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Abstract. Congruences for Fourier coefficients of integer weight modular forms have been
the focal point of a number of investigations. In this note we shall exhibit congruences for

Fourier coefficients of a slightly different type. Let f(z) =
P∞

n=0 a(n)qn be a holomorphic

half integer weight modular form with integer coefficients. If ` is prime, then we shall be
interested in congruences of the form

a(`N) ≡ 0 mod `

where N is any quadratic residue (resp. non-residue) modulo `. For every prime ` > 3

we exhibit a natural holomorphic weight `
2

+ 1 modular form whose coefficients satisfy the

congruence a(`N) ≡ 0 mod ` for every N satisfying
`−N

`

´
= 1. This is proved by using

the fact that the Fourier coefficients of these forms are essentially the special values of

real Dirichlet L−series evaluated at s = 1−`
2

which are expressed as generalized Bernoulli

numbers whose numerators we show are multiples of `. ¿From the works of Carlitz and
Leopoldt, one can deduce that the Fourier coefficients of these forms are almost always

a multiple of the denominator of a suitable Bernoulli number. Using these examples as

a template, we establish sufficient conditions for which the Fourier coefficients of a half
integer weight modular form are almost always divisible by a given positive integer M. We

also present two examples of half-integer weight forms, whose coefficients are determined by
the special values at the center of the critical strip for the quadratic twists of two modular

L−functions, possess such congruence properties. These congruences are related to the

non-triviality of the `−primary parts of Shafarevich-Tate groups of certain infinite families
of quadratic twists of modular elliptic curves with conductors 11 and 14.

1. Congruences for Fourier coefficients

First we shall fix the following notation. If D ≡ 0, 1 mod 4 is the fundamental
discriminant of the quadratic field Q(

√
D), then let χD denote the Kronecker character
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with conductor |D|. It turns out that χD, in terms of Jacobi symbols, is given by:

(0) χD(n) :=



(
n
|D|
)

if D ≡ 1 mod 4(−1
n

)(
n
|D|
)

if D = 4D1, D1 ≡ 3 mod 4(
2
n

)
χD1(n) if D = 2D1, D1 ≡ 1 mod 4(

2
n

)
χ4D1(n) if D = 2D1, D1 ≡ 3 mod 4.

Here
(
−1
n

)
:= (−1)

n−1
2 if n is odd and is zero otherwise, and

(
2
n

)
:= (−1)

n2−1
8 if n is

odd and is zero otherwise. By χ0 we shall mean the identity character.
If χ is a Dirichlet character modulo N and k is a positive integer or k ∈ Z≥0 + 1

2 ,
then let Mk(N,χ) (resp. Sk(N,χ)) denote the finite dimensional complex vector space
of holomorphic modular forms (resp. cusp forms) with respect to Γ0(N). Similarly let
Mk(N) (resp. Sk(N)) denote the space of holomorphic modular forms (resp. cusp forms)
with respect to Γ1(N). If f(z) is such a modular form, then it has a Fourier expansion
in q := e2πiz of the form

f(z) =
∞∑

n=0

a(n)qn.

For more on the theory of modular forms see [ ].
The congruence properties of Fourier coefficients have been investigated by a number

of authors (see [ ]). For example, if ∆(z) =
∑∞

n=1 τ(n)qn is the unique normalized cusp
form of weight 12 with respect to SL2(Z), then it is well known that

τ(n) ≡ σ11(n) mod 691

and

(1) τ(n) ≡ 0 mod 23 if
(

n

23

)
= −1

where σ11(n) :=
∑

0<d|n d11. These congruences are explained by the theory of modular
`−adic Galois representations as developed by Deligne, Serre, and Swinnerton Dyer.

Still there are other examples of congruences for Fourier coefficients which have been
the focus of some attention. For example, if p(n) denotes the number of partitions of n,
then it is well known that

p(5n + 4) ≡ 0 mod 5,

(2) p(7n + 5) ≡ 0 mod 7,

and
p(11n + 6) ≡ 0 mod 11

for every non-negative integer n. These congruences may be viewed as consequences of
the action of certain Hecke operators. Here we illustrate this fact for (2). To see this
we construct a holomorphic integer weight modular form whose coefficients inherit these
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congruence properties. Recall that Euler’s generating function for p(n) is given by the
infinite product

∞∏
n=1

1
1− qn

.

Also recall that η(z) := q
1
24
∏∞

n=1(1− qn), the Dedekind eta-function, is a weight 1
2 cusp

form. If we define F7(z) and a(n) by

F7(z) =
η7(7z)
η(z)

= q2
∞∏

n=1

(1− q7n)7

(1− qn)
=

∞∑
n=2

a(n)qn,

then (1) holds if and only if
a(7n) ≡ 0 mod 7

for every positive integer n. However F7(z) is a holomorphic modular form in M3(7, χ−7)
and may be rewritten as

F7(z) =
1
8
E3(z)− 1

8
η3(z)η3(7z)

where E3(z) =
∑∞

n=1 σ3,χ−7(n)qn and σ3,χ−7(n) =
∑

0<d|n χ−7(d)n2

d2 .

It is easy to verify that

F7(z) | T7 =
∞∑

n=1

a(7n)qn =
49
8

E3(z) +
7
8
η3(z)η3(7z);

this implies that a(7n) ≡ 0 mod 7 for all n which implies (2).
However there are other congruences that the partition function satisfies. For example

it is known that

p(49n + 19) ≡ p(49n + 33) ≡ p(49n + 40) ≡ 0 mod 49

for every non-negative integer n (see [ ]). In a more convenient form, p(49n+7δ− 2) ≡ 0
mod 49 for all n if δ is a quadratic non-residue modulo 7. Following an argument similar
to the one above, this means that the Fourier coefficients of the holomorphic integer
weight modular form

η49(49z)
η(z)

= q100
∞∏

n=1

(1− q49n)49

1− qn
=

∞∑
n=0

a(n)qn

satisfies the congruence
a(49n + 7δ) ≡ 0 mod 49

for all n where δ is a quadratic non-residue modulo 7.
We shall be interested in the arithmetic implications of other congruences of this type.
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Definition. Let F (n) be an integer valued arithmetic function, M a positive integer,
and ` a prime. If

F (`N) ≡ 0 mod M

for every positive integer N that is a quadratic residue (resp. non-residue) modulo `,
then we say that F has a quadratic congruence modulo M of type (`,+1) (resp. (`,−1)).

Therefore if F (n) = p(n − 2), then F has a quadratic congruence modulo 49 of type
(7,−1). Moreover by (1) we see that the Fourier coefficients of ∆(23z) satisfy the qua-
dratic congruence modulo 23 of type (23,−1).

In the following proposition we will give an explicit criterion for determining the truth
of certain congruences of this type that will be used in the sequel.

Proposition 1. Let f(z) =
∑∞

n=0 a(n)qn ∈ Mk(N,χ0) be a holomorphic integer weight
modular form with rational integer coefficients. If ` is a prime dividing N , then the
coefficients possess a quadratic congruence of type (`,+1) (resp. (`,−1)) if and only if

a(`n) ≡ 0 mod `

for every positive integer n ≤ C satisfying
(
n
`

)
= 1 (resp.

(
n
`

)
= −1) where

(3) C :=
kN`3

12

∏
p|N

(
1 +

1
p

)
.

Proof. In [ ], Sturm proves that if f(z) =
∑∞

n=0 a(n)qn, and g(z) =
∑∞

n=0 b(n)qn ∈
Mk(N,χ0) have algebraic integer Fourier coefficients, then f(z) ≡ g(z) mod M if a(n) ≡
b(n) for every n ≤ kN

12

∏
p|N (1 + 1

p ).
Define f1(z) and f2(z) by

f1(z) := f(z)|T` ≡
∞∑

n=0

a(`n)qn mod `

and

f2(z) := f(z)|T`2 ≡
∞∑

n=0

a(`2n)qn mod `.

Since the Hecke operators preserve spaces of modular forms, we find that f1(z), f2(z) ∈
Mk (N,χ0) . If f3(z) = f2(`z) ∈ Mk (N`, χ0) , then f4(z) := f1(z)− f3(z) ∈ Mk (N`, χ0)
and

f4(z) ≡
∞∑

n = 0
(n, `) = 1

a(`n)qn mod `.

Now let f5(z) denote the modular form that is the quadratic twist of f4(z) by
(
n
`

)
;

therefore we find that

f5(z) ≡
∞∑

n = 0
(n, `) = 1

(
n

`

)
a(`n)qn mod `.
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By [ ] it turns out that f5(z) ∈ Mk

(
N`3, χ0

)
. Therefore if we define the modular forms

f+(z) and f−(z) by

f+(z) :=
1
2

(f4(z) + f5(z))

and
f−(z) :=

1
2

(f4(z)− f5(z)) ,

then we will find that f+(z) ≡ 0 mod ` (resp. f−(z) ≡ 0 mod `) if and only if the
Fourier coefficients of f(z) satisfy a quadratic congruence modulo ` of type (`,+1) (resp.
(`,−1)).

The claim then follows from Sturm’s theorem if we let g(z) = 0. �

2. Special values of L(s, χD)

In this section we present a number of examples of such congruences which involve
special values of real Dirichlet L−functions at negative integers.

If χ is a Dirichlet character with conductor f and n is any positive integer, then it

is well known that L(1 − n, χ) = −Bn,χ

n
where Bn,χ is the nth generalized Bernoulli

number with character χ defined by

f∑
a=1

χ(a)teat

eft − 1
=

∞∑
n=0

Bn,χ
tn

n!
.

The properties of these numbers are important in the construction of p−adic L-functions
(see [ ]). These numbers also occur in congruences involving the special values of
L−functions of elliptic curves with complex multiplication and also the class numbers of
real quadratic fields (see [ ]).

In [ ] H. Cohen explicitly constructed holomorphic modular forms of half integer weight
whose Fourier coefficients are explicit expressions involving the special values at negative
integers of Dirichlet L−functions of quadratic characters.

Fix a positive integer r. If N is a positive integer and Dn2 = (−1)rN where D is the
fundamental discriminant of a quadratic number field, then define H(r, N) by

(4) H(r, N) := L(1− r, χD)
∑
d|n

µ(d)χD(d)dr−1σ2r−1

(n

d

)
.

If N = 0, then let H(r, 0) := ζ(1 − 2r); otherwise let H(r, N) := 0. In particular, if
D = (−1)rN is the discriminant of a quadratic field, then

(5) H(r, N) = L(1− r, χD) = −Br,χD

r
.

If r ≥ 2 and Fr(z) :=
∑∞

n=0 H(r, N)qn, then Fr(z) ∈ Mr+ 1
2
(4, χ0) (see [Th. 3.1,

Cohen]). We shall show that lots of these modular forms have the desired congruence
properties. First we need the following little lemma:
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Lemma 1. Let p > 3 be a prime and suppose that D is a fundamental discriminant of
Q(
√

D) of the form D = (−1)
p+1
2 pN where N is a positive integer satisfying

(−N
p

)
= 1.

Then
|D|∑
a=1

χD(a)a
p+1
2 ≡ 0 mod p|D|.

Proof of Lemma 1. ¿From (0) and the law of quadratic reciprocity, we may factor χD(n)
as

χD(n) =
(

n

p

)
χ(n)

where χ is a non-trivial real character satisfying χ(p) =
(−N

p

)
. Therefore the sum, which

we denote T , may be rewritten as

T :=
|D|∑
a=1

χD(a)a
p+1
2 =

pN∑
a=1

(
a

p

)
χ(a)a

p+1
2 .

We first show that T ≡ 0 mod N, a fact which does not depend on the condition
that

(−N
p

)
= 1. We split T into residue classes modulo N , and by the Binomial Theorem

deduce that

T =
p−1∑
b=0

N∑
r=1

(
bN + r

p

)
χ(r)(bN + r)

p+1
2 ≡

≡
N∑

r=1

χ(r)r
p+1
2

p−1∑
b=0

(
bN + r

p

)
mod N.

Since
(
n
p

)
is a non-trivial Dirichlet character with conductor p and since gcd(N, p) = 1,

we find that
p−1∑
b=0

(
bN + r

p

)
=

p−1∑
d=0

(
d

p

)
= 0.

Therefore it is easy to see that T ≡ 0 mod N. Using the same argument, it is also easy
to deduce that T ≡ 0 mod p. However to complete the proof we need to establish that
T ≡ 0 mod p2 since p||D|.

To establish this claim, we split the sum T into residue classes modulo p and from the
Binomial Theorem we find that

T =
N−1∑
c=0

p∑
s=1

(
cp + s

p

)
χ(cp + s)(cp + s)

p+1
2 ≡

≡
N−1∑
c=0

p∑
s=1

(
s

p

)
χ(cp + s)

(
s

p+1
2 +

p + 1
2

· cps
p−1
2

)
mod p2.
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Since χ(n) is a non-trivial Dirichlet character with conductor N, and gcd(N, p) = 1,
we find that for every integer s

(6)
N−1∑
c=0

χ(cp + s) =
N−1∑
d=0

χ(D) = 0.

Therefore we find that

2T ≡ 2
p∑

s=1

(
s

p

)
s

p+1
2

N−1∑
c=0

χ(cp + s) +
N−1∑
c=0

N−1∑
s=1

(
s

p

)
χ(cp + s)(p + 1)cps

p−1
2 mod p2

≡ (p + 1)
N−1∑
c=0

p∑
s=1

(
s

p

)
χ(cp + s)cps

p−1
2 mod p2.

Since
(

s

p

)
s

p−1
2 ≡ 1 mod p, for every integer s 6≡ 0 mod p then

2T ≡ (p + 1)
N−1∑
c=0

p−1∑
s=1

χ(cp + s)cp mod p2.

Finally we show that

S :=
N−1∑
c=0

p−1∑
s=1

χ(cp + s)c = (1− χ(p))
N∑

b=1

χ(b)b.

This implies that 2T ≡ S ≡ 0 mod p2 since χ(p) =
(−N

p

)
= 1 which would complete the

proof.
Note that this identity holds for arbitrary Dirichlet characters. By (6) we have

S =
1
p

N−1∑
c=0

p−1∑
s=1

χ(cp + s)cp +
1
p

p−1∑
s=1

s

N−1∑
c=0

χ(cp + s) =

=
1
p

N−1∑
c=0

p−1∑
s=1

χ(cp + s)(cp + s) =

=
1
p

N−1∑
c=0

p∑
s=1

χ(cp + s)(cp + s)− 1
p

N−1∑
c=0

χ(cp + p)(cp + p)

=
1
p

pN∑
a=1

χ(a)a− χ(p)
N∑

r=1

χ(r)r.

We split the first sum again into residue classes modulo N and obtain

1
p

pN∑
a=1

χ(a)a =
1
p

p−1∑
b=0

N∑
r=1

χ(r) (bN + r) =

=
1
p

p−1∑
b=0

N∑
r=1

χ(r)r =
N∑

r=1

χ(r)r.
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Therefore we find that 2T ≡ S = 0 mod p2; this completes the proof.

�
Although the congruence properties of the denominator of ordinary and generalized
Bernoulli numbers are well known by the Von Staudt-Clausen type theorems (see [ and
Carlitz]), the nature of the prime divisors of the numerators seems to be quite elusive
although some results in this direction are known. In the next Lemma we present cir-
cumstances for which a given prime p > 3 must divide the numerator of the generalized
Bernoulli number B p+1

2 ,χD
.

Theorem 1. If p > 3 is prime and D is a fundamental discriminant of Q(
√

D) of the
form D = (−1)

p+1
2 pN where N is a positive integer satisfying

(−N
p

)
= 1, then

B p+1
2 ,χD

≡ 0 mod p.

Moreover the special value L( 1−p
2 , χD) ≡ 0 mod p.

Proof Theorem 1. It is well known that

B p+1
2 ,χD

= |D|
p−1
2

|D|∑
a=1

χD(a)B p+1
2

(
a

|D|

)
where B p+1

2
(x) is the p+1

2

st
Bernoulli polynomial defined by

B p+1
2

(x) =

p+1
2∑

i=0

(
p+1
2
i

)
Bix

p+1
2 −i.

Therefore one finds that

B p+1
2 ,χD

=
|D|∑
a=1

χD(a)

p+1
2∑

i=0

(
p+1
2
i

)
Bi|D|i−1a

p+1
2 −i.

Since p > 3 and i ≤ p+1
2 , by Von Staudt-Clausen it follows that all of the Bi in the

above sum are p−integral (i.e. denominators are prime to p). Therefore since |D| ≡ 0
mod p we find that

B p+1
2 ,χD

≡
|D|∑
a=1

χD(a)
(

B0|D|−1a
p+1
2 +

p + 1
2

· a
p−1
2 B1

)
mod p.

This reduces to

B p+1
2 ,χD

≡ B0|D|−1

|D|∑
a=1

χD(a)a
p+1
2 +

p + 1
2

·B1

|D|∑
a=1

χD(a)
(

a

p

)
mod p.

Since χD(n)
(
n
p

)
is a character modulo |D|, the second sum is identically zero and hence

we find that

B p+1
2 ,χD

≡ |D|−1B0

|D|∑
a=1

χD(a)a
p+1
2 mod p.

The result now follows as a consequence of (5) and Lemma 1.

�
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Corollary 1. Let ` > 3 be prime. Then the Fourier coefficients H( `+1
2 , n) of the weight

`
2 + 1 modular form F `+1

2
(z) satisfy a quadratic congruence modulo ` of type (`,

(−1
`

)
).

Proof Corollary 1. By (5) and Lemma 2 we see that if D if a fundamental discriminant
of the form D = (−1)

`+1
2 `N where N is a positive integer satisfying

(−N
`

)
= 1, then

H

(
` + 1

2
, `N

)
= −

2B `+1
2 ,χD

` + 1
≡ 0 mod `.

Then by (4) it is easy to deduce that for every integer n that

H

(
` + 1

2
, `Nn2

)
≡ 0 mod `.

Therefore it follows that

H

(
` + 1

2
,M

)
≡ 0 mod `

for every positive integer M = `m where
(
−m

`

)
= 1. However this is precisely the

condition that
(

m

`

)
=
(
−1
`

)
. Therefore the modular form F `+1

2
(z) satisfies a quadratic

congruence modulo ` of type (`,
(−1

`

)
).

�
There are various other congruences for H(r, N) which are not of this type which are

also of interest. To illustrate this we now prove the following theorem.

Theorem 2. For every positive integer N ≡ 1 mod 5 the function H(5, N) satisfies the
congruence

H(5, N) ≡ 0 mod 5

for every positive integer N ≡ 1 mod 5.

Proof. Let f1(z) := F5(z)Θ(5z) ∈ M6(20, χ5), its Fourier expansion is given by

f1(z) =
∞∑

n=0

b(n)qn = − 1
132

(
Θ11(z)− 22Θ7(z)η8(4z)

η4(2z)
+

88Θ3(z)η16(4z)
η8(2z)

)
Θ(5z).

Since Θ(5z) = 1 + 2
∑∞

n=1 q5n2
, it is clear that it suffices to check that

b(n) ≡ 0 mod 5

for every positive integer n ≡ 1 mod 5. Now it is known that

f3(z) =
∞∑

n≡1 mod 5

b(n)qn
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is a weight 6 modular form with respect to Γ1(500). Therefore by Sturm’s theorem (see
[ ]) it suffices to check that b(n) ≡ 0 mod 5 for every n ≡ 1 mod 5 up to 90000. The
congruence has been verified with machine computation.

�
In [Th 4 ] Carlitz proved that if χ is a primitive Dirichlet character with conductor

f and p is a prime for which p - f and n is a positive integer for which pe | n, then pe

divides the numerator of Bn,χ. For example if D = −N is the fundamental discriminant
of the quadratic number field Q(

√
D) where N ≡ 1 mod 5, then this result implies that

the numerator of B5,χD
is a multiple of 5. However by Theorem 2 we find that even more

is true. We obtain:

Corollary 2. Let D = −N be the fundamental discriminant of Q(
√

D) where N ≡ 1
mod 5 is a positive integer. Then the numerator of B5,χD

is a multiple of 25.

Proof Corollary 2. By (5) and Theorem 2 it follows that

H(5, N) = L(−4, χD) = −B5,χD

5
≡ 0 mod 5.

This immediately implies that the numerator of B5,χD
is a multiple of 25.

�

Now we make some observations regarding the divisibility of the Fourier coefficients
of half-integer weight modular forms. In [ ] Serre proved a remarkable theorem re-
garding the divisibility of the Fourier coefficients of holomorphic integer weight modular
forms. Let f(z) =

∑∞
n=0 a(n)qn be the Fourier expansion of a holomorphic integer weight

holomorphic modular form with respect to some congruence subgroup of SL2(Z) whose
coefficients a(n) are algebraic integers in a fixed number field. Then he proved that given
a positive integer M, the set of non-negative integers n for which a(n) ≡ 0 mod M has
arithmetic density one.

Unfortunately much less is known regarding the divisibility properties of the coeffi-
cients of holomorphic half-integer weight forms. Let r be a non-negative integer and let
f(z) =

∑∞
n=0 a(n)qn ∈ Mr+ 1

2
(N,χ) with rational integer coefficients. If r = 0, then by

the Serre-Stark basis theorem (see [ ]), it is known that f(z) is a finite linear combina-
tion of theta functions. Moreover these functions are of the form Θa,M (dz) where d is a
positive integer and

Θa,M (z) :=
∑

n≡a mod M

qn2
.

In particular for all but a finite number of square-free positive integers t, it is the case
that a(tn2) = 0 for every integer n. Therefore the number of integers n ≤ x for which
a(n) 6= 0 is O(

√
x). However if r ≥ 1, then the situation is very different and is of

significant interest. A thorough understanding of the divisilibity properties of Fourier
coefficients when r = 1 will shed some light on the divisors of class numbers of imaginary
quadratic fields and the Shafarevich-Tate groups of twists of certain modular elliptic
curves. Therefore it is worth examining any analogs of Serre’s divisibility result which
may hold for half-integer weight forms.
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¿From the works of Carlitz and Leopoldt we find that the modular forms Fr(z) provide
us with an infinite family of interesting modular forms, which are not trivially zero modulo
an integer M , for which we find obvious analogs of Serre’s divisibility theorem. Both
proved that if χ is a Dirichlet character with conductor f that is not a power of a prime p,
then L(1−r, χ) is an algebraic integer. However if χ is a character with a conductor that
is a power of a prime p, then the prime ideal divisors of the denominator of L(1 − r, χ)
are prime ideal divisors of p. However if r ≥ 2 fixed, it known that the denominators of
L(1− r, χD) are bounded which implies that there are at most finitely many D for which
L(1 − r, χD) is not an integer. Therefore since the modular form Fr(z) may be written
as

Fr(z) := ζ(1− 2r)
∞∑

n=0

ar(n)qn = −B2r

2r

∞∑
n=0

ar(n)qn

where the coefficients ar(n) are rational with denominators bounded by Dr, the least
common multiple of all the denominators occuring in the ar(n), it follows that the nu-

merator of almost every ar(n) is a multiple of the denominator of ζ(1− 2r) = −B2r

2r
. By

Von Staudt-Clausen and the Voronoi congruences (see [15.2.4, Ireland and Rosen]), the
denominator of B2r is

∏
(p−1)|2r p.

We have proved:

Proposition 2. Let r ≥ 2 be a positive integer. Then for all but finitely many square-free
integers t we find that

ar(tn2) ≡ 0 mod M

for every integer n where M =
∏

(p−1)|2r p. In particular, the number of non-negative
integers n ≤ x for which ar(n) 6≡ 0 mod M is O(

√
x).

Using this proposition as a template we establish circumstances for which the Fourier
coefficients of a half-integer weight modular form are almost always a multiple of a power
of a prime p. From the discussion above it is clear that we only need to consider those
half-integer weight forms with weight ≥ 3

2 . First we note that the classical theta function
Θ(z) = 1 + 2

∑∞
n=1 qn2 ≡ 1 mod 2. Therefore if f(z) =

∑∞
n=0 a(n)qn is a holomorphic

half-integer weight modular form with integer coefficients, then f(z)·Θ(z) ≡ f(z) mod 2
is an integer weight holomorphic modular form for which the Fourier coefficients are
almost always even by Serre’s theorem. Therefore the coefficients a(n) are almost always
even. Therefore we may assume that p is an odd prime.

Let fp(z) be the weight p−1
2 modular form defined by

fp(z) =
ηp(z)
η(pz)

.

It is easy to verify that fp(z) ∈ M p−1
2

(p, χD) where D := (−1)
p−1
2 p. More importantly

if s is a positive integer, then since 1−Xp ≡ (1−Xp) mod p, we find that

(7) fps

p (z) ≡ 1 mod ps+1.

Using this notation we observe:
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Proposition 3. Let f(z) =
∑∞

n=0 a(n)qn ∈ Mr+ 1
2
(N,χ) with rational integer coeffi-

cients. Let p be an odd prime and let s and k be positive integers for which

2r = kps(p− 1).

If for every cusp c
d of Γ0(Np)

Ord(f,
c

d
) ≥ Nkps+1

24 · gcd(d,Np/d)d

(
p− gcd(d, p)2

p

)
where Ord(f, c

d ) is the analytic order of f(z) at the cusp c
d , then for all but finitely many

square-free positive integers t

a(tn2) ≡ 0 mod ps+1

for every integer n. In particular, the set of non-negative integers n ≤ x for which
a(n) 6≡ 0 mod ps+1 is O(

√
x).

Proof. If 2r = kps(p − 1), then by (7) the weight of
(
fps

p (z)
)k

is exactly 1
2 more than

r + 1
2 , the weight of f(z). The system of inequalities implies that the modular form

f(z) ·

(
ηps+1

(z)
ηps(pz)

)−k

≡ f(z) mod ps+1

is holomorphic at all the cusps of Γ0(Np) since the order of fps

p (z) at a cusp c
d is given

by (see [ ])
Nps+1

24 · gcd(d,Np/p)

(
p− gcd(d, p)2

p

)
.

Therefore this form is a holomorphic weight 1
2 form, hence is a finite linear combination

of theta functions by the Serre-Stark basis theorem. This completes the proof.

�

3. Special values of modular L−functions

In this section we investigate the the congruence properties of special values of qua-
dratic twists of a modular L−function at the center of the critical strip on the real line.
By the work of Kohnen, Shimura, Waldspurger, and Zagier, the Fourier coefficients of
certain special half-integer weight forms are essentially (up to a transcendental factor)
the square-root of these special values. We now present two simple examples for which
congruences exist.

Let L(∆, s) denote the modular L−function defined by

L(∆, s) :=
∞∑

n=1

τ(n)
ns
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where ∆(z) =
∑∞

n=1 τ(n)qn is the Fourier expansion of Ramanujan’s weight 12 cusp form.
If χD is the Kronecker character where D is a fundamental discriminant of Q(

√
D), then

let L(∆, D, s) denote the twisted L−function defined by

L(∆, D, s) :=
∞∑

n=1

χD(n)τ(n)
ns

.

Let g(z) =
∑∞

n=1 a(n)qn be the weight 13
2 eigenform defined by

g(z) :=
Θ9(z)η8(4z)

η4(2z)
− 18Θ5(z)η16(4z)

η8(2z)
+

32Θ(z)η24(8z)
η12(2z)

.

Using the Shimura correspondence, Kohnen and Zagier [ ] proved a general theorem
which in this case implies that if D is the fundamental discriminant of a real quadratic
field, then

(8) L(∆, D, 6) =
(

π

D

)6√
D

5!
< ∆(z),∆(z) >

< g(z), g(z) >
· (a(D))2

where < ∆(z),∆(z) > and < g(z), g(z) > are the relevant Peterson scalar products.
Therefore we shall refer to (a(D))2 as the rational factor of L(∆, D, 6). With this notation
we prove the following congruences for the rational factors of L(∆, D, 6) :

Theorem 3. If N is a positive integer satisfying
(−N

11

)
= 1, then the Fourier coefficient

a(11N) satisfies
a(11N) ≡ 0 mod 11.

Proof Theorem 3. It suffices to check that the Fourier coefficients a(n) satisfy a quadratic
congruence modulo 11 of type (11,−1). Let T (z) ∈ M12(44, χ0) be defined by

T (z) :=
∞∑

n=1

c(n)qn = g(z) ·Θ(11z) · η11(z)
η(11z)

.

Since the right hand factor is a modular form whose Fourier expansion is ≡ 1 mod 11, it
suffices to check that the Fourier expansion of T (z) has a quadratic congruence modulo
11 of type (11,−1). However by Proposition 1 it suffices to check that

c(11n) ≡ 0 mod 11

for all n ≤ 95832 that satisfy
(

n
11

)
= −1. This congruence has been verified by machine

computation.

�
Therefore by (8) we obtain:
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Corollary 3. Using the notation above, if D = 11N is the fundamental discriminant
of Q(

√
D) where N is a positive integer satisfying

(−N
11

)
= 1, then the rational factor of

L(∆, D, 6) is a multiple of 121.

Now we present a second example of such congruences. In this second example let
f(z) :=

∑∞
n=1 c(n)qn = η8(z)η8(2z); hence f(z) is the unique normalized weight 8 eigen-

form of level 2. Let L(f, s) denote the modular L−function

L(f, s) :=
∞∑

n=1

c(n)
ns

.

As above, let L(f,D, s) be the twisted modular L−function defined by

L(f,D, s) :=
∞∑

n=1

χD(n)c(n)
ns

.

Now let g(z) denote the weight 9
2 eigenform

h(z) :=
∞∑

n=1

d(n)qn =
Θ5(z)η8(4z)

η4(2z)
− 16Θ(z)η16(4z)

η8(2z)
.

The Shimura lift of h(z) is f(z), hence by [prop??? Wa] it turns out that if N1 ≡ N2 6≡ 5
mod 8 are two positive square-free integers with corresponding quadratic characters χD1

and χD2 where d(N1) 6= 0, then

(9) L(g,D2, 4) =
d2(N2)L(g,D1, 4)N

7
2
1

d2(N1)N
7
2
2

.

With this notation we prove:

Theorem 4. If N is a positive integer satisfying
(−N

7

)
= 1, then the Fourier coefficient

d(7N) satisfies the congruence

d(7N) ≡ 0 mod 7.

Proof Theorem 4. It suffices to check that the Fourier coefficients d(n) satisfy a quadratic
congruence modulo 7 of type (7,−1). Let S(z) ∈ M8(28, χ0) be the modular form defined
by

S(z) :=
∞∑

n=1

b(n)qn := h(z) ·Θ(7z) · η7(z)
η(7z)

.

Since the right hand factor is a modular form whose Fourier expansion is ≡ 1 mod 7,
by Proposition 1 it suffices to check that

b(7n) ≡ 0 mod 7

for all n ≤ 10976 where
(
n
7

)
= −1. This has been verified by machine computation.

�
By (9) we obtain:

Corollary 4. Let N be a positive square-free integer for which 7N 6≡ 5 mod 8 and(−N
7

)
= 1. If the character of Q(

√
7N) is χD, then the rational factor of L(f,D, 4) is a

multiple of 49.



CONGRUENCES FOR SPECIAL VALUES 15

4. An elliptic curve explanation

We interpret the congruences of corollaries 3 and 4 in terms of the Bloch-Kato con-
jecture on special values of L-functions associated to arithmetic objects of a very general
type (the “motives” in the sense of Grothendieck and Deligne, as defined for example in
[Deligne]).

Motives: It is beyond our scope to give a detailed account of motives. A good reference
for this is [Deligne]. For the purpose of our discussion, a motive M (over Q, with rational
coefficients, of rank r) can be thought of as a piece of the cohomology of an algebraic
variety over Q, giving rise to:
• For each prime `, an `-adic representation M` of GQ = Gal(Q̄/Q), arising from `-
adic étale cohomology. The object M` is an r-dimensional Q`-vector space equipped
with an action of GQ. Since GQ acts through a compact quotient, it leaves stable a Z`-
sublattice T` of M`, and one can define the mod ` representation associated to M` to be
the F`-vector space M̄` = T`/`T`. This space depends on the choice of T` in general, but
its semi-simplification does not, by the Brauer-Nesbitt theorem. To obtain a canonical
object we simply define M̄` to be the semi-simplification of T`/`T`.
• The system {M`} should form a compatible system of rational `-adic representations
in the sense of [Serre.McGill], §I.11. More precisely, the action of GQ is unramified
outside S ∪ {`}, where S is a fixed finite set of primes not depending on `. Let Dp be
a decomposition group at p in GQ and let Ip denote an inertia subgroup of Dp. Let
Frobp be the canonical (“frobenius”) generator of Dp/Ip which gives the map x 7→ xp on
residue fields. If p 6= ` is a prime, then the characteristic polynomial Zp(M,T ) of Frobp

acting on M
Ip

`

Zp(M,T ) = det((1− FrobpT )|M Ip

` )

has integer coefficients and should not depend on the choice of ` 6= p.
• A rational vector space MB : the so called “Betti realization”, arising from singular
cohomology.
• A rational vector space MDR coming from the algebraic DeRham cohomology, equipped
with its natural Hodge structure.
The structures MB and MDR will not play an explicit role in our discussion, but are
used in defining certain (transcendental) periods associated to M as in [Deligne].

The L-function: One defines the local L function at p by Lp(M, s) = Zp(M,p−s)−1.
By the compatibility axiom, Lp(M, s) does not depend in the choice of the prime ` used
to define it. One then defines the global L-function as a product over all primes p:

L(M, s) =
∏
p

Lp(M, s).

This Euler product converges in a right half plane, by the Weil conjectures. It is conjec-
tured that L(M, s) has an analytic continuation and a functional equation (cf. [Deligne],
§1.2.) We will assume this. (In the special cases that we discuss, this conjecture is known
to be true.)

The Bloch-Kato conjectures: Under the asumption that the motive is “‘critical” (in
the sense of [Deligne], Def. 1.3), Deligne has given a very general conjectural formula for
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the special value L(M, 0), modulo rational multiples, in terms of a certain period integral
defined in terms of the structures MB and MDR. This conjecture has been refined by
Bloch and Kato , and predicts that the “rational part” Lrat(M, 0) of L(M, 0) (i.e., the
special value L(M, 0) divided by the Deligne period) can be interpreted as the order of
a certain Selmer group Sel(M) = ⊕`Sel`(M), where

Sel`(M) := ker
(
H1(Q,M` ⊗Q`/Z`) −→ ⊕vH1

f (Qv,M` ⊗Q`/Z`)
)
.

The groups H1
f (Qv,M` ⊗ Q`/Z`) are certain subgroups of the local Galois cohomology

groups H1(Qv,M` ⊗ Q`/Z`). When v /∈ S ∪ {`} then these are exactly the unramified
cohomology classes. When v = `, the definition of H1

f is more subtle and relies on the
crystalline cohomology theory developed by Fontaine and Messing. See [Bloch.Kato] for
details.

Note that in general Sel(M) need not be finite. If it is infinite, one conjectures that
Lrat(M, 0) = 0.

Congruences between motives: We say that two motives M and N are congruent
modulo ` if the local L-factors Zp(M,T ) and Zp(N,T ) are congruent mod ` for all
primes p 6= `. In particular, it follows from the Chebotarev density theorem that the
mod ` Galois representations M̄` and N̄` associated to M and N are isomorphic. For
example, modular forms whose Fourier coefficients are congruent modulo ` give rise to
congruent motives. (See, for example, the discussion in the introduction to [Mazur].)
Generally speaking, motivated by the philosophy expressed in [Mazur], one expects a
mod ` congruence between two motives to translate into a congruence modulo ` between
the special values of their associated L-functions.

Conjecture C. If two motives M and N are congruent modulo `, then

Lrat(M, 0) ≡ Lrat(N, 0) (mod `).

The motives associated to L(∆, D, 6) and L(f,D, 4): Let M∆ and Mf denote the
motives associated by Scholl [scholl] to the modular forms ∆ ∈ S12(SL2(Z)) and f ∈
S8(Γ0(2)) respectively. By definition, we have:

L(M∆, s) = L(∆, s), L(Mf , s) = L(f, s).

Set
M∆,D,6 = M∆(−6)⊗MχD

, Mf,D,4 = Mf (−4)⊗MχD
.

Here M(n) is the n-th Tate twist of M , as defined in [Deligne], and MχD
is the Artin

motive associated to the Dirichlet character χD.
From the definitions it follows immediately that we have

L(M∆,D,6, 0) = L(∆, D, 6), L(Mf,D,4, 0) = L(f,D, 4).
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A congruence for M∆,D,6: Suppose that D = 11N , with N prime to 11. Let E11 be
the elliptic curve X0(11). It is the (unique) modular elliptic curve of conductor 11, and
its associated eigenform f11 ∈ S2(Γ0(11)) is

f11 = η(z)2η(11z)2 = q
∏

(1− qn)2(1− q11n)2 =
∑

an(E11)qn.

Let ME11,χ,1 be the motive satisfying

L(ME11,χ,1, 0) = L(E11, χ, 1),

where χ is the Dirichlet character associated to the imaginary quadratic field Q(
√
−N).

Then we have:

Lemma 2. The motives M∆,D,6 and ME11,χ,1 are congruent modulo 11.

Proof: We have

∆ = q
∏

(1− qn)24 ≡ q
∏

(1− qn)2(1− q11n)2 ≡ f11 (mod 11),

so that τ(n) ≡ an(E11) (mod 11) for all n. Moreover, we have

χD(p)p−5 ≡ χ(p) (mod 11),

and the lemma follows directly from this.

lemma 3. If 11 is split in the field Q(
√
−N), then

L(ME11,χ,1, 0) = 0.

Proof: This follows from the calculation of the sign in the functional equation for
L(E11, χ, s), which can be shown to be −1 when the conductor of E splits in the qua-
dratic field Q(

√
−N). (See for example [gross.zagier].) Since 1 is the symmetry point for

the functional equation, it follows that

L(E11, χ, 1) = L(ME11,χ,1, 0) = 0.

Corollary. Assume conjecture C. Then L(∆, D, 6) ≡ 0 (mod 11) whenever 11 is split
in Q(

√
−N).

Proof: Since M∆,D,6 and ME11,χ,1 are congruent modulo 11 by lemma 2, conjecture C
implies the congruence

L(∆, D, 6) = L(M∆,D,6, 0) ≡ L(ME11,χ,1, 0) = 0 (mod 11),

where the last equality follows from lemma 3.

A congruence for Mf,D,4: Suppose that D = 7N with 7 not dividing N . Let E14 be
the elliptic curve X0(14). It is the (unique) modular elliptic curve of conductor 14, and
its associated eigenform f14 ∈ S2(Γ0(11)) is

f14 = η(z)η(2z)η(7z)η(14z) = q
∏

(1− qn)(1− q2n)(1− q7n)(1− q14n).

Let ME14,χ,1 be the motive satisfying L(ME14,χ,1, 0) = L(E14, χ, 1), where χ is the Dirich-
let character corresponding to the quadratic imaginary field Q(

√
−N). Then we have:
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Lemma 4. The motives Mf,D,4 and ME11,χ,1 are congruent modulo 7.

Proof: We have

f = q
∏

(1− qn)8(1− q2n)8 ≡ q
∏

(1− qn)(1− q2n)(1− q7n)(1− q14n) = f14 (mod 14).

The lemma follows directly from this, and from the fact that χD(p)p−3 ≡ χ(p) (mod 7).

Lemma 5. If 2 and 7 are both split or both inert in the field Q(
√
−N), then

L(ME14,χ,1, 0) = 0.

Proof: This follows from the calculation of the sign in the functional equation for
L(E14, χ, s), which can be shown to be−1 when χ(14) = 1. (See for example [gross.zagier].)
Since 1 is the symmetry point for the functional equation, it follows that

L(E14, χ, 1) = L(ME14,χ,1, 0) = 0.

Corollary. Assume conjecture C. Then L(f,D, 4) ≡ 0 (mod 7) whenever 2 and 7 are
both split or both inert in Q(

√
−N).

Proof: By lemma 4, the motives Mf,D,4 and ME14,χ,1 are congruent modulo 7. Conjecture
C implies the congruence

L(f,D, 4) = L(Mf,D,4, 0) ≡ L(ME14,χ,1, 0) = 0 (mod 7),

where the last equality is by lemma 5.
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