is isomorphic to U(g,C), embedded in Sp(2g,R)

by
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~

Thus 2“ 2 sp(2g,R)/ U(g,T).

Proof: The transitivity is checked quickly by introducing

2 elementary subgroups in Sp(2g,RR):

A 0

(1) Yy = (0 tA—l>, A € GL(g,R) .
I B

(ID) Y = ( ) p B any g xg real symmetric matrix.
0 I

In fact, Y as in I acts by (x;,x,) —> (Ax;, t1—\-1x2), and

A((Yxl,vxz),(Yyl,sz)) = t(Yxl)'(sz) - t(sz)-(Yyl)

]

t t. -1 t t, -1
(Axl)-( ATy, - (A Xz)"Ayl)

_ t _t
= ¥ XY

A((xl,xz) ' (eryz)),
while 7Yy as in II acts by (xl,xz) — (x1+Bx2,x2), and

-t -t
Ay Yx)) (VY YY,)) = T(x¥BX,) .y, %, (¥, +BY,)

-t t_t .t _t
= XY, + X, By2 X5Y, ><2By2

A((xl,xz),(yl,yz))-

Acting on %g’ these maps carry
Q2 AQ-tA

and Q@ ——— Q+B.
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Hence together they carry iIg to i(A-tA) + B. Since any
positive symmetric matrix can be written A-tA, this gives any
element of 4%.9. This proves transitivity.

The stabilizer of a point of 4Tg is most easily identified
in version (a), lemma 4.1. Here CRZg,J) is a complex vector
space and A = Im H, H positive definite Hermitian. The symplectic
autonmorphisms of RZg that also commute with J are the complex-
linear automorphisms of (Rzg,J). Since A = Im H, these must

preserve H. So this is the group of unitary automorphisms of

29 . . o s
(R"?,J,H). In particular, if Q = lIg’ then z, = l(xl)k + (xz)k,
1 <k < g, are complex coordinates on Rzg, SO:

_ [ 0 +1
J - \—I 0 -
Then
o - o)
cCD cCD
if and only if A = D, B = ~C and as
( A B) (nl> _ ( An1+Bn2>
-B A n, —Bnl+An2 ,

it carries in1+n2 to i(aAn +Bn2) + (-Bn +An2) = (A+iB) {in +n2).

1 1 1
This proves that the stabilizer of iIg is as claimed. QFED

One can now proceed to build up a detailed "symplectic
geometry" on '%Yg: first one defines a metric on £3g which is
invariant by the action of Sp(2g,R). In this metric, one can
describe geodesics, compute curvature, investigate totally

geodesic subspaces, etc. A good reference is
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Siegel, Symplectic Geometry, Academic Press, 1964.

This is a generalization of the non-Euclidean metric on the
upper-half plane H, which is SL(2,R)- invariant, hence has
constant curvature. Our interest however is in the action of

the subgroup Sp(2g9,Z) of Sp{2g9,R) on i@'g' Because
a) Sp(2g9,%Z) ¢ Sp(2g,R) is discrete, i.e., 3 a neighborhood

X,.-6 < 1}

ij "ij

—

of the identity meeting Sp(2g,Z) only in IZg’

and
b) The stabilizer of a point of .,}Jg is a compact Lie group,

it follows:

c) 8Sp(2g,Z) acts discontinuously on %Jg: (1) Y x €%{g’

s, = {y € sp(2g,2)| yx = x} 1is finite and 3 a

neighborhood UX of x which is stable under SX such that

VY € Sp(2g,Z):
n — €
YU U #¢ Y S .

and (2), V X,y € ‘ﬁ]g such that x # yy for any
Y € Sp(2g9,%Z), J neighborhoods Ux’Uy of x,y such that

t.n yUy =@, all vy € Sp(2g,Z).

Proof of ¢ : Because U(g,€) is compact,

n: Sp(2g,R) ——> Sp(29MR)/U(g,T) —N——>¥qg

is proper, i.e., the inverse image of a compact set is compact

(in fact, in this case, we get a section by considering vy's of
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form (é ?)(g 2—1) ; A positive definite symmetric -see proof

of 4.5~ hence as a topological space

sp{2g,R) = U(g,C) x [Sp(29,R)/U{(g,T)].)

ey
Let Ux

_l(

be a relatively compact neighborhood of x: then

™ ﬁép) is compact, hence

- -1 -1,=0
= . €
W {Yl Yo [Y1Y2 ” (UX )1

is compact. Hence the intersection W N Sp(2g,Z) is compact

and discrete, hence is finite. But this is the same as the set

F = {y € Sp(2g,%Z) Y(ﬁg)ﬂ ﬁg # g} .

Now F = SX:JF , where if vy € F then yx # x. For all y € F

1 1’ 1’

let UY'VY be disjoint open neighborhoods of x, yx. Let

U‘i’ = (ﬂ (U ny’lV))nUC}l{).
ver, ¥ Y
One checks that Yd:) fl dj) # ¢ only if vyx = x. The sought-for

Ux can be taken to be

U o W CO R
X €s X
Yeoy
This proves (1). We leave the proof of (2) to the reader. QED

One then considers the orbit space

Q = /iqg/sng,?z) .

g
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By definition, a subset of CRg is open if its inverse image in
£}g is open. By (c¢), each of the local quotients Ux/sx is an open
subset of Cng and the induced topology is immediately seen to be
the quotient topology. Each of these local pieces is an open set
in mg(g+l)/2 modulo a finite group of analytic automorphisms,
hence it is an analytic space. Together these give an analytic

structure on (Bg' (L  is called the Siegel modular variety

g
— a very special but most interesting space. (c2) tells us

that (Qg is a Hausdorff space.

We conclude this section by tying Cng together with the
theory of projectively embeddable complex tori, generalizing the
ideas of Ch. I, 812. We need some preliminaries on cohomology.
For our purposes, we will use DeRham cohomology: on any oriented

compact manifold M,

space of closed exterior k-forms

k ~
(M, R) = space of exact exterior k-forms

and in this isomorphism, the following subspaces correspond:

space of closed k-forms ® with
integral periods around all k-cycles

Hk(M,z)/torsion = (
exact forms

In particular, if V is a real vector space and L < V is a

lattice, then for any k elements A;,*+-,2, € L, we get a

1’ k

k-cycle o(X ---,Ak) on V/L consisting of the image of the

ll

k-dimensional cube:
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k
{.z t.A. €V l 0 <ty <1, for all i} —— V/L.
i=

Then taking periods on c(Al,---,Ak), we get an isomorphism

o (v/L,z) s Kx

~ { multi-linear alternating forms}
A: Tx-++xL — Z

On the other hand, for complex projective space P

0 if k odd or k > 2n
(P ", z) = {
Z if k even, 0 <k < 2n
where if k is even the identification is given by integrating over
linear subspace L c Pn, dim L = k/2. For our purposes, we need
only to have an expression for a 2-form w on " representing

the generator of Hz(Pn,E). The simplest is:

n 2 n
i ] 2 =
w = 5= ) — log < DREN ) dz. A dz,
27 i,3=0 3z.9% jop 1 i
(where Zgetcc,2 o are homogeneous coordinates: i.e., coordinates
in ¢n+l with the canonical map
e o™ - (0) — 5 PP

and what we have written here is w*w).
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Now if Q € , let
g
i: 2?9 5 vy

be data (b) associated to @ as in Lemma 4.1. Explicitly, we

may set V = Eg, i(nl,nz) = Qn1+n2. Then Image (i) is the

lattice LQ, and
v/iz®9) = xg .

Moreover, the alternating form A: ZZg * ZQg — Z gives us,

as we have just explained, a class

Note that if an element vy € Sp(2g, Z) acts on & , then i(ZZg)

2g)

is unchanged and the alternating form on i(Z is unchanged.

This gives us a well-defined map:

set of pairs (X, I[A]), modulo holomorphic
ue Ckg _ X a complex torus, isomorphisms pre-
[A] € H2(X,Z) serving the cohomology
classes

We can easily prove that p is injective:

let
¢: X, ——— % X
2y P
be an isomorphism such that ¢*([A2]) = [Al]. Wirite XQ_ = (rg/LQ
i .

i
and 1lift ¢ to an isomorphism of universal covering spaces, and of

fundamental groups:
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¢ L, =5 L
* Ql 92
where
(*) F(z+a) = §(z) + ¢,(a), all a € L, .
1
Then for all i,
3y _ 3%
Bz.(z+a) - az.(z) .
i i

3

Hence Fro is a holomorphic function on Eg, periodic with respect

to LQ , hence bounded. Then %%~ must be a constant, so ¢ is
1 i

linear plus a constant. We may throw out the constant without

affecting (*). Note too that ¢*([A2]) = [A,] implies

1
A2(¢*X,¢*Y) = Al(xly) .

Thus we have isomorphisms:
i
z?9 1 5 9

~

b ]

i
z?9 — 2 5 ¢

where $, is symplectic. This means exactly that an element of
Sp(2g,2Z ) carries (Eg,i) to (Gg,i'), hence  to Q'. Thus u
is injective. To describe the image, we make the following

definition:
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Definition 4.6. Let X be a complex torus, [A]J€ Hz(x,z) .  Then

[A] is a principal polarization of X if

a) Expressed as a skew-symmetric integral matrix,

det[A] = 1,

b) there is a holomorphic embedding

f: Xe———5 P°

such that if [w] € Hz(]Pn ,Z) 1is the positive generator,

then
f*[w] = N.{[A],

some N > 1.

Theorem 4.7. The map u is bijective between CRG and the set

of isomorphism classes of principally polarized complex tori

(x, [A]).

Having described the projective embeddings of X in 81,

Q
we can easily show that {A} is a principal polarization on XQ.
We shall omit the proof that all principally polarized tori are

isomorphic to an XQ: it is a variant of Theorem 1.3, part (3)

and, like that result, is proven in the author's book Abelian

Varieties, §§2 and 3.

To prove [A] is a principal polarization, we embed xQ in
2g
r? 1 by the method of §1:

z —> (-----,&[bi] (nZz,2) " *°)
i
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1

a,
where [bll run over cosets of ng in szg and n a fixed
i

integer, n > 2. (This is the embedding of §1 for (I:g/nLQ
adapted to Cl:g/LQ by the remark at the end of §l.) We have a

diagram of maps:

g9
-(0)

n2
i
’ 2g9_
ph 1

Thus n*f*{w] is represented by the 2-form on a9

g

E
i et = |

—_—
Q £

2 a,
_ k) i - 2 -
n=5- I 5;;3;; log(%]f}[bi](nz,n)] ) az;a dzj

We need only compute the periods of n to complete the proof.

=n -(tn em, - tn

Lemma 4.8- J n 2
1 2

27 M)
o(in+n2,le+m£

a,
Proof: The functional equation for &[bl] shows that
i

t t 2
Loa, N =27 n..ImQn.-47 n, (Im 2)\n a,
G1, M Geany ey [2 = (e T HTTE TR ) [tk md
i i

2

hence

(*) log Z
i

‘9[ai](n(§+9n +n,)) 2 = Zﬂnz(tn “Im @-n, + 2tn_ -Im z)
bi 172 1 1 1

a, 2
+ log | 19[b%](n5)
i i
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We set

iy 8 25212

Then dg =-n (the 5%— terms cancel out in dz), and writing
i
Im z = (z-2z)/2i, we find:
3 = 1
'§Z—(Im z) = 21

hence differentiating (*):
e a2t >
g(z + in + n2) =-n" ( n, dz) + g(z).

Now the rectangle o is

S mytms Ls 0 (n1+my )+(n2+mz)
so by Green's theorem:
I n = J(-m = I(-c)+ J (-2)
g 30 21+23 12+24
(
= n? I tml-dz + n? ] tnl-dz
2 2
3 2
_ 2.t _ t_ .
= n"{ oy ( in n2) + n, (le+m2)]
_ .2.,t . _t N
= n“( n1 m,-n, ml). QFD
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&5, 19 as a modular form.

We want to consider now the dependence of the function
ﬁ}(Z,Q) on . As in the one-variable theory, the fundamental
fact is a functional equation for ¥ for the action of Sp(2g9,%Z)
on both the variables z and @ . As before, there is a rather
tricky Sth root of 1 in this equation. Without working this out,

we can state the functional equation as:

[P . — .

O (*(capy L2, (ag+B) (cap) )

(5.1)

2 - ,
= CY-det(CQ+D)l/ cexplnit3. (ca+p) tc-31- F (2,0

where gs = 1, and
A B
v={c ) € spq,2)

satisfies
diagonal (tAC) even

diagonal (tBD) even.

This set of elements of Sp(2g,Z) may be described as those vy

such that, modulo 2, vy preserves the orthogonal form

Qn;.n,) = tnl.nz € (Z/2%)

as well as the alternating form A: see the Appendix. In particular

this is a group, which we call Pl 5 following Igusa.
s

In the appendix, a set of generators of Fl 5 is found and
‘

using these, we may prove (5.1) in 4 steps:
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a) Showing that if (5.1) holds for Yi0Y, € Sp(2g,Z) , then it

holds for Y1Ype

0

t, -1

), A € GL(g,Z)
A

b) verifying (5.1) for C

c¢) verifying (5.1) for (I ?), B symmetric, even diaganal,

0
. . 0o -1
d) verifying (5.1) for (I 0) .

We may check (a) by a direct matrix computation, but perhaps a more
interesting way is to reformulate (5.1) in terms of a closely
related function 3% which is then to be shown to be

Sp(2g,Z)- invariant. Since invariance by Y, and Y, obviously
implies invariance by Y1Ygr (a) becomes obvious. The advantage
of this approach is that the new function e must have a certain
importance due to its invariance: this will be explored in

Chapter IV.

To prove (5.1) for all Z, it certainly suffices to do so for
-+ - >
z = in+n2,

n
on +32 for z and rewrite (5.1) for 19[n1](o,9). We claim that
2

;i € 9. so as a first step, we substitute

1

(5.1) is equivalent to:

1 1

2] (0, (AQ+B) (CQ+D) ™
—Bn1+An2

Dn,-Cn
[ )

(5.2)

n
= Lfdet(CQ+Dﬁ£' exp Gnitn -tBD-n +2nitn tBCn —ﬂitn tACn2>€}[nl](0,Q)
2

1 1 1 2 2

(CYdepending only on (A B

¢ D)' not on ny,n,,Q.)



191

This calculation goes like this: you substitute @n.+n, for z,

172
use the fact that
t(ca+d) Y (an,+n,) = Q'(Dn,~Cn,) + (-Bn,+An.)
172 1 2 1 2
"1
by (4.3), and then use the definition of f}[n 1(0,2). (5.2) follows
2

except that one has a messy exponential factor, viz. exp of
.t t -1
mi( le+ nz)(CQ+D) C(in+n2)

.t .t
- i nlﬂn1 - 2mi nn,

+ ni(tnltD-tnth)(AQ+B)(CQ+D)—1(Dnl-Cn2)

+ 2vi(tn tD—tnztc)-(-Bn +An2).

1 1

In this, you separate the 4 terms witn ¢ )nl, nitn N )n2,

1° 1

ﬂitni( )nl, ﬂitnz( )n2 and simplify each one, using the basic

facts on (2 g) expressing that it is symplectic:

For example, take the first. It is

1

m1%n { aca+p) TH(ca+p)-p)~ a + D (a0+B) (ca+D) T'D - 2%DBIn,

nitnl{Q—Q(CQ+D)'1-D - o+ tp(aq+B) (ca+D)”

1

ip - ZtDB}nl

nitnl{(- o+ foag + Fom) (co+D)”
1

D - 2tDB}nl

nitnl{(tB-CQ + ®BD) (co+D) b - 2tBD}nl

nitnl{—tBD}-n

1

The others are similar.
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However, if we examine the above calculation we see that it

would have come out even simpler if, instead of

n
1 _ .t .t
f}[nz](o,ﬂ) = expl[ri lenl+2n1 nlnzlf}(9n1+n2,9)

we use a modified 9 that we will call 19'°L:

n
a1 _ .t .t
(5.3) & [nZ](Q) = explni n,Qn, + wi nln2]f>(9n1+n2,9) .

Written out,

n
t .t 1 .
T _explni (n+n )@ (n+n))+27i (n+§—) n,l .

n
1y @)
(53) B2 nez9d

1f we use U® instead of é}, the "messy exponential factor" is

rather:
.t t -1
mi( le+ n2)(CQ +D) C(in+n2)
- nitn Qn., - witn n
171 172
..kttt -1
+ mi("n; "D-"n, C) (AQ+B) (CQ+D) (Dn; =Cn,)
.ttt ot
+ mi( nl D~ n2 C).(—Bnl+An2),

which, treated as before, turns out to vanish identically!

Thus the functional equation becomes:
Dn,-Cn

(5.4) 0“[_Bnl+An2] ((AQ+B) (ca+D) ™)
1A

n
=z det(cmo)l/z-«?“[ .
Y )
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How about the factor det(CQ+D)l/2? This too can be "eliminated®

in a sense. Let

= Fcormy L3,

E4
|

Then

det(CQ+D)-l-dz A Adz .
1 g

dwlA"‘Adwg

Eence (5.4) says:

Dnl-an
&"‘[ {{AQ+B) (CQ+D)

—Bnl+An2

l). dwlA"'Adw

oM
= r. LY Y
z. ¥ [nzl(Q) leA Adzg

or

Proposition 5.5: Let Sp(2g,Z) act as follows:

29 - -
a) on Z by (nl,nz)n——é (Dnl an, Enl+An2)
1

b) on ;Q) g by Q ——» (AQ+B) (CQ+D)
c?, 1

c) on by 2 +———> S(co+D) 1 2.

Then the functional eqguation for'& asserts that, up to an Bth root

of 1,

0% Yy (). Ao Ade
n2 - 1/\ A Zg

is invariant under Fl 5 <€ Sp(2g9,%Z).

Next, to prove the functional equation, we must consider the

3 generators of Fl,2'
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A O
Case I: Y = (O tA—l), A € GL(g,2Z).

Then (5.1) reduces to:
Sz, a.0.5) = ¢ det )2 93,0

which is immediate , with ¢ a 4th root of 1,in fact:

S (az, AQtA) ) gexp[nitnAQtA-n + Zﬂitn-A°z]

ne€z

nez

) gexp[nithm + 21i%mz)
mezZ

Hz,9)

1/2

and since det A = %1, det ()~ is a 4th root of 1.

Case II: vy = ?L B symmetric, even diagonal.

I
(o]
Then (5.1) reduces to

HzZ,9+B) = - F(zZ,9).

Here we may take ¢ = +1, because in fact

t

& (Z,9+B) ) gexp['nitn(Q+B)n + 27i

nEzZ

nzj

) exp[nitan]-exp[nithn + 2qit

S,

nz]

1

t . .
because nBn is always an even integer.

) gexp[nit(tAn)Q(tAn) + 21i% (*an) 23
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Case III: Yy = (

Then (5.1) reduces to:

(5.6) S @1z, -ah = r,-det(Q)1/2-exp[nitz-n'lz] &z, 0.

. . 1/2 0,172
In fact, this is true with g-det(Q) replaced by det(I)

where the branch of the square root is used which has positive
value when { is pure imaginary.

We could prove (5.6) along the lines of the proof of Chapter I,
but instead we will give a different proof based on the Poisson

Summation Formula:

(5.7) f a smooth function on Rg, going to zero fast enough at ,

~

f its Fourier transform:

E(E) = L f(x) exp(Znitx.g)dxl...ch
- S
then
I fm) = § _fm).
nEZZg nezg

We apply this with f(x) = exp(ﬂitxﬂx + 2nitx~z). Then

7 f(n) = F(z,9.
nez9

To calculate f, we need the following integral:
Lemma 5.8: EbraM,QG%g,z€¢$

1/2

I exp(nitxﬂx + 2nitx.z)dxl---dxg = (det Q/i) exp(—nitzﬂ_lz).

]Rg
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Proof: Rewrite the integral as
exp(—nitzn-lz) [ exp(nit(xﬂflz)n(xm_lz))dxl,---,dxg .
rY
As both sides of the equality to be proved are holomorphic in @

and z, it suffices to prove they are equal when Q and z are pure

imaginary. Therefore, we may assume

Q = ita.a , A real positive definite symmetric

z = iy R y real.

Then the integral becomes:

exp(—nitzﬂ_lz) J exp[—nt(x+(tAA)_1y)tA-A (x+(tAA)-ly)]dxl-..dxg-
Rg

Replacing x by x+(tAA)_ly, this is

1
g

exp(—nitz Q_lz) { exp[—ntxtA-A xldx ---dxg.
R

Substituting w = Ax, this becomes

exp(—nitzQ_lz) J exp[—ntw-w]-(det A)-ldwl---dw
rY
g 4o —rw
= exp(-ﬂitzﬂ—lz)(det tA-A)_l/z- n Je dw
i=1

exp(—nitzﬂ—lz)(det Q/;i.)_]'/2 . QED
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~

We may now calculate f:

£(8)

[}

J exp(nitxnx + 217itx-z)exp(21ritx-5)c1xl---dx(v
g )
R

1/2

(det /i) Y 2exp(-1it(z+e)0 L (z+E)) .

Therefore

} f(n) (det Q/i)_l/zexp(—nitzﬂ—lz) ) exp(—nitnﬂ-kl—Znith-lz)
n€zd nez?

1

il

(det Q/i)_l/zexp(—nitzn-lz)é?(n_lz,—Q- )

(replacing n by -n in the sum in the last step). This is (5.6).

This completes the proof of the functional equation. A

Corollary of our proof which is useful is that:

(5.9) If vy € T4, i.e., vy = IZg(mOd 4), then in the functional

equation, ¢ = #1.

Proof: In fact, by the Appendix, F4 is contained in the group

generated by matrices

@ 2?), Gé ?), B,C syrmetric.

For the first of these, the functional equation holds with

tr = +l. But

(22 %)- G o) .670)E )

so the Bth root of unity ¢ involved in the functional equation for
o -I . . I0
(I O) cancels out, and 7 = 31 in the equation for (_ZB I) (we

cannot say { = +1 unless the appropriate branch of vdet (C{+D)

is chosen). QED
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We now introduce the general concept of a modular form on J?b:

Definition 5.10: Let I' © Sp(2g9,Z) be a subgroup of finite index.

Then a modular form of weight k and level T in g variables is a

holomoxphic function f on Siegel's upper half-space ‘ﬁ?g such that
for all,

we have

1) = aget(carmy X ().

£((AQ+B) (C+D) ™

If g = 1, we put an extra boundedness hypothesis on the
behaviour of f at the "cusps". If g > 1, it turns out that this
boundedness is automatic (the "Koecher principle”): for example,

f will be bounded in the open set of Q's such that

Q>c.1
Im o] g

for some constant c¢ > 0. If T = rn, then f is said to be a

modular form of level n. 1If g > 2, then by a result of Mennicke

(Math. Annalen, 159 (1965), p. 115), any such T contains some

subgroup rn’ so a modular form of level T is a modular form of

level n for some n. The functional equation for 19 states then

that 9(0,9)2 is a modular form of weight 1 and level 4. More precisely,

if we introduce following Igusa the intermediate levels {(n,2n) by

T cT

2n n,ZnCFn

where n is assumed even and y € T if
n,2n

mod n
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and 2n divides the diagonals of B and C, then we prove:

Corollary 5.11: Let n be even. Then for all nl,nz,ml,m € %zg .

2
n m
1 1
CARILRCh 19[m21 (0,0)

is a modular form of weight 1, level (n2,2n2).

Proof: This follows immediately from (5.2).

In fact, Igusa has shown that the ring of all modular forms
of level (n2,2n2), of all integral weights, is just the integral
closure of the subring generated by these thetas and that they have
the same fraction field. This is the final result in his book Theta
functions, Springer, 1972. It is an open problem, however, of considerable
interest to understand exactly what subring of the ring of modular
forms is generated by the thetas. Geometrically, we can proceed

as in Chapter I and define a holomorrhic mapping:

("@g 1‘(nz’znz)> —

by % n®
Qi——> (eree, 0 8100, Q) - F[ E1(0,0),+-)
ny my

a a
n
where (n&),(m&) runs through all sets of 4 elements in a system of
2 2
coset representatives of %Zg modulo Z9 . The main result

geometrically is that this is an isomorphism of the analytic space
ﬁig/r 2 9 with a "quasi-projective" variety, i.e., a subset of
,2n

PN—l defined by polynomial equations minus a smaller set of the same

type.
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Corollary 5.11 suggests that we extend the definition of

modular forms to half-integral weights as follows:®

Definition 5.12. Let T < Fl 2 be a subgroup of finite index. Then
r

a modular form f of weight k € %Z and level T is a holomorphic

function f 234%?9 such that

£ ((AQ+B) (CQ+D)'1) _ £(@)

- 0
901 (arm) (caspyTH 2K D@

A B

for all (c D

)y €T,

With this definition, we can even extend 5.11 as follows:

Corollary 5.13: For all n,,n, € 09, rez, L > 1,

n
,\9[ 1](0,19)
n

2

is a modular form of weight 1/2 for a suitable level T.

Proof: Consider

n
£(9) = 9[ 1](0,29)/19[8] (0,9 .
n

2
Substituting (a0+B) (Ca+D) "t for o and using (5.2), it follows that
if nl,n2 € 1/nzg, n even, and
( A EB)
- €T 2 9.2
s 1C D nz2n
then -1
£f((AQ+B) (CR+D) ) = if(Q).
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The sign e(zé g) gives a homomorphism

Y -1 1
Ty 20 ’_(g g) 'Fn2,2n2 . ((% g)‘———>{il}

n

Let I be the kernel. Then I is a level fory [nl](o,lﬂ) . QED
2

Another way to describe the situation is this:
let

g@Y) = vector space of functions £: I —,
such that for same k,2 > 1

£@) =0 if 3¢ %zg

fab)=£(@ if be ez’ .

(% 1is also called the space of Schwartz functions on the group lAg,

A, being the finite adéles). Define
g ey = 7 t@exp(nithod) .
fieg9d
Then

£ ——s J ] (29)
is a map

Wy $(@9) —— {v.sp. of modular forms of wt.

N

, any level}.

The image is the same as the span of the modular forms \9[::](0,29) ,
all nl,n2€ @9 because 9I£] becomesws[;:‘] if £ is taken to be
2

the characteristic function of a+%7 times the character defined by b.

W, is known as "the Weil map associated to the l-variable quadratic

form lxz" .
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Appendix to §5: Generators of Sp(2g,Z)

In the last section and in the next Chapter, we need at
various places lemmas asserting that various subgroups of
Sp(2g,Z) of finite index are generated by such and such elements.
We group together all the results of this ilk that we need. There
is nothing very difficult in any of these. First, the subgroups

we shall consider are:

r.= {y € sp(2g,®) | vy = I2g mod n}
and also an intermediate subgroup Fl 5t
’
T. cT < ', = Sp(2g,Z) .

2 1,2 1

In fact, if Sp(29,Z) acts by reduction mod 2 on (E/Zﬂﬁzq, it
preserves the skew-symmetric form
N -t
A((xllxz)r (eryz)) - Xl y2 X2 y]_

which, because the characteristic is 2, is also symmetric. 1In
fact, over Z/ 27%Z , consider the guadratic form

- t -
Q((Xl,xz)) = TRy R,

Then
A(x,y) = Q(x+y) - Q(x) - Q(y) (mod 2).
Therefore, the orthogonal group over Z/27% (the maps preserving Q)

is a subgroup of the symplectic group over Z/27%Z (the maps

preserving A)! Let

F1,2 = {y € sp(29,Z)| Q(yx) = Q(x) mod 2} .
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We rest our sequence of generation assertions on one dealing

with the fewest generators:

Proposition A.l: Let T <8Sp(2g,Z) be the subgroup generated by

the elements

I 2B I0 . .
(o I),(2C I)' B,C integral, symmetric .
. A B
Then F4 cT c FZ. In fact T is the group T of (C D)

where 4|A-Ig, 4[D-Ig, 2|B, 2|c.

Proof: We use

Lemma A.2: Let n,m € Z, not both zero. Let d = (n,m). Then a

sequence of the elementary transformations

(x,y) +—— (xx2y,y) and (x,y#* 2x)
carries (n,m) to either
(dlo)I(_dlo)l(old)l(ol_d) or (dld)'

Proof: Since everything preserves divisibility by 4, we
may as well divide by d and prove this for 4 = 1. Given (n,m),

either |n| <m|, |n}>|m| or |n|= |m|. If0#|n| < |m|, make the map

(x,y) — (x,y+2x) or (x,y-2x)

so as to decrease [m|. If |n|> |m| # 0, make the map

(x,y) +—> (x+2y,y) or (x-2y,y)

so as to decrease |n|. If |n| = |m|, then n = #m and since
(n,m) =1, |n| = |m| = 1. If (n,m) = (-1,1) or (1,-1), one of the
elementary transformations carries it to (1,1). If (n,m) = (-1,-1),

we need 2 of them:
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(-1,-1) +—— (-1,+1) ——> (+1,+1)
(x,y) +——— (x,y-2x)

(x,y) +——> (x+2y,¥). QED

To prove the Proposition, let Y € T. Consider

Y(1,0,++4050,++,0)) = (a;,+-+,a;b

,eee,b ).
g'71 9)

Here 4|al—l,a2,---,a ,21b

g l,---,bg and g.c.d.(al;°--rbg) = 1.

We shall follow Y by a sequence 61""’6W of elementary
. I 2B I0 .
transformations (0 I),(2C I) until

[

WOno1 e 8y ¥ (1,0,444,050,444,0) = (1,0,-2-,0:0,+++,0).

Note that we may have at our disposal the transformations:

k,bk left alone

" w

a,,b. +— a.+2b,,b, , other a
i’ i 1771
ai’bi — ai,bitZai ’
a,,a.,b.,b. > a.*2b.,a.*2b.,b.,b., "
1773771773 i 373 i77i'73

a.,a.,b.,b. — a.,a.,b.*2a.,b.*2a., "
1" ] 13 i3 1 3 1

We proceed in stages like this:

Step I: Let 4 = (al'bl)’ Note that d is odd because al is odd.

Apply (al,bl) — (althl,bl) or (al,bliZal).

By the lemma, we eventually achieve
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(The other possibilities are excluded because d is odd and

b1 always remains even at each stage.)

Step II: We want to decrease |a If a; ¥ bi for some i, we

1l
apply
ajrag by b, b—> a,#2b,,a,+2b, b, b,

or a,,a., b,*2a,,b.%2a
1’71 i

17771 1°

Again because a, is odd, bi is even, if 4' = g.c.d.(al,bi), we

1

eventually reach

Step III: Repeat Step II until a Ibi, all i. We also may repeat

1
1 b112al until bl = 0 again. We want to decrease
further. If ay Ié a; (i > 2), we first apply

al’bl —> a

la, |

al’ai'bl’bi — al’ai’b1+2ai’bi+2al

so that b1 becomes 2ai, then repeat Step I. In this way, we

decrease ]al[ until aliai,bi. Then as g.c.d.(a;,b;) =1, a; = ¢

Step IV: Kill b2,--~,bg by maps

al’ai’bl’bi —> al,ai,bliZai,bii2al.

Make bl = 2 by maps

b,*2a..

ajsby > ay,b 23,

Step V: Kill a

2,---,ag by maps

al'ai’bl’bi — ali2bi,aii2b1,bl,bi.
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{These don't affect a1 because bi = 0, 1 > 1; and since 4|ai, i>2,

is a multiple of 2bl.) Finally kill b1 by

a.
i
al,bl L — arbl—Zal.
Next, consider
6N6N l""SlY(ol"'10;1101"'10) = (clr" ' C ldll"'ldg)-
Because 6N---7 is symplectic, and maps (1,+-+0) to (1,++-,0), we
8§ ‘--? € F, we have

= 1l. Moreover, as N

must have dl
2|c1,---,cg, 4ld2,'°-,d . We choose more elementary transformations

§. until
i

TR VIS BRI UINE RS TR

fixes (1,°++,0) and (0,++-,0;1,-++,0).
= 2 by maps

Step VI: Kill c2,---,cg and make cl =
(cl,ci,dl,di) — (cltZQi,cii2d1,dl,di).

Step VII: Kill d2,-'-,dg by maps
(Cl’ci’dl'di) — (cl,ci,dli2ci,dit2cl)

and finally kill <y by
(cl,dl) > (cl—Zdl,dl).

The Proposition now follows by induction on g, because

(GM---?) preserves the direct sum decomposition
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29 _ e ee0;0,00 = =
oA = [z(l,o, ,0;0, ,0)] ® [(nl,n2)|(nl)l in); =0
+ Z (0, +++0;1,+--,0)

and is the identity on the first piece. On the 2nd piece, we have

an element of Sp(2g-2,%Z). QED
There are 2 useful ways to get generators of FZ:

Proposition A3: F2 is generated by either of the following:

A O
I 2B I0 _
) (0 I)’(2€ I)'(o tA'1>r vhere A = I_(mod 2)

b) the transformations

—> §+2A(§,€i)-'é 1<ic<2g

it

Xy XY

.-——>§+2A(},3i+€j) ('e'i+‘e’j), 1<ic<jc<2g

where giE qu are the unit vectors.

Proof: Both of these contain the generators of Al <in(b),
use the maps bl and b2 with 1 < i < j <gand g+l < i< 3j < 2¢g ),
hence generate a subgroup containing . On the other hand,

I'2/I‘4 is an abelian group, which may be described as

By Bo .
r, /T, = I2g + 2{(C0 Do)mod 2| B,,C, symmetric, Dy = - AO}

{Check this by examining the condition
A((I+2X)x, (I+2X)y) = A(x,y)

modulo 4). It suffices to check that the generators in (a) and (b)

generate FZ/?, i.e., contain elements
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0
*  1-2%a

I+2A *
( ) mod 4

0
for every gxg integral AO. In (a), take upper and lower triangular
A's with +1's on the diagonal. 1In (b), we put the maps b2 in matrix

form. Thus if i =1, j = g+1, it is

so that if j = g+i, we get diagonal Ao's. And if 1 =1, j = g+2, we

get
121 0
0 1
(N T R
-1
0 0 0 0
0 -2
0 o | o 1.
‘1
These give off-diagonals Ao's. QED
Proposition A 4. Fl 2 is generated by
!

S L O

all A € GL(g,%Z), symmetric integral B with even diagonal.
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Proof: It suffices by A 3 to prove that Pl 2/T2 is
generated by images of these elements. This means that we need only
show that an orthogonal map of (Z/ZZZ)Zg to (Z/ZE)Zg is composed

of maps:

a) Xl,"',ngyl,"',yg’———>Y1,"',Ygrxlr"',x

g
b) xi,xj,yi,yj — xi,xj+xi,yi+yj,yj other Xy oYy fixed
c) xi’xj’yi'yj '-“;Xilleyi"'ley:"'#xi
d) xilleyiry]- Hxi+lexj+yilinYj

This can be done exactly as in the proof of Al. Let Y be an

orthogonal map and say

e .o - LI ) = LR ) LR M '
y(1,0, ,0;0, ,0) (al, 'ag’bl' ,bg) (note: ai,bis are 0 or 1).

First, use map (a) to ensure that not all ai's are 0. Use maps (b)

to make only one a; equal to 1, and then to make in fact al =1,

a, =+--= ag = 0. Use map (c) to make b2 =ese = bg = 0. Then because
Q(1,0,+++,0;0,+++,0) = 0
we have Q(al,~--,ag,bl,---,bg) = 0 too, so in fact at this stage
bl must be zero too, i.e.,
5N§N_l...él?(l,0,...,0;0,...,0) = (1,0,¢+2,0;0,-++,0).

Next look at

8" ¥ (0, 50%,0;1,0,-%4,0) = (cr...,cg,dl,...,dg)_

Because its inner product with (1,++-,0;0,+--,0) is 1, dl = 1.

Use maps (b) to kill dz,"',dg and maps {(d) to kill 02,---,cg,
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while not moving (1,0,¢++,0;0,°+-,0). Then because

Q(cl,°'°,cg;d1,---,dg) = 0, we find ¢y = 0 too. Thus

fixes (1,++,0;0,+°+,0) and (0,+++,0;1,+++,0). As in Al, using

induction, this proves the result. QED

Finally:

Proposition AS. Sp(2g9,Z) is generated by
( 0 1) (A 0 ) (1 B)
-1 0/ Vo ta"Y, \o 1

all A € GL(g,Z) , B symmetric, integral.

Proof: We prove this exactly as we proved A4, except that at

the 2 points where we used the invariance of Q, we use instead maps

e) X.,Y.: fixed

| — . X, h
e a xl,yl x1 ’ other x

k' Yk

or £f) x..,vY. "

Y., Y.
irYy P ORXytY Yoo

derived from diagonal B's. QED
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§6. Riemann's Theta formula and theta functions associated to a

quadratic form.

We have described how the functions \9[2:](2,9) can be used

i) for fixed Q, 2z variable, to embed complex tori in IPN

ii) for z =0, variable, to embed J?Q/F, in IPN.

Since these maps are not surjective, there must be polynomial
identities between the various function549[::](z,9). With only
a few exceptions, all identities that I know of are deduced from
the theta identities of Riemann. These are generalizations of
the Riemann identity given in Ch. I for the one-variable case.
We will conclude this chapter by describing these.

We start with any rational orthogonal hxh matrix T.

Theorem 6.1. (Generalized Riemann theta identity):

D) TT\9( 2 t,.z,) =a¢ z exp bri tr (a2t A(2+B)) ] W&(z +o,48)

i=1 4e1 137 A,BEK
(z,a,B g%l column vectors, A = (al,...,ah), B = (Bl,---lﬂh) gxh
matrices, Z(g’h) = group of integral gxh matrices,

K =z 90 ip g (9 gy (9,h) , and a = [t %2l o izMzhyy.
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1 1 1 1
. . _ _1/1 1 -1 -1
The main example is: h = 4, T = 11 -1 1 -1/ so that
1 -1-1 1
r="% =71 - %l Note that
a.€ 3Z
TZ4= (a,,a,,a,,a,)| a.+ta.€ Z
1'72'73'74 i 73
al+a2+a3+a46 27
so that coset representatives for TZ4 N 224 in ’I‘Z4 are
(0,0,0,0) and (%,%,%,% ; the identity becomes

9 (x+y+u+v)ﬁ3<x+y;u—v> {}(x—y;u—v) & (x—y—u+v)

(R) 2 2 )
=279 {-—g 1?- 3 exp[4nita9a+2nita(x+y+u+v;wéa@mé)&(;;mmé&(umu+é)ly({mzme)
/4 =7
2 2
BE a€

z9 z9

The exponential factor simplifies if we use ¥ -functions

with characteristics:

h
h ) £y LY
L i’y h
(Rey) JIR e (‘Z tijzj) =
=Ly e, 6, 37T
54,713%
h
= rlzh: rlzPazP 79, g ] exptil'B: ﬂ& JLWi](z )
= : g prail s BIY R A

S‘L""'Bh a]_'.“'ah i=1
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We can derive this from (6.1) as follows:

It. ..
TT\9[ 3 3] (g 52,)
i Tt. .6,
i tljdj

.t i
17(Et, .y.) (2, .y )42 t..vs t..(z.+6., .
Iilexp(n (Ttg vy @00t vy 42 (5t ) (3t 4 (25+60) )

-t9(>:tij (z,+Qy;+65))

exp (ﬂi tr[tCQC+2tC(Z+D)])n\9’(Zt. (2, +Qy +8.))
i3 437737

t

because T+T = I; now apply the theorem to f&(Zti. (zj+9yj+6j));

$Hi3
~g
= } I 7 exp(ni tr[tcszc+2tC(z+D)1)ex;(nitx[%szA+ztA(zmc+D+B)]).
- A B

T;Tﬁ(zi+gyi+ai+9ai+ Bi)

-g
=1 ] I Jexp(ni tr (Y(a+c) a(a+c)+2% (a+c)(z+B+D)) exp Eritr@be BT ()
L B i

179 LERAE]
] 7 lexp(-2mi tr tC-B)ﬁ&[ :l(zi)
B i B;+6

i 71
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Thus in the main example

a+b+c+d a-b-c+d
& 2 (x+y+u+v) _,_{;[ 2 ](f—z—u+v)
etf+g+h 2 e-f-g+h 2
2 2
(%m)
a+ta d+a
279y exp (—2ﬂit8(a+b+c+d))~19[e+6 ](x) . -19[h+8] (v).

I
o p € 529/

This is the formula used in most applications.

Proof of the Theorem: Let Z = (;1,---,Eh) € E(g’h) be a complex

gxh matrix variable. Then

vt > . tr >
LHS = ) exp(ri §J "n.on, + 2mi § (Tn,-z.)t..
R .- .8 ez i+t iy v Y

1/

exp(ni tr(tNQN) + 27i tr(tN-Z-tT))
nez(9/m

= Z exp(ﬂi tr(t(NT)Q-NT) + 2wi tr(t(N'T)-Z)>
N € Z@%h)

exp(ni tr(*mom) + 21i tr(*uez)) .
M GZ(g’hLT
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D, exp(mi] G303 %3 GE)).

> Z > Z > >
BI'“’—éh Sy e Gy Tpeeany i i

mos = [ |7

. t+ > . t> > -+
exp(m. z n;@n; + 2mi E ni(zi+9ai+§i))

-g

? . t : t
= [ ] % g %exp(m E (3i+§i)9(3i+3i) + 27i E (Ki+§i)(gi+§i)>
i

i %
-9 : t : t
= exp(Ti tr i tr .
[ ] I 30 e ( tr (S (v+a) R (v+a) + 271 tr(E(N+R) (Z+B)))
B A NéEm 'Y

where A and B are summed over Z(g’h,)T/Zz(g’h.)Tn z(9:0) Collecting

the sum over A and N together, we get

-9 . t . t
= { ] ) exp(ﬂl tr (TMOM) +271i tr( M'Z)>-

)
z (90 g r.ie(z(g’h2T+zz(g'h))

B~ —————
29 B) 10 (g, B)

rexp[27i tr tM-B] .

Note that

B > exp[2Ti tr M-B]

is a character of M € Z(g’hzT + E(g’h) trivial on Z(g'hZT, and all

such characters occur for some B. Thus

Jexp(2ri trtMB) = 0
B
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unless tr(tM-B)E Z for all BE Z(g'h)T, i.e., unless M € z(g,h)T‘

If M € Z(g’th, all these characters are 1 and we get the order of

Z(g’hZT/Z(g’hzTn Z(g’h). Thus the sum reduces to:

exp(ni tr(tMQM) + 27i tr(tM-Z))
Mez (9D, ¢

LHS. QFD

The reader will notice that the proof of Riemann's theta
relation is much shorter than the statement and its rearrangement
into its various forms! In fact, as often happens in such a case,
if we generalize it even further, the proof will become really simple
and transparent. The natural setting to which these ideas lead us

is that of theta functions associated to quadratic forms. It is in

this setting that all the multiplicative properties of theta functions
are best studied. To start, suppose we decide to rewrite a product

of h theta functions as one series. What happens is this:

4 Wk h
I, .0 = ZJ exp( § (ni%h0f +2mi B..2.))
i=1 1 K1!“'!3}15!9 i=1 i e

In terms of

> >
N = (nl,---,nh) be the gxh matrix with columns n.
i

Z = (Z,,"+-,2

) -
1 149 Zi.
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This is

(z,,0 = Z

h
. g my ST tr (.M +2m1 tr(tvez))
i=1 €z (9

A natural generalization of this is:

(6.2) 9%z, = 2 ny ©xp (i tr(*n-q-N-Q)+27i tr(tn-2))
Nez (90

where Q 1is a positive definite rational hrh matrix and the variable

(g,h)

Z lies in & (g h complex matrices), and @ 1lies in {9 .

g
Q}Q may be reduced by the old J if we define a map

Q> Q8 Q

63—> }9 hg

where Q8Q is the ghxgh matrix given by

(99Q) i1 15 khee = Rie1,ke1@ygr O S ik <9 1 <dt<h.

If we rewrite 2 as a column:
vec(2)

iht = %i4l,5 0<i<g,lcich

then it is immediate that

9%z, 2 = §vec(n), as0).
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Under the same map, the theta functions with characteristics give us:

19(2[113\](2,52) = Z(\J exp(mi tr(Coua - (wa) -Q) + 2ni tr(t(mzx) (Z+B)))
&Z glh)

a,Be qf9:h),

Setting Z = 0, one may think of the functions

2 —> 994 (0,0)

as being a natural basis of the vector space of all functions

Q%1 (@) = £(N) -exp(mi tr(*NaNQ))

Ném(g:h)
£ EX((R(g,h)) .

Thus all our previous ideas generalize to this setting. In these

terms, we may generalize (6.1) as follows:

Theorem (6.3): The functions —QQ(le) satisfy:
0 oif o= @&y, then
Wz, = 9%, - 9% e,
vhere  Z = (2),2,).
ii) if Q' = 'T.g'T where Te @™, 0',0 both positive

definite hxh rational symmetric matrices

®9  9%@re =al D, explmi tr(tagagiata- (243))) -9 (2+ 23043, Q)

AEKl,B€K2
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where
Ky = z(g,h)_tTIQ(g,h).tT qz (g
K, = 290 o=l lg.h) -1, (g,h)
d = #K, .
. . g,Q T
In particular, if Q =Q' =1I,, (R } reduces to (R). The

h
proof is exactly the same as that of (6.1). A clearer way to

state (6.3), perhaps, is via the functions -SQ[f](Q). Note that
to prove (6.3) for all Z, it certainly suffices to prove it for

(g,h)

Z = QAQ+B, A,B € @ , hence (RT’Q) reduces to proving

corresponding identity
[] to-1 = [
(REr9) ST NGl DL eplezni e Brm Y2 g
ch B-T . B+B
A'€K, ,B'€K
1 2
for all A,B but with z = 0.
When 2 = 0, it is simply the explicit form , in terms of

standard bases of S(Q(g'h)) of the formula:

(r.:9) 9@ = $%En@

nat

where £f'(N) = f(N-tT) .

At this point, the proof reduces to the totally obvious calculation:

9Q[f](9)

t
£ (N) -exp ( "NQNQ)
Ngm (g,h)

t t-1 -1
£(N) rexp( N-Q*N-"T "Q'-T ™)
Ngm(g'h)

! (g py £ 5T) -exp (M-0-M.0")  where M = N-FT7t
MeQ 'z’

§9 (o).
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(6.3) has the important Corollary:

Corollary (6.4). i) For all Q and f£, ‘9Q[f](Q) is a modular

form in @ of weight h/2 and some level.

ii) For each Q
£ b—s 3910£]
is a map

wb: S(Q(g'h)) —— {v. sp. of modular forms of wt. h/2, any level}

called the Weil mapping associated to Q, and the image depends only

on isomorphism type of the rational quadratic form tx.Q.x in

h variables.

iii) Under multiplication of modular forms, if Q = (g' 8”’ then

Image(wQ) = Image(wQ,)-Inage(w W) .

Proof: (iii) is a restatement of (6.3.i), and the 222 half

of (ii) is a restatement of (R:;S). Now any Q can be diagonalized

l,f2 of modular forms of wt. n;,n, is a

modular form of wt. n;+n,. 5o (i) follows from the fact that

49[f](29) is a modular form of weight 1/2 for all ¢ > 1. QED

over {, and the product £ ,n

The 2 fundamental problems in the analysis of theta functions

as functions of { are the description of the image and kernel of

wQ. For example, one might ask whether
Ker(wQ) = gpan of the differences f-f',
where £'(N) = £(N.%7),

T € orthogonal gp. for Q over @
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so that (RTn.éS) gives the full kernel? I don't know if this is true
or not. Also, one might ask whether Im(wQ) (or Im(wI )) contains
n

all “cusp" forms if h is bigger than some simple function of g.

As functions of ? for fixed Q, however, we saw in §1 how to
produce from 9 bases for the vector spaces Rg of quasi-periodic
functions in 2 of each weight., With Riemann's theta relation, we
can go further and work out explicitly the multiplication table of
the ring z Rg in terms of these bases. To do this, we apply
(9 with

h=2

0 = m+n, o]
Q m n{n;+n,)

r_ (M O
Q_(Oln)

T = ; (nl ;‘2)
(n1+n2) 1 -

(RE;}Q) works out to part (i) of the following Proposition:

Proposition (6.4) i) For all ny,n, > 1,

2

a/n
9[ ](zl Q) -9[ }(zz,nZQ) =
n,3+§+6
nyHn, (z +z_, (n +n, 1),
aez9/ (nl+n2)Z§ 0 2

nmza"’nza-nlb Jin.z,-n.z.,nn, (n,+n XD -
19{ Ty (matng) | 21172 172017

0

ii) For all n >1, let

fé»n) (z) = -\9 [aén] {nz,n)

be the basis of Rg of §1. Then:
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n,n,dtn,a-n,b
fgm),fé,nz) = Z ,9[“1112 ny+n;)
a

(ny+n,)
(0,n,n,(n,+n_ X -f >24
39/ (n +n,)29 0 ] 12r12

ny +a+b
Proof: (ii) follows from (i) by setting zy = ny2, 2z, = n,2z.

These identities in the case nl]n2 have been applied by
Koizumi (Math. Annalen,2%l, 1979, pi2l). However the case which has

been applied most is when n; =n,. In this case, using the simple

identity
&+d >
= a
(6.5) N Z —9[ n ] (nz, nZQ) = 9[ ] Z,9
e€x9/nz9 0 0

(6.4.1i) reduces to the very simple classical:

3/n

3[ ](z ,n.Q)-9 ] (z,,nQ) =
(.6 I 3,30
7% %n [2* ™=
9[ ](zl+z2, 2n§2).\91 ](zl—zz, 2nQ) .
aez/z9 0 L o
We give 2 applications of this. In the first, we assume

n is even and n > 2 and, following §1, embed the torus Cl:g/LQ

into ZEN_l, N = nY, by:

(-, I 1@ 00, %29/n29 *

Then (6.6) gives us a simple set of quadratic equations in IPN-l

which vanish on the image. Let n = 2m. Substitute 3+mé for 3,
B-mé for B in (6.6), multiply by exp(ﬂitg.?) and sum over

>

e ezg/zzg. This gives:
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> > >
a, b_e
N Z exp(m.e'f)9 n j(zl,nﬂ) 9[“ 2 (z,,nQ)
ecxd/zm9 0
3 ) d a-b
[ Z exp(m.ta' ?)9[7 Zn] (z1 z2,2nn)] [ Z- exp(m d. f}ﬂ[ ](21-72 Zn.Q)]
dezTy 29 dex8/zm9
Setting 2, = 2z, = nz, and writing
>
(n) (z) = \9 [a/n](nz,nn) , <—5,t’> = exp(nitg-—f‘.)
o
we find the identities
A, Z @5 £z 10 c(2)
e€z9/229
= Ay 2 <3,f>-fér+‘1)n—e>(z)-fé:)ng(2)
«29/229
whenever
2+b = &+d mod nz9
t e z9/229
where the constants are given by:
Ay = <&,%>- f—> -»(0)
1 Zez9/229
(2n)
A, = ; <e £s. f—»—» »(Q)
2 3czY/9 ne
This means that if the homogeneous coordinates in IPN—l are
labelled X—a>, :'-; € Zg/nzg, then the tori (Eg/LQ in ]PN_]' satisfies
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-> -+
(6.7) ‘12 <e,?> X2 ime XBamd = )\22 <e,f> LS 25 5 il

for all a+b _.3+3, £ € ig/zzg-(xl,xz as above). In fact, it is
proven in Mumford, Inv. Math., vol. 1, 1966, pp. 341-349, that these

quadratic equations are a complete set of equations for the image

of the torus.”

As a second application, in (6.6) take n = 2k, z2, =2, = 2kz
and consider the bases
2%) 3/2k] .k, .k
£42) (z) =9 [a/ ] 2Kz, 2Kq)
a Lo
of R(Q) . In terms of these bases, we get a very simple and
2k Y
beautiful multiplication table
k. k k+1 k+1
(6.8) £ .62 - ) 2 .62 o).

& dad/2 9 ©
=
92

This implies the identity

X k 2k+]. k+1
2 29 (2 2
(6.9.2) #2200 .20 = ] £ (©) -£ ©
a b c,§§zg/zﬁ+¥zg c é
23
c-a=b

k >,k
on the modular forms féz )(O) = \9 [aéZ ](O,ZkQ). In fact,

any solution of these identities plus the further identities:

k k+2
2% ) _ 2¥*2)
(6.9.b) #4277 (0) = §ezgz/zk+2zg 52 o
B=23 moa 2K*1z9

(a special case of (6.5))

*More precisely, the ideal they generate equals the full ideal of G:g/L
in sufficiently large degrees.
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k K
X L 29
(6.90) £0 = 50

comes from some £ or a "limit" of Q's. This is proven in

Mumford, Inv. Math., §JI9S7, §!0ul| , where a complete

k
description of the "limiting" values of the f£2 )(O) is also

given. In terms of inverse limits, as in Ch. I, §17, we can

restate the result as:

. certain ~
(l%.rg (wrzk Y cusps -

(6.10)
Proj F"':XL,K""']all Kol identi%%gi 6.9.a,6.9.b,6.9.c\
2ex9/Xa9 with £3° '(0) replaced |

by ¥,

k
There is another interpretation of the "data" {fé2 )(O)} and

the identities 6.9.a,6.9.b,6.9.c which is gquite beautiful.

that + .2k
2k a/2
427 0) «9[ 2kg)

L}

0.2
[¢)

2k

)
Keekzg+a

while
2k+1

féz ) (o) = exp(ri TR-20-8%) .

->

)
gt

2

Equivalently, we may define 2 measures u,v On Qg by:

> ) exp (i B.q-d)

Note
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e
w@ = ) exp(mi thea-m)
nEUmZéJg

(6.11)

v (V) exp(ni Sh-20-%)

)
DEUNE [%]‘-’I

for all open sets U c mg. Then

+ 2k
g, a, . 2°7)
u(zkzz + z—k) = fé (0)
+ 2k+1
g a - 2 )
\)(2)‘22 + 2k—+'l_ f-a£ (0).

6.9.b is subsumed under the fact that uw and v are measures, and

6.9.c says they are even measures:

p(-t) = u(U); v{-U) = v(U).

A little calculation will show that 6.9.a says that u and v

are linked as follows:
let £ : @2 x@9 — > @ x@? be
(6.12) 2 "2 2 72
E(X,¥) = (X+y, %-¥).
Then
Exluxu) = wxv,

Thus (6.10) can be restated as:

r —_—

by o] =

cusps

(6.13)

{ pairs u,v of even measures on mg };
saitsfying 6.12 mod scalars

(See Mumford,hv.ﬂﬂtél) p.i16 ).
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§7. Theta functions with harmonic coefficients.

Starting with the functional equation for -9(5,9), we have seen
in §5 that we can define a large space of modular forms of weight 1/2
by
Y1) = Y f@exp(rie®-0-f), fexad).

The functions \9[f] (29) are all linear combinations with elementary
exponential factors of the functions

Sed+8, 00y, 3,6 € o
obtained by restricting Z toa point of finite order mod LQ. We

ask: are there other ways of getting modular forms from Q(Z,Q)?

In fact, another way is by differentiating 9 with respect to z

and then setting z = 0, or more generally zZ = 0a+b. To illustrate

this, look again at the one-variable case:

zZ

2912z,
@ b =0 n €z

£} . 2 .
= exp(mi(mta) “1t + 27i(n+a) (z+b)
L % ( )! -

2rie §  neexp(min®t+2minb)
n €Z+a

]

If we differentiate the functional equation

nixzz

-9[21(7;2;5, %—T——T:g) = LoVYTHS - YT -9@](2,1)

(where (gg) € SL(2,%) is in a small enough congruence subgroup), with

respect to z, and set z = 0, we see that
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291]] afI)
b at+B, _ 3/2 . b
= O s T cATE) %

(o,1),

i.e., QSI;]/ 2 is a modular form of weight 3/2. But if we
differentiate the functional equation twice, we see, for instance,

that

3%912] R 5 )
———(0,7) = 4w ]} n“exp(rin“t+2minb)
3z n €Z+a

is not a modular form. But persevere! A longer calculation will

show you that

34 2 a 2ra’
33121 3912 392 12,1

1 b a' b . b'

3 T(O,T) cFR 10,1 - ———(0,1) ——az—z—-(o,r)

is again a modular form, now of weight 4. The point is that the

2
functional eguation introduces a factor e)‘z and we need to form

combinations of the z-derivatives at z = 0 which are invariant under
. . 9 rz? . .
substitutions (z) & e -Hz). Written out, this last

modular form is

c.2, 2 .
(2ni)4- z P(n,m)e.n’l(n H©) T . eZﬂ:u:b b
n€Z+a
meEZ+a'

. 2,42
or (in terms of theta series for the quadratic form X“4Y7):
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where

Note that P is a spherical harmonic polynomial. For several
variables, the situation is of course more complicated, as we
have g partials a/Bzi. In fact, the natural thing to expect to

find are vector-valued modular forms.
Here is what happens:

Definition (7.1): Let T: GL(g,E) —— GL(N,C) be an N-dimensional

polynomial representation of GL({g,f) or a 2-valued representation

given by Tt(a) = TO(A)°/det A where Ty is a polynomial
representation. Then an N-tuple ¥ = (fl,-~-,fN) of holomorphic

functions of O is called a vector-valued modular form of level

I, type 1 if

-1, n
£, ((AQ+B) (CQ+D) 7) = ] T(CQ+D)ijfj(Q)

j=1

. A B
for all 1 < i < n, (C D)E T.

Definition (7.2): Let X € m(g'h) be a matrix variable. A

polynomial P(X) is called pluri-harmonic if

P

1 Eix sy -

It~
i
(=)
(=]

A

-
(]

A
«Q
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We shall denote by IHZ the vector space of all pluri-harmonic

polynomials P which are homogeneous of degree £ . Note that if
P(X) is pluri-harmonic, P'(X) = P(A-X-B) is also pluri-harmonic
for all A € GL(g,C), B € O(h,C). Thus GL(g,C) xO(h,C) acts
on Bil.

Definition (7.3): For all

P € H{Q, Q ratiocnal pos. def. hxh symmetric, f € S(Q‘g’h)),

let

P91 = 3 @ EW P (N/D) -exp(ri tx('N-Q-N-Q)).
NEQ 7’

The main result is this:

Theorem 7.4: Let vV c IHl be a subspace invariant under

GL(g,C), let {gl} be a basis of V and let GL(g,C) act on V

via the representation T:

P (A-X) = gTaB(A)'PB(X)'

P _,Q
Then for all Q,f, the sequence of functions {9’“ [f]} is a
/2

vector-valued modular form of type t@deth and suitable T .

A word about the history of this result: Hecke, Maass and
others have investigated various types of theta series with
harmonic coefficients and proved this Theorem in many cases.
Kashiwara-Vergne (Inv. Math., 44 (1978)) worked out very

completely these results from a representation-theoretic point
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of view and also decomposed IHI as a representation of
GL(g,C)*0(h,C). Theorem (7.4) in its full generality was proven
independently by Freitag (Math. Annalen, 254 (1980), pp. 27-51)
and T. 0da (Theta series of definite quad. forms, to appear).
The approach that we use is based on the ideas of Barsotti
(Considerazioni sulle funzioni theta, Symp. Math., 3 (1970),

P. 247) analyzing theta functions from an algebro-geometric
point of view. We will describe both Kashiwara-Vergne's results
and Barsotti's in more detail in Ch., IV and consider only the

purely classical~analytic results in this Chapter.

The theorem could be proven using generators for and

N,2
allowing a transformation on Q,f, following the ideas of §5.
However we can also, following Barsotti, draw a proof directly
out of the ideas of the examples above, i.e., by differentiating
the functional equation for {90(2,9) with respect to Z. To do
this we need first to see clearly why pluri-harmonic polynomials
come in.

Put an inner product on the polynomial ring &l--*,2..,---1,

13
1 <i<g,1<3<h, by

<P,Q> = (P("',E/azij,--')Q)(O)-

Note that 2 monomials Za,zB are perpendicular if o # B and

o B8

<2~,2°> is a positive integer, hence (,} is positive definite

Hermitian. Let
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N = {ideal in ¢["‘,Zij,"'] generated by}
h
Wiy o= kzlzikzjk .

Then we have:

e

Proposition 7.5. i) E[---,Zij,---] Hep and IH,J are

perpendicular with respect to the above inner product,

ii) Let ©® = ring of analytic functions on

clam

near 0, and for all P € E[---,Zij---], define

§ : O

c
P >

by 6, (£) = (P(-+, ¥22;5,*)E)(0).

Then P is pluri-harmonic iff

trtZ-C-z
e

(7.6) 6p(f) = ép( .f), all symmetric hxhC.

Proof: To prove (i), note that

52
PEMW P =0
] K azikazJk
(8 32
((R\az..) o Y )P)(O) =0, all R
ij ik ik
= (R(aza YP) (0) = 0, all R eV
ij

<==> P €71€
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To prove (ii), note that it suffices to take f to be a polynomial
because SP(f) depends only on £ eo/mN, some N, and polynomials
map onto m/aN. Moreover, we are asking invariance w.r.t. a
grup so

8 has invariance (7.6) =25 (e

acpq P

tr'z-c-z,

f)| =0, all £,p,q

c=0

h
P
— P( ) ( y 2.2 -f)(o) =0, all f,p,q
Zi5 =1 PR
— P(za )£ (0) =0, all £ €N
ij

<> PE€ nl

&> PeH. QFED

Corollary (7.7): If P is pluri-harmonic and Q is a real positive

definite hxh symmetric matrix, then P*(X) = P(X./Q) satisfies

t -1
Spu (£) = 8y, (57 2°C 20 gy aliC,

-1
Proof: Substitute 2z = W&  in (7.6).
To prove the Theorem, note first that the span of the 9P'Q[f]'s for

fixed Q, depends only on the rational equivalence class of Q because

&P':Q'[f-] - 989

-1
if o' = taoca, £ra0) = £(n.FA), PU(x) = P(X(¥BT .%A-V0)).
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-1
Here A € GL(h,Q) (and note that vQ' -tA-/ﬁ is orthogonal so
that P' 1is again pluri-harmonic). Therefore we can assume

= = “ee g
Qij ziaij and we may also assume f fla efh, fi € S(@°).

Then

P ,0 h
.\h o * ] -
er)™§ 1@ = [Pl ,-~-)(_[_T~9[f.](z.,SL.Q))]
[ o "oz S

* -
where Pa(x) = P, (X Q) ., z; = (zli,---,zgi). On the other hand,

the functional equation for Riemann's theta function tells us that

t -1.»> -1 _
TT91g, (" comy ™2, ¢, (anes) (c+D) ™h) =

h
W2 g% ot -1, -1 >
[ +det (c+D)1™ “exp(ri i-2=l Z;- cD) Loz, 07 | l~l9'[fi](zi,ﬁiﬂ)

for (2 g) in a suitable T. Apply g;(--,a/ﬁzij,~') to this

identity and set Zi = 0, all i, By (7.7) the LHS gives us

(+det (ca+D)) /2. (BX (- 52—, - [T 15, (*zi,zicz))\
ij 2=0

while the RHS gives us

1 3

* .. '.l >
o (Pg { "Tgs’ )TTQ[fiJ (zi,zim)}Z:o

y T((ca+p) ™)

pP,.Q
Combining these, we get the function equation for (9 %71y
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At this point, we have produced a great quantity of new
modular forms, even new scalar modular forms. The most important
outstanding problem is to find identities among them. The only
non-trivial example is Jacobi's identity (Ch. I, §13) for g = 1,
and its generalizations to higher g (Fay, Nachr. der Akad. Gottingen,
1979, N s ; Igusa, On Jacobi's derivative formula, to appear).
Even for g = 1, there must be many further identities (e.g.,
because many modular forms can be represented as theta series in
many ways with different P,Q's: c¢f. Waldspurger, Inv. Math.,

50 (1978), p. 135). 1Is there a systematic way of deriving these
from Riemann's theta formula?

In another direction, one of the most interesting applications
of these vector-valued theta modular forms is to construct
holomorphic differential forms on the Siegel modular variety

je%g/Sp(Zg,Z) (more precisely, on a smooth compactified version
of it). This idea is due to Freitag (Math. Ann. 216 (1975), p. 155;
Crelle 296 (1977), p. 162) and has been developed by Anderson
(Princeton Ph.D. thesis, 1981) and Stillman (Harvard Ph.D. thesis,

1983). We refer the reader to their papers for more details.



