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Abstract
This article gives a new proof of the Gross–Kohnen–Zagier theorem for Shimura
curves which exploits the p-adic uniformization of Cerednik–Drinfeld. The explicit
description of CM points via this uniformization leads to an expression relating the
Gross–Kohnen–Zagier generating series to the ordinary projection of the first deriva-
tive, with respect to a weight variable, of a p-adic family of positive definite ternary
theta series.
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1 Introduction

It is conjectured that generating series of special cycles on orthogonal Shimura vari-
eties are modular forms. (See [27] for example.) One of the first instances of this
phenomenon was discovered by Gross, Kohnen and Zagier, who proved in [17] that
generating series of Heegner points on the Jacobians of modular curves are modular
forms of weight 3/2. The purpose of this article is to study the analogous statement for
generating series of Heegner points on Shimura curves. We will present a new proof
of the modularity of these generating series – originally established by Borcherds in
[5] – using p-adic methods.

We proceed to explain the theorem in more detail, in a framework that encompasses
bothmodular and Shimura curves. Let S be a finite set of places ofQ of odd cardinality
containing∞ and let N+ be a square-free positive integer which is not divisible by any
finite place in S. This datumgives rise to amodular or Shimura curve X defined overQ,
which is an instance of an orthogonal Shimura variety. Its set X(C) of complex points
can be described in terms of an Eichler Z-orderR of level N+ in a quaternion algebra
B over Q ramified exactly at S−{∞}. Namely, the set V of trace zero elements inB
equipped with the quadratic formQ induced by the reduced norm is a quadratic space
of signature (1, 2), and is anisotropic at all the places v ∈ S−{∞}. The action ofB×
on V via conjugation identifies B× with the group GSpin(V ) of spinor similitudes
of V . It naturally acts on the conic CV ⊆ P(V ) whose rational points over a field E
of characteristic 0 are given by

CV (E) = {
� ∈ P(VE )

∣∣ Q(�) = {0}} . (1)

Here and from now on, if M is an abelian group, and A is a commutative ring, write
MA for the A-moduleM⊗Z A. The groupΓ of units ofR modulo {±1} acts discretely
on the symmetric space

K = CV (C)− CV (R)
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associated to the orthogonal group of V . The set X(C) of complex points of X is
identified with the quotient Γ \K . A comparison with a more classical description of
Shimura curves can be found in the Appendix of [27].

Let v ∈ V be a vector for which Q(v) > 0. Its orthogonal complement is thus
a two-dimensional negative definite space, whose base change to C is a hyperbolic
plane. Hence, there are exactly two points inK represented by a vector orthogonal to
v. Let �(v) ⊂ K be the divisor consisting of these two points. Each positive integer
D in

DS :=
{
D ∈ Z>0

∣∣ ∃v ∈ V such that Q(v) = D
}

gives rise to a zero-cycle on X by setting

�(D) :=
∑

v∈Γ \R0,
Q(v)=D

1

#StabΓ (v)
�(v) ∈ Div(X(C))Q, (2)

where R0 ⊆ V is the Z-lattice R ∩ V . The divisor �(D), which is supported on a
finite set of CM points on X , is a simple instance of aHeegner divisor on this Shimura
curve.

TheGross–Kohnen–Zagier theorem asserts that the classes of�(D) in the Jacobian
of X can be packaged into a modular generating series of weight 3/2. Namely, let L
be the tautological line bundle of isotropic vectors whose spans are points ofK . This
bundle isB×-equivariant and, therefore, descends to a line bundle on X(C), which is
identified with the cotangent bundle of X . In particular, it has a model over Q. Denote
by [�] (resp. [L∨]) the class in Pic(X)(Q) of a divisor � (resp. of the dual L∨ of the
line bundle L) on X . Then, the formal generating series

G(q) := [L∨] +
∑

D∈DS

[�(D)]qD ∈ Pic(X)(Q)Q[[q]], (3)

is a modular form of weight 3/2 and level �0(4N ), where N is the product of N+
with all finite places in S. Remember that, given an abelian group A, a formal q-series
f ∈ A[[q]] with coefficients in A is called a modular form of weight 3/2 and level
�0(4N ) if for every homomorphism ϕ : A → C the generating series ϕ( f ) ∈ C[[q]],
obtained by applying ϕ to each of the coefficients of f , is the q-expansion of amodular
form of weight 3/2 and level �0(4N ).

The Gross–Kohnen–Zagier theorem was first proved in [17] in the case of modular
curves (i.e., where S = {∞}) by calculating the Arakelov intersection pairings of
the divisors �(D) with a fixed CM divisor. It was extended by Borcherds [5] to the
setting of orthogonal groups of real signature (n, 2), encompassing Shimura curves
as a special case where the underlying quadratic space is of signature (1, 2), as a
consequence of his theory of singular theta lifts. The work of Yuan, Zhang, and Zhang
[39] proves Theorem 1.1 inmuch greater generality, for certain orthogonal groups over
totally real fields. It should be noted that the theorem also holds if one replaces the
lattice R0 by a suitable weighted sum of lattice cosets or, equivalently, by a suitable
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Schwartz–Bruhat function. In order to keep the exposition as simple as possible we
refrain from stating the most general version of the theorem in the introduction.

The goal of this article is to describe a new proof of the Gross–Kohnen–Zagier
theorem in the case where S �= {∞}, i.e., when X is not a modular curve. To simplify
the exposition we will also assume that 2 � N .

Theorem 1.1 The generating series G(q) ∈ Pic(X)(Q)Q[[q]] of (3) is a modular
form of weight 3/2 and level �0(4N ).

Our approach to this theorem rests on the fact that, at a finite place p ∈ S, the
curve X(Cp) admits a p-adic analytic uniformization. More precisely, X(Cp) can
be described as the quotient of the p-adic upper half-plane by the discrete action of
the norm one elements of an Eichler Z[1/p]-order R of level N+ in the (definite)
quaternion algebra ramified exactly at S − {p}. Furthermore, the Heegner divisors
�(D) can be described p-adically in terms of this uniformization. This immediately
gives an expression of the generating series of degrees

deg(G)(q) = deg(L∨)+
∑

D∈DS

deg(�(D))qD

in terms of definite ternary theta series, recovering a well-known modularity result.
(See for example [20, Chapter 2] and [26, Theorem I].) Thus, it is enough to prove
modularity of the generating series TG(q) for Hecke operators of degree 0, for which
TG(q) takes values in the Q-rational points of the Jacobian J of X . The existence of a
basis of modular forms with rational coefficients then reduces the problem to proving
modularity of the generating series

logω(TG)(q) :=
∑

D∈DS

logω([T�(D)])qD ∈ Qp[[q]] (4)

for every cotangent vector ω of JQp with associated p-adic formal logarithm
logω : J (Qp) → Qp. For appropriate Hecke operators T , the p-adic description of the
divisors T�(D) leads to an expression of this series as the ordinary projection of an
infinitesimal p-adic deformation of a positive definite ternary theta series attached to
the data (ω, R, T ). More precisely, these data give rise to a p-adic family of weighted
theta series �k of weight k + 3/2, with k in the weight space (Z/(p − 1)) × Zp,
whose specialization at weight 3/2 vanishes. (See Sect. 7.3 for its definition.) It then
follows that its derivative with respect to k evaluated at k = 0, denoted �′

0, is a p-adic
cusp form of weight 3/2. Let eord be p-ordinary projector acting on this space. By a
classicality result, eord(�′

0) is a cusp form of weight 3/2 and level �0(4N ). Let pr1
be the projector on the space of cusp forms of weight 3/2 and level �0(4N ) to the
eigenspace of the Hecke operator Up2 of eigenvalue 1. The main contribution of this
article is the following formula.

Theorem 1.2 We have

logω(TG) = pr1(eord(�
′
0)).
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To summarize, the fact that TG is amodular form is a consequence of themodularity of
definite theta series and classicality of ordinary p-adic modular forms of half-integral
weight.

Remark 1.3 As the proof of Theorem 1.1 is a purely p-adic analytic one, it seems
likely that it carries over to more general settings, e.g., to Shimura curves over totally
real fields which admit a p-adic uniformization. The assumption that N is odd and
square-free stems from using p-adic families of scalar-valued half-integral modular
forms, which seem only well-behaved in that case. Concretely, we study these p-adic
families using the results of [32], [24], and [30], which have a similar condition on
the level of the modular forms. Generalizing to arbitrary level likely requires a theory
of families of vector-valued modular forms, which so far has only been developed in
a few instances. (See [28].)

The strategy sketched above bypasses the global height pairings studied by Gross,
Kohnen, and Zagier, or the singular theta lifts that arise in the approach of Borcherds.
It can be envisaged as fitting into the broader framework of a “p-adic Kudla program”,
inwhich p-adic families ofmodular forms playmuch the same role as analytic families
of Eisenstein series in the Archimedean setting. Insofar as the generating series G are
among the simplest instances of the modular generating series arising in the Kudla
program, it is hoped that the p-adic techniques described here will be more widely
applicable, shedding light on the connection between special cycles on orthogonal and
unitary Shimura varieties, p-adic Borcherds-type lifts, and p-adic families of theta
series. A general framework is laid out in the article [9], which introduces the notion
of rigidmeromorphic cocycles for orthogonal groups. In loc.cit.modularity statements
for generating series of special divisors on arithmetic quotients on higher-dimensional
p-adic symmetric spaces are formulated. A crucial input in their proof is the injectivity
of the first Chern class when the arithmetic quotient has dimension 3 and higher.
Theorem1.1 complements themain theoremof [9] by extending it to the case of curves,
where the kernel of the Chern class map needs to be considered. Relating arithmetic
data to Fourier coefficients of ordinary projections of p-adic modular forms is one
of the prevalent themes of the p-adic Kudla program as demonstrated, for example,
in [7] and [10]. The p-adic modular forms in question arise as first order derivatives
of p-adic families of classical modular forms, although the families considered in [7]
and [10] are of a rather different nature than the one considered in Theorem 1.2.

The organization of the article is as follows. Section2 explains the p-adic uni-
formization of X and states the Gross–Kohnen–Zagier theorem in terms of this
uniformization. Theorem 2.7 below describes the main result, which is somewhat
more general than Theorem 1.1, since the divisors �(D) are replaced by linear com-
binations of Heegner points weighted by Schwartz–Bruhat functions. Section3 gives
a short proof of the modularity of deg(G). Section4 introduces the p-adic Abel–
Jacobi map, which gives an explicit description of the Jacobian of a Mumford curve.
This description is used in Sect. 5 to construct certain functionals on the Jacobian,
whose values at Heegner points are computed in Sect. 6. In particular, we give an
explicit expression for the quantities logω([T�(D)]) appearing in (4). In Sect. 7, we
define the p-adic family�k , prove a classicality result regarding ordinary p-adic cusp
forms of half-integral weight and prove the main Theorem 1.2, which implies the

123



L. Beneish et al.

Gross–Kohnen–Zagier theorem. Finally, Sect. 8 illustrates the construction of �k by
presenting a concrete example where S = {7, 13,∞} and p = 7. In this case, the
ordinary projection of �′

0 is computed numerically modulo p.

2 The Cerednik–Drinfeld theorem

This section recalls the theorem of Cerednik–Drinfeld, which gives a rigid analytic
uniformization of X at a finite prime p ∈ S that is fixed once and for all. More-
over, we describe Heegner divisors in terms of this uniformization, which leads to a
reformulation of the Gross–Kohnen–Zagier theorem in this setting.

2.1 p-adic uniformization of X

The rigid analytic uniformization of X proceeds by replacing the place ∞ in the
complex uniformization of the introduction by the prime p ∈ S. To describe it, we
need to introduce some notation. Let B be the quaternion algebra over Q ramified
exactly at the places in S − {p}. Let R be an Eichler Z[1/p]-order in B of level N+
and denote by � the multiplicative group of elements of reduced norm 1 in R modulo
{±1}. Let Q be the restriction of the reduced norm to the space

V = {
b ∈ B

∣∣ Tr(b) = 0
}

of elements of reduced trace zero in B. It endows V with the structure of a quadratic
space of rank 3 overQ, which is of real signature (3, 0). Denote by 〈·, ·〉 the symmetric
bilinear form attached to Q, that is, 〈v,w〉 := Q(v + w)− Q(v)− Q(w). As in the
case of the quadratic space V , the action of B× on V via conjugation identifies B×
with the group of spinor similitudes of V . The intersection R0 = R ∩ V is an even
Z[1/p]-lattice in V .

A p-adic symmetric space is associated to the orthogonal group of VQp as follows.
Similarly to (1) denote by CV ⊆ P(V ) the conic over Q attached to V whose rational
points over a field E of characteristic 0 are given by

CV (E) = {
� ∈ P(VE )

∣∣ Q(�) = {0}} .

This conic has no rational points, but can be identified with the projective line P over
Qp as follows: choose an isomorphism of BQp with thematrix ringM2(Qp). The conic
is then identified with the space of non-zero nilpotent 2 × 2-matrices up to scaling.
Mapping such a matrix to its kernel yields the desired isomorphism. The action of
B×

Qp
is identified with the action of GL2(Qp) on PQp via Möbius transformations.

Definition 2.1 The Drinfeld p-adic upper half plane is the Qp-rigid analytic space
Hp, whose E-rational points for any complete extension E/Qp is the set

Hp(E) := CV (E)− CV (Qp) � P1(E)− P1(Qp).
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We briefly explain the rigid analytic structure onHp in terms of the reduction map
to the Bruhat–Tits tree. We refer the reader to [8, Chapter 5] for further details. The
Bruhat–Tits tree, denoted T , is the graph whose set of vertices is the set of unimodular
Zp-lattices in VQp , that is, lattices which are self-dual with respect to the symmetric
bilinear form 〈·, ·〉. Two unimodular Zp-lattices L1 and L2 are joined by an edge if
they are p-neighbours, that is,

[L1 : L1 ∩ L2] = [L2 : L1 ∩ L2] = p.

A choice of a vertex L gives a smooth Z(p)-integral structure CL to the conic CV ,
where Z(p) denotes the localization of Z at the prime ideal generated by p. If L ′
is adjacent to L , then the image of L ∩ L ′ in L/pL is a 2-dimensional non-regular
subspace, hence contains a unique isotropic subspace �L ′ . Mapping the edge (L, L ′) to
�L ′ yields a bijection between the set of lattices adjacent to L and CL(Fp) � P1(Fp).
It follows that T is homogeneous of degree p + 1. The set of vertices and edges
of T are denoted by T0 and T1 respectively, and T shall be viewed as a disjoint
union T = T0 � T1. Identifying the quadratic space VQp with the set of trace zero
endomorphismsofQ2

p endowedwith the norm formgives themore familiar description
of the tree in terms of similarity classes of Zp-lattices in Q2

p. Indeed, the assignment
[�] �→ Hom0(�,�) is a bijection between such similarity classes and unimodular
lattices in VQp . Moreover, two classes [�1], [�2] are joined by an edge if they admit
representatives �1 and �2 satisfying p�1 ⊂ �2 ⊂ �1. From this description one
easily deduces thatT is indeed a tree. The identification of the two graphs is compatible
with the natural actions of B×

Qp
and GL2(Qp). We define a notion of parity on the

vertices of T by requiring that every edge connects an even vertex with an odd one.
There are exactly two possible choices for this and we choose one of them. The action
of the elements of reduced norm one in BQp on T is parity-preserving.

We proceed by describing the well-known reduction map

red : Hp(Cp) −→ T

in the language of quadratic forms. For that let OCp denote the ring of integers of Cp

and m ⊆ OCp its maximal ideal. Every unimodular Zp-lattice L ⊆ VQp induces a
reduction map

CV (Cp) = CL(OCp ) −� CL(Fp).

(1) Let L ⊆ VQp be a unimodular Zp-lattice. Then red−1(L) is the complement of
the p + 1 residue discs around the points in CL(Fp).

(2) Let L, L ′ ⊆ VQp be two unimodular Zp-lattices that are p-neighbours and �L ′ ∈
CL(Fp) the corresponding isotropic line. The preimage of the edge (L, L ′) under
the reduction map consists of those elements z ∈ CL(OCp ) that are congruent to
�L ′ modulo m but not modulo p.
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One readily checks that the reductionmap is B×
Qp

-equivariant. A finite closed subgraph
of T is a finite set G ⊂ T satisfying

(v1, v2) ∈ G ∩ T1 ⇒ v1, v2 ∈ G ∩ T0.

A standard affinoid subset of Hp is a set of the form red−1(G), where G is a finite
closed subgraph of T .

Definition 2.2 A function on Hp is said to be rigid analytic if its restriction to any
standard affinoid subsetA ⊂Hp can bewritten as a uniform limit of rational functions
having poles outside of A. A function on Hp is said to be rigid meromorphic if it is
the quotient of two rigid analytic functions, where the denominator is non-zero.

The group � acts naturally on Hp by conjugation. This action is discrete because
� is a p-arithmetic subgroup of an algebraic group that is compact at ∞. It follows
from there that the quotient space �\Hp has a natural structure of a rigid analytic
variety over Qp. On the other hand, the analytification of X gives a rigid analytic
space over Qp. The Cerednik-Drinfeld theorem states that these two spaces can be
identified after base change to the unramified quadratic extension Qp2 of Qp. This
identification depends on choices. To make this precise, let us introduce the following
notation: for a finite set � of places of Q write A� ⊂ ∏

v /∈� Qv for the ring of finite
adéles away from�. Moreover, let Ẑ (resp. Ẑ(p)) be themaximal order ofA∞ (resp. of
Ap,∞). Given a finitely generated Z[1/p]-module M , we put M̂ = M ⊗ Ẑ(p). Fix an
identification

VAp,∞ � VAp,∞ (5)

sending the Ẑ(p)-lattice R̂0 to R̂0.

Theorem 2.3 (Cerednik–Drinfeld) The identification (5) induces an isomorphism

X
∼−−→ �\Hp. (6)

of rigid analytic spaces over Qp2 .

Proof See [37], [12] and [6]. ��

2.2 p-adic analytic description of Heegner divisors

In analogy with the cycles defined in the introduction, every non-zero element v ∈ V
yields a cycle�(v) onHp:�(v) is the sumof those points inHp that are orthogonal to
v. This cycle has degree 0 or 2 depending on whether the orthogonal complement of v

in VQp represents 0 or not. Observe that the orthogonal complement of v in VQp , being
2-dimensional, represents 0 if and only if the negative of its discriminant is a square
in Qp. Since the discriminant of VQp is a square, the discriminant of the orthogonal
complement of v is equal to the discriminant of v, which is Q(v), modulo squares.
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Hence, we deduce �(v) �= 0 if and only if
√−Q(v) /∈ Qp. By the Hasse–Minkowski

theorem the set DS from the introduction is characterized locally. In particular, one
gets the description

DS =
{
D ∈ Z

∣∣ ∃v ∈ V − {0} such that Q(v) = D and �(v) �= 0
}
,

where we used that B ramifies exactly at S−{p}whileB ramifies exactly at S−{∞}.
Indeed, the quadratic spaces V and V are locally isomorphic at all places except at
∞ and p. This is why the condition D > 0 (or equivalently,

√−D /∈ R) appearing
in the description of DS in the introduction is replaced by the condition �(v) �= 0 (or
equivalently,

√−D /∈ Qp). Note that the first condition is automatic for the nonzero
lengths of elements of V , as B is ramified at∞ and the second condition is automatic
for nonzero lengths of elements of V , asB is ramified at p.

Lemma 2.4 Let D be an element of DS and v ∈ V with Q(v) = D.

(1) If ordp(D) = 0, there exists a unique unimodular Zp-lattice L in VQp containing
v. The support of �(v) is contained in red−1(L).

(2) If ordp(D) = 1, there exist exactly two unimodular Zp-lattices L1, L2 in VQp

containing v, which are p-neighbours. The support of �(v) is contained in
red−1((L1, L2)).

Proof Let W be the orthogonal complement of v in VQp . As W is anisotropic, it
contains a unique maximal Zp-lattice LW , on which Q takes values in Zp and it is
characterized by the property that its discriminant module is an Fp-vector space. (See
for example [1, Corollary 11].) Remember that the discriminant module of aZp-lattice
L ⊆ W with Q(L) ⊆ Zp is the quotient L�/L where L� ⊆ W denotes the dual of
L with respect to the bilinear pairing 〈·, ·〉. Suppose that L is a unimodular lattice
containing v. By [9, Lemma 1.1], the discriminant module of L ∩ W is isomorphic
to the discriminant module of L ∩ Zpv. Thus, the discriminant module of L ∩ W is
an Fp-vector space, which implies that L ∩ W = LW . In particular, L must contain
Zpv ⊕ LW .

If ordp(D) = 0, one easily checks that LW is unimodular. Thus, Zpv ⊕ LW is the
unique unimodular Zp-lattice containing v. If ordp(D) = 1, then LW is of index p in
its dual. Thus, the discriminant module M of Zpv⊕ LW is a 2-dimensional Fp-vector
space. A quick calculation shows that Q induces a hyperbolic form on M . There exist
exactly two self-dual lattices containingZpv⊕ LW corresponding to the two isotropic
lines in M .

Let σv be the unique simplex of T corresponding to v andQ(v) theQ-subalgebra of
B generated by v. Since Q(v)× fixes v, it follows that it also fixes σv . The statements
about the support of �(v) follow from the B×

Qp
-invariance of the reduction map. ��

The spaceS (VAp,∞) of Z-valued Schwartz–Bruhat functions on VAp,∞ admits an
action of B×

Ap,∞ induced by the conjugation action on VAp,∞ . Attached to an R̂×-
invariant function� ∈ S (VAp,∞) and a non-zero rational number D is the zero-cycle

��,�(D) =
∑

v∈�\V , Q(v)=D

1

#Stab�(v)
�(v)�(v) ∈ Div(�\Hp)Q, (7)
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on�\Hp. Note the formal similarities between (2) and (7) when� is the characteristic
function of R̂0, that will simply be denoted as 1R0 . We proceed to make them precise.
By the theory of complex multiplication, the Heegner points appearing in the divisors
�(D) of the introduction are defined over Q. Hence, after fixing an embedding Q ⊂
Cp, these divisors can be viewed as elements in Div(X(Cp)).

Proposition 2.5 Let D ∈ DS. The cycle �1R0 ,�(D) of (7) viewed as an element of
Div(X(Cp)) via the Cerednik–Drinfeld uniformization theorem is equal to the cycle
�(D) of (2).

Proof Since R0 is a Z[1/p]-lattice,

�1R0 ,�(D) = �1R0 ,�(Dp2n)

for every n ≥ 0. On the other hand,B is ramified at p, and, thus, the unique maximal
Zp-order of BQp is given by the elements whose reduced norm has non-negative
p-adic valuation. Therefore, multiplication by p gives a bijection between elements
of length D and elements of length Dp2 in R0, which yields the equality �(D) =
�(Dp2n), for every n ≥ 0. It is then enough to prove the identification when D ∈ DS

is such that ordp(D) ∈ {0, 1}. The case when ordp(D) = 0 is treated in Theorem
5.3 of [3] and the case when ordp(D) = 1 follows from [29, Section 3.3] and [31,
Proposition 5.12]. ��

Let ψ : Q\A → C× be the standard character, that is, its local component
ψ� : Q� → C× at a prime � is given by

ψ�(x) = e−2π iq for x ∈ q + Z�, q ∈ Q.

The Weil oscillator representation attached to V and ψ induces an action of the meta-
plectic group S̃L2(A

p,∞) onS (VAp,∞)C that commutes with the B×
Ap,∞ -action. (See,

for example, Section 2.3 of [15] for its construction.) For M ≥ 1, let K0(M)(p) be
the subgroup of SL2(A

p,∞) consisting of matrices in SL2(Ẑ
(p)) with left lower entry

divisible by M . Since K0(4M)(p) splits the exact sequence

1 −→ {±1} −→ S̃L2(A
p,∞) −→ SL2(A

p,∞) −→ 1

defining the metaplectic group, it can be regarded as a subgroup of S̃L2(A
p,∞). (See

[15], Proposition 2.14.) We similarly define K0(4M) and view it as a subgroup of
SL2(A

∞) and of S̃L2(A
∞).

Definition 2.6 A Schwartz–Bruhat function � ∈ S (VAp,∞) is called special if

(1) � is R̂×-invariant,
(2) � is K0(4N )(p)-invariant, and
(3) �(pv) = �(v) for all v ∈ VAp,∞ .
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The characteristic function 1R0 is the prime example of a special Schwartz–Bruhat
function. Let � be a special Schwartz–Bruhat function. Property (2) implies that for
D ∈ Z(p) − {0} we have ��,�(D) = 0 unless D ∈ DS : indeed, by [15, Theorem
2.22], the matrix

u� =
(
1 1
0 1

)
∈ SL2(Z�)

for � a prime different from p acts via the Weil representation by

(u��)(v) = ψ�(Q(v�)) ·�(v) ∀� ∈ S (VAp,∞)C, v = (v�)� �=p ∈ VAp,∞ .

Thus, if � is K0(4N )(p)-invariant, it follows that every element v in the support of �

fulfils Q(v) ∈ Ẑ(p). Furthermore, the equality

��,�(p2D) = ��,�(D) (8)

holds for all D ∈ DS by Property (3). The remainder of this work will solely be
concerned in proving the following p-adic analytic version of the Gross–Kohnen–
Zagier theorem, which implies Theorem 1.1 in view of Proposition 2.5 and the fact
that 1R0 is special.

Theorem 2.7 Let � be a special Schwartz–Bruhat function. The generating series

G�,�(q) := �(0)[L∨] +
∑

D∈DS

[��,�(D)]qD ∈ Pic(�\Hp)Q[[q]],

is a modular form of weight 3/2 and level �0(4N ).

Remark 2.8 The divisors described above are compatible under pullback in the follow-
ing sense. Let� be a Schwartz–Bruhat function on VAp,∞ invariant under R̂×. Suppose
that R′ is an Eichler Z[1/p]-order contained in R, denote by �′ the group of reduced
norm1units in R′modulo {±1} and consider the projectionmapπ : �′\Hp → �\Hp.
Then it can be seen in a similar way as in the proof of [25, Proposition 5.10] that, for
every D ∈ DS ,

π∗(��,�(D)) = ��,�′(D).

Using that π∗ ◦π∗ is equal to multiplication by the degree of π on Div(�\Hp) and the
previous identity, we deduce that R can be replaced by R′ in the proof of Theorem 2.7.
In particular, we will assume from now on that � is torsion-free by choosing an
appropriate level N+. This will simplify some calculations as the group � will act
freely on Hp and T . In particular, it is a free group on finitely many generators.
Moreover, under this assumption the coefficients of the divisors��,�(D) are integral.
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2.3 Hecke action on divisors

LetTN be the integral Hecke algebra away from N , which is generated by the standard
generators {T�}��N . (See [22, Section 1.2] for its definition.) We conclude the section

describing the action of TN on the divisors as well as on the space of R̂×-invariant
Schwartz–Bruhat functions. Let � be a prime not dividing N and fix α ∈ B× ∩ R an
element of reduced norm �. Consider the maps

�\Hp
π1←− (α−1�α ∩ �)\Hp

α−−→ (� ∩ α�α−1)\Hp
π2−−→ �\Hp.

Then, define the action of the Hecke operator T� on divisors as

T�(�) := (π2,∗ ◦ α ◦ π∗1 )(�) for � ∈ Div(�\Hp).

On the other hand, the action of T� on R̂×-invariant Schwartz–Bruhat functions is
determined as follows. If � = � j (� ∩ α�α−1)δ j for {δ j } j ⊂ � we define

T�(�) :=
∑

j

� · (α−1δ j ),

where if β ∈ B×, � · β(v) := �(βvβ−1). Note that, since � � N , R ∩ αRα−1 is an
Eichler Z[1/p]-order. Hence, by strong approximation [38, Ch. III, §4], the double
coset space (R̂ ∩ α R̂α−1)×\B̂×/B× has precisely one element. Using this, together
with the fact that R ∩ αRα−1 has an element of reduced norm p [2, Lemma 1.5],
we deduce: for the same {δ j } j ⊂ � as above R̂× = � j (R̂ ∩ α R̂×α−1)δ j . Hence,
R̂×α−1 R̂× = � j R̂×α−1δ j and it follows from there that T�(�) is R̂×-invariant. It
follows from this description that the Hecke action preserves the subspace of special
Schwartz–Bruhat functions.

Lemma 2.9 Let � be a Schwartz–Bruhat function on VAp,∞ invariant under R̂×. The
following identity of divisors holds:

T�(��,�(D)) = �T�(�),�(D).

Proof Using that � is torsion-free, the equalities

T�(��,�(D)) = (π2,∗ ◦ α ◦ π∗1 )
(
��,�(D)

)

= (π2,∗ ◦ α)
(
��,α−1�α∩�(D)

)

= π2,∗ ◦ α��·α−1,�∩α�α−1(D)

= �T�(�),�(D)

can be proven in the same way as [25, Prop. 5.9 and Prop. 5.10]. ��
When it is clear from context that we are viewing� as a �-invariant Schwartz–Bruhat
function, we simply write ��(D) (resp. G�) to denote ��,�(D) (resp. G�,�).
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3 Modularity of degrees of Heegner divisors

Fix a special Schwartz–Bruhat function �. In this section, we prove that

deg(G�)(q) = �(0) deg(L∨)+
∑

D∈DS

deg(��(D))qD

is a modular form by comparing deg(G�) to a genus theta series attached to V .
Fix L0, . . . , Lr unimodular Zp-lattices in VQp that give a set of representatives of

�\T0. For every i consider the ternary theta series attached to the Schwartz–Bruhat
function �⊗ 1Li on VA∞

�i =
∑

v∈V
�(v)1Li (v)qQ(v).

Note that theta series �i only depends on the class of Li in R×\T0. Since � is
invariant under K0(4N/p)(p) and Li is a unimodular Zp-lattice, �⊗ 1Li is invariant
under K0(4N/p). It is well known that �i is a modular form of weight 3/2 and level
�0(4N/p) for every i . (See for example Theorem 4.1 of [4].) Define themodular form

E� :=
r∑

i=1
�i .

The following lemma relates the degrees of those ��(D) with ordp(D) ∈ {0, 1} with
the corresponding Fourier coefficients of E�.

Lemma 3.1 Let D ∈ DS, then:

(1) if ordp(D) = 0, then 2aD(E�) = deg(��(D)), and
(2) if ordp(D) = 1 then, aD(E�) = deg(��(D)).

Proof Since � is torsion-free, it does not stabilize any vertex of T0. Thus, Lemma 2.4
implies that

r⊔

i=1

{
v ∈ V ∩ Li

∣∣ Q(v) = D
} ∼−−→ {

v ∈ �\V ∣∣ Q(v) = D
}

v �−→ [v]

is bijective if ordp(D) = 0 and surjective and two-to-one if ordp(D) = 1, which
implies the assertion. ��

Let M ∈ Z>0 and k such that 2k ∈ Z>0. When k is a half-integer, we will always
assume that the levelM is divisible by 4. Denote byMk(�0(M)) (resp. Sk(�0(M))) the
spaceofmodular forms (resp. cusp forms) formsofweight k and level�0(M). Consider
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the subspaces Mk(�0(M), Z) (resp. Sk(�0(M), Z)) of forms whose q-expansion has
integer coefficients and, for any abelian group A, put

Mk(�0(M), A) :=Mk(�0(M), Z)⊗Z A and Sk(�0(M), A) := Sk(�0(M), Z)⊗Z A.

We view these as subspaces of the group A[[q]] of formal q-series with coefficients
in A. By [33, Lemma 8] there exists a basis of Mk(�0(M)) consisting of forms with
integer coefficients. Hence, the natural homomorphisms

Mk(�0(M), C)
∼−−→ Mk(�0(M)) and Sk(�0(M), C)

∼−−→ Sk(�0(M))

are bijective. We now introduce several operators acting on M3/2(�0(M), A). For that
let

f =
∑

n≥0
anq

n ∈ A[[q]]

be a formal q-series with coefficients in A. Following Shimura ( [35, Theorem 1.7]),
define

Tp2( f ) :=
∑

n≥0

(
ap2n +

(−n
p

)
an + pan/p2

)
qn,

Up2( f ) :=
∑

n≥0
ap2nq

n,

and put Vp2 f := Tp2 f −Up2 f . Now suppose that f ∈ M3/2(�0(M), R) is a modular
form. Then Tp2 f ∈ M3/2(�0(M), R) if p � M and, in case p | M , we have Up2 f ∈
M3/2(�0(M), R).

Proposition 3.2 The modular form E� is an Eisenstein series of level �0(4N/p). In
particular, it satisfies Tp2(E�) = (p + 1)E�.

Proof Strong approximation implies that the modular form E� is the genus theta
function associated to the Schwartz–Bruhat function�⊗1Li . Thus E� is an Eisenstein
series by the Siegel–Weil theorem [26, Theorem 4.1 (ii)]. A direct proof of this fact
can be found in [23, Corollary 4.3]. Moreover, since � is special, Theorem 4.2 of
loc.cit. shows that E� is an eigenvector of Tp2 with eigenvalue (p + 1). ��
Since � is special, (8) implies that

Up2(G�(q)) = G�(q).

We proceed to modify E� so that it becomes invariant under Up2 as well. For that,
put E1

� := E − Vp2(E) ∈ M3/2(�0(4N )).

Corollary 3.3 We have Up2(E
1
�) = E1

�.
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Proof Since (Up2 ◦Vp2)(E) = pE (which can be verified directly from the description
of Up2 and Vp2 given above), we have

Up2(E
1
�) = Up2(E)− pE .

Using that Up2 = Tp2 − Vp2 and Proposition 3.2 yields the desired result. ��
We can finally prove the main result of this section.

Proposition 3.4 The equality deg(G�)(q) = E1
� holds. In particular, deg(G�)(q) is

an Eisenstein series of weight 3/2 and level �0(4N ).

Proof By Lemma 3.3, the equalityUp2(E
1
�) = E1

� holds. On the other hand, since �

is special we have deg(��(Dp2)) = deg(��(D)) for all D. Hence, it is enough to
verify that the Fourier coefficients of E1

� and of deg(G�) are equal in the following
cases:

• If ordp(D) = 1, the second point of Lemma 3.1 implies

aD(E1
�) = aD(E�) = deg(��(D)).

• If ordp(D) = 0 and
(−D

p

)
= −1, the first point of Lemma 3.1 gives

aD(E1
�) = 2aD(E�) = deg(��(D)).

• If ordp(D) = 0 and
(−D

p

)
= 1, one calculates

aD(E1
�) = aD(E�)− aD(E�) = 0.

On the other hand, we have that ��(D) = 0, as G�(q) is supported only on
non-negative integers that belong to DS .

• If D = 0, we have a0(E1
�) = �(0)(1 − p)r , where we recall that r = #(�\T0).

Now, since � is torsion-free, it follows that �\T is a (p+ 1)-regular graph. Thus,
we readily compute its first Betti number

g(�\T ) = 1− #(�\T0)+ #(�\T1) = 1− r + p + 1

2
r ,

which by [14, Theorem 5.4.1] equals the genus g of X . The degree of the cotangent
bundle of X is equal to 2g − 2. This implies that

a0(E
1
�) = �(0)(1− p)r = �(0)(2− 2g) = �(0)deg(L∨).

Therefore, we obtain the desired equality deg(G�) = E1
�. ��
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4 The Abel–Jacobi map

Because the curve X is a Mumford curve over Qp2 , its Jacobian, denoted by J , has
purely toric reduction and admits a concrete description in terms of equivalence classes
of automorphy factors of rigid meromorphic functions in Hp. In this section, we
explain how the class in J of a degree zero divisor can be described explicitly in
these terms. Then, we introduce the notion of divisors of strong degree 0, for which
there exists a preferred choice of automorphy factor describing its class in J . Finally,
we use this notion to reduce Theorem 2.7 to the case where all divisors appearing as
coefficients of the generating series G� have strong degree 0.

4.1 Definition and properties of the Abel–Jacobi map

A formal divisor on Hp is a formal, possibly infinite Z-linear combination of points
inHp. A formal divisor

D̂ =
∑

x∈Hp

mx (x)

is said to be discrete if the formal divisor

D̂ ∩A :=
∑

x∈A
mx (x)

is an actual divisor, i.e., involves a finite sum for all standard affinoid subsetsA ⊂Hp.
The set of all discrete formal divisors on Hp is denoted by Div†(Hp). Denote by
Div(Hp) (resp. Div0(Hp)) the subset of finite divisors (resp. finite divisors of degree
0). The quotient map π : Hp → �\Hp induces pushforward and pullback maps

π∗ : Div(Hp) −→ Div(�\Hp), π∗ : Div(�\Hp) −→ Div†(Hp),

since � acts on Hp with discrete orbits. Given � ∈ Div(X(Cp)), let D ∈ Div(Hp)

and D̂ ∈ Div†(Hp) be (formal) divisors satisfying

π∗(D) = �, D̂ = π∗(�). (9)

The divisor D is not unique, while the formal divisor D̂ is completely determined by
�.

Given any degree zero divisorD onCV (Cp) � P1(Cp), there is a rational function
fD onCV (Cp) havingD as a divisor, which is unique up to amultiplicative constant. A
rational function f is extendedmultiplicatively to any divisorD = ∑

x∈CV (Cp)
mx ·(x)

by setting

f (D) :=
∏

x∈CV (Cp)

f (x)mx .
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Definition 4.1 The Weil symbol attached to two degree zero divisors D0 and D1 on
CV (Cp) with disjoint supports is the quantity

[D0;D1] := fD0(D1) ∈ Cp.

TheWeil symbol generalises the familiar cross-ratio which one recovers whenD0 and
D1 are both differences of two points, and satisfies the following familiar properties:

(1) It is bilinear: for all degree zero divisors D0, D1 and D2

[D0;D1 +D2]=[D0;D1] × [D0,D2], [D0 +D1;D2]=[D0;D2] × [D1;D2],

(2) It is B×
Cp

-equivariant:

[γD0; γD1] = [D0;D1] for all γ ∈ B×
Cp

.

(3) It is symmetric (Weil reciprocity):

[D0;D1] = [D1;D0].

(4) Given any pair D0 and D1 of degree zero divisors on Hp for which the support
of D0 is disjoint from the �-orbit of the support of D1, the infinite product

⎡

⎣D0;D1]� :=
∏

γ∈�

[D0; γD1

⎤

⎦

converges absolutely in C×
p . (See page 47 of [16].)

The quantity [D0;D1]� is called the modular Weil symbol attached to the divisorsD0
andD1 onHp and to the discrete p-arithmetic group �. It can be used to describe the
Jacobian of X as follows: let L be a complete extension of Qp2 ,D ∈ Div0(Hp(L)) a
divisor of degree 0 and choose η ∈Hp(L) such that (η) and αD have disjoint support
for all α ∈ �. Then, define θD via

θD (z) = [(z)− (η);D]� ∀z ∈Hp(L).

Note that for γ ∈ � one gets

θD (γ z)

θD (z)
= [(γ z)− (z);D]� = [(γ η)− (η);D]� ∈ L×, (10)

where in the second equality we used that the modular Weil symbol is invariant under
the action of � on any of the two divisors, and therefore [(γ z)− (γ η);D]� = [(z)−
(η);D]� , which implies the desired equality by the linearity of theWeil symbol. Thus,
the automorphy factor in (10) is independent of z. We then denote

jD (γ ) = [(γ η)− (η);D]�. (11)
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The function jD defines an element in Hom(�, L×) = Hom(�ab, L×), where �ab is
the abelianization of �. Note that the group �ab is a finitely generated free abelian
group of rank equal to the genus g of the Shimura curve X . We need to introduce one
more ingredient, the so-called p-adic period pairing. Define

〈〈·, ·〉〉 : � × � → C×
p ,

by choosing arbitrary base points τ1, τ2 ∈Hp that are not �-equivalent and setting

〈〈γ1, γ2〉〉 := [(γ1τ1)− (τ1); (γ2τ2)− (τ2)]�.

In a similar way as above, it can be seen that this expression does not depend on the
choice of τ1 and τ2, and is a homomorphism in each argument. Moreover, it descends
to a pairing 〈〈·, ·〉〉 : �ab×�ab → Q×

p , which gives an embedding (see VI.2 and VIII.3
of [16])

j : �ab ↪−→ Hom(�ab, Q×
p ) � (Q×

p )g.

Now, for a given � ∈ Div0(�\Hp(L)), choose D ∈ Div0(Hp(L)) such that
π∗D = � and define

AJ : Div0(�\Hp(L)) −→ Hom(�ab, L
×)/ j(�ab), � �−→ [ jD ].

It is a calculation to verify that the equivalence class of jD is independent of the choice
of lift of �, showing that the map AJ is well-defined. Remember that J denotes the
Jacobian of the curve X .

Proposition 4.2 The mapAJ defined above is trivial on the group of principal divisors
and, for every complete extension L of Qp2 , it induces an identification

J (L) � Hom(�ab, L
×)/ j(�ab).

Moreover, if L/Qp2 is a Galois extension, the identification is Gal (L/Qp2)-
equivariant.

Proof See VI.2. and VIII.4 of [16]. ��
In view of the previous proposition, AJ can be interpreted as a p-adic Abel–Jacobi
map. We also note that, by the positive definiteness of the pairing ordp ◦ 〈〈·, ·〉〉
(see VI.2 and VIII.3 of [16]), the natural homomorphism from Hom(�ab, Z×

p2
) to

Hom(�ab, Q×
p2

)/ j(�ab) is an injection, whose image has finite index. This gives the
explicit description

J (Qp2)Q � H1(�ab, Z×
p2

)Q.
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4.2 Divisors of strong degree 0

For any vertex L ∈ T0, consider the affinoid AL := red−1(L) ⊂ Hp and the wide
openWL ⊂Hp given as the preimage by red of the union of the vertex L and all the
(open) edges of T that have L as one of its endpoints.

Definition 4.3 Let D be a finite divisor on Hp.

(1) D is of strong degree 0 in the even sense if D ∩WL is of degree 0 for every even
vertex L ∈ T0, and D ∩AL is of degree 0 for every odd vertex L ∈ T0.

(2) D is of strong degree 0 in the odd sense if D ∩WL is of degree 0 for every odd
vertex L ∈ T0, and D ∩AL is of degree 0 for every even vertex L ∈ T0.

A divisor � ∈ Div(�\Hp) is of strong degree zero if the following equivalent
conditions hold:

(1) There exists divisors De,Do ∈ Div(Hp) of strong degree 0 in an even and odd
sense respectively such that π∗(De) = π∗(Do) = �.

(2) The formal divisor D̂ = π∗� satisfies that, for every L ∈ T0, the divisors D̂ ∩
WL and D̂ ∩AL have degree 0.

We denote by Div0s (�\Hp) the group of divisors of strong degree 0 on �\Hp. We
also denote Div0s,e(Hp) (resp. Div0s,o(Hp)) the group of divisors of strong degree 0
on Hp in an even (resp. odd) sense. The motivation for these notions is explained in
the next lemma.

Lemma 4.4 Let � be an element of Div0s (�\Hp). The homomorphism jDe ∈
Hom(�ab, C×

p ) does not depend on a choice of De ∈ Div0s,e(Hp) with π∗(De) = �.
In particular, the morphism

Div0s (�\Hp) −→ Hom(�ab, C×
p ), � �−→ jDe ,

is a well-defined lift of the restriction of AJ to Div0s (�\Hp). The same is true if one
replaces e by o everywhere.

Proof LetD ,D ′ ∈ Div0s,e(Hp) be such that π∗D = π∗D ′ = �. By the strong degree
0 assumption there exist vertices L1, . . . , Lr ∈ T0 and a decomposition

D = D1 + · · · +Dr

such that for 1 ≤ i ≤ r the divisor Di is of degree 0 and supported on

(1) WLi if Li is an even vertex, or
(2) ALi if Li is an odd vertex.

Since jD j = jγD j , for every γ ∈ �, we can suppose that the vertices L1, . . . , Lr are
not �-equivalent. Proceeding similarly for D ′, there exist lattices L ′1, . . . , L ′r ′ ∈ T0
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and degree 0 divisors D ′
1, . . . ,D

′
r ′ ∈ Div0(Hp) satisfying the same conditions as

above. We have

D̂ =
r∑

i=1

∑

α∈�

αDi =
r ′∑

i=1

∑

α∈�

αD ′
i .

For α ∈ �, the divisor αDi has support inWαLi if Li is even and has support inAαLi

if Li is odd. Note that these supports are disjoint when i varies from 1 to r and α

varies over �, as � does not stabilize any vertex because it is torsion-free. Moreover,
the same holds for the divisors αD ′

i . Thus, we conclude that r = r ′ and there exist
α1, . . . , αr ∈ � such that

Di = αiD
′
i

for every i (after rearranging terms, if needed). We therefore have that jDi = jD ′
i
for

all i and the equality jD = jD ′ follows. ��
If � ∈ Div0s (�\Hp) is a divisor supported on preimages of vertices by the reduction
map, both lifts De and Do are divisors of strong degree 0 in an even sense and in an
odd sense simultaneously. We will sometimes drop the subindices e and o in this case.

4.3 Reduction of themain theorem to convenient Schwartz–Bruhat functions

Recall the action of TN on R̂×-invariant Schwartz–Bruhat functions introduced in
Sect. 2. We can similarly define an action of TN on the space Funct(�\T0, Z) of
�-invariant integral functions on T0.
Definition 4.5 A Schwartz–Bruhat function � on VAp,∞ is convenient if it is special,
�(0) = 0, and for every D ∈ DS the divisor ��(D) is of strong degree 0.

Lemma 4.6 Let � be a special Schwartz–Bruhat function and let T ∈ TN be a
Hecke operator that annihilates the spaceFunct(�\T0, Z). Then, the Schwartz–Bruhat
function T (�) is convenient.

Proof For L ∈ T0, denote by δL the characteristic function of L . Define the
homomorphism degT0 : Div(Hp) → Funct(T0, Z) by

degT0((P)) =
{

δL , if red(P) = L ∈ T0,
δL + δL ′ if red(P) = (L, L ′) ∈ T1.

This morphism is B×-equivariant, hence induces a TN -equivariant morphism

degT0 : Div(�\Hp) −→ Funct(�\T0, Z).

We proceed to verify that �T (�)(D) is of strong degree 0 for a fixed D ∈ DS . From
the Hecke equivariance of degT0 , we have

degT0(�T (�)(D)) = degT0(T (��(D))) = T (degT0(��(D))) = 0,
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where we used Lemma 2.9 in the first equality. Since �T (�)(D) is supported on
preimages of vertices (resp. edges) if ordp(D) is even (resp. odd), the fact that
degT0(�T (�)(D)) = 0 implies that �T (�)(D) is of strong degree 0. Finally, from
the fact that T sends the constant functions on Funct(�\T0, Z) to 0, it follows that
(T (�))(0) = 0. ��

Let G�(q) ∈ Pic(�\Hp)[[q]] be the generating series introduced in Theorem
2.7. We now use the Jacquet–Langlands correspondence to justify that to prove
Theorem 2.7 it is enough to prove it for the particular case where � is convenient.

Proposition 4.7 The following statements are equivalent:

(1) The generating series G�(q) is a modular form of weight 3/2 and level �0(4N )

for every special Schwartz–Bruhat function �.
(2) The generating series G�(q) is a cusp form of weight 3/2 and level �0(4N ) for

every convenient Schwartz–Bruhat function �.

Proof Clearly (1) implies (2). We justify the reverse implication. By Jacquet–
Langlands, we have:

• The action of TN on Funct(�\T0, Z) factors through the action of the Hecke
algebra (away from N ) on M2(�0(N/p), Q).

• The action ofTN on J (Cp)Q factors through the action of theHecke algebra (away
from S) on the space of forms in S2(�0(N ), Q) that are new at p.

Let � be a prime such that � /∈ S and denote by T� ∈ TN the corresponding Hecke
operator. From the second point and the fact that the map T�−�−1 is an isomorphism
on S2(�0(N ), Q), as the eigenvalues of T� acting on S2(�0(N ), Q) have absolute
value less than or equal to 2

√
� (see [13], [34], and [21]), we deduce that we have an

isomorphism

Pic(X)(Cp)Q

∼−−→ J (Cp)Q ⊕Q, [�] �−→ ((T� − �− 1)�, deg(�)) .

Let � be a special Schwartz–Bruhat function. Since we proved that deg(G�) is a
modular form in Proposition 3.4, after replacing� by (T�−�−1)(�) (and by Lemma
2.9) we may suppose that G�(q) ∈ J (Cp)Q[[q]]. Now, choose T ∈ TN satisfying

• T annihilates Funct(�\T0, Z) and
• T : J (Cp)Q → J (Cp)Q is a bijection.

Such a T ∈ TN exists because there are Hecke operators acting on M2(�0(N ), Q)

which are 0 on M2(�0(N/p), Q) and are isomorphisms on the subspace of cusp forms
which are new at p. By the first property and Lemma 4.6, T (�) is convenient and
therefore GT (�)(q) = T (G�(q)) is a modular form by hypothesis. Here T (G�(q))

denotes the q-expansion obtained by applying T to each of the coefficients of G�(q).
The fact that G�(q) ∈ J (Cp)Q[[q]] is a modular form follows from the bijectivity of
T on the Jacobian. ��

Let� be a convenient Schwartz–Bruhat function. For every D ∈ DS , fixD�(D)e ∈
Div0s,e(Hp) and D�(D)o ∈ Div0s,o(Hp) such that π∗D�(D)e = π∗D�(D)o =
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��(D). Note that, since the cycles �(v) for v ∈ V introduced in Section 2.2 are
invariant under the action of Aut(Cp/Qp), these lifts of ��(D) can be chosen such
that they are invariant under the action of Aut(Cp/Qp). It follows from there that
the homomorphisms jD�(D)e and jD�(D)o take values in Q×

p . Consider the generating
series

G+
�(q) =

∑

D∈DS

jD�(D)e · jD�(D)oq
D ∈ Hom(�ab, Q×

p )[[q]].

Note that aD(G+
�(q)) = aDp2n (G

+
�(q)) for all n ≥ 0 since � is special.

Observe that by Lemma 4.4, if we apply the quotient map

Hom(�ab, Q×
p ) −� Hom(�ab, Q×

p )/ j(�)

to each of the coefficients of G+
�(q) we obtain 2AJ(G�)(q). Here 2AJ(G�)(q) is

the generating series obtained by applying 2AJ to each of the coefficients of G�(q).
Hence, by Proposition 4.2 the modularity of G+

�(q) implies the modularity of G�(q).
The remainder of this article is dedicated to proving modularity of G+

�(q).
The advantage of working with G+

�(q) over AJ(G�)(q) is that the group of contin-
uous homomorphisms from Hom(�ab, Q×

p ) to Qp can be described explicitly. Indeed,
generators of this space are given by homomorphisms of the form j �→ logp( j(γ ))

respectively j �→ ordp( j(γ )) with γ ∈ �, where logp is the branch of the p-adic
logarithm for which logp(p) = 0.

5 Values of p-adic theta functions

The goal of this section is to give an explicit expression for the quantity jD (γ ) when
γ ∈ � is hyperbolic at p andD is a divisor on �\Hp of strong degree 0. The formulas
we will present have a similar flavor to the ones for toric values of lifting obstructions
of rigid meromorphic cocycles given in [11, Section 5.3]. There, the orthogonal group
of signature (3, 0) is replaced by an orthogonal group of signature (1, 2).

Fix an element γ ∈ � that is hyperbolic at p. It has two distinct fixed points

ξ+, ξ− ∈ CV (Qp)

on the boundary ofHp. We order them in such a way that ξ+ and ξ− are the attractive
and repulsive fixed points of γ , i.e.,

lim
M→+∞ γ Mτ = ξ+, lim

M→−∞ γ Mτ = ξ−,

for all τ ∈Hp.
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Lemma 5.1 For every D ∈ Div0(Hp) the following equality holds:

jD (γ ) =
∏

α∈γ Z\�

[
(ξ+)− (ξ−);αD]

.

Proof Recall first from (11) that

jD (γ ) =
∏

α∈�

[
(αγ τ)− (ατ);D]

,

where τ is an arbitrary base point in Hp. Since this infinite product converges abso-
lutely, it can be rearranged by grouping together the factors that belong to the same
coset for γ Z in �

jD (γ ) =
∏

α∈�/γ Z

( ∞∏

i=−∞

[
(αγ i+1τ)− (αγ iτ);D

])

.

The innermost product on the right hand side is equal to

lim
M→∞

M∏

i=−M

[
(αγ i+1τ)− (αγ iτ);D

]
= lim

M→∞

[
(αγ M+1τ)− (αγ−Mτ);D

]

= [
(αξ+)− (αξ−);D]

.

It follows that

jD (γ ) =
∏

α∈�/γ Z

[
(αξ+)− (αξ−);D] =

∏

α∈γ Z\�

[
(ξ+)− (ξ−);αD]

,

where the last equation was obtained by substituting α for α−1 and exploiting the fact
that the Weil Symbol is B×

Qp
-equivariant. ��

5.1 The quotient �Z\T

We will rewrite the infinite product of Lemma 5.1 by making an explicit choice of
coset representatives for γ Z in �, well adapted to the calculation at hand. To make this
choice, we will exploit the action of γ Z on the Bruhat-Tits tree T . We explain some
of the properties of such action.

Since the element γ ∈ � is hyperbolic at p, and therefore its image in SL2(Qp)

diagonalizes by the fixed isomorphism BQp � M2(Qp), we deduce that it acts by con-
jugation on VQp with three distinct eigenvalues �, 1, and �−1, where � is a global
p-unit of norm 1 in the quadratic imaginary field that splits the characteristic polyno-
mial of γ (relative to an embedding of this quadratic imaginary field into Qp). The
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valuation ordp(�) = 2t > 0 is an even integer. Letting V [λ] denote the eigenspace
in V on which γ acts as multiplication by λ, one obtains the decomposition

VQp = V [� ] ⊕ V [�−1] ⊕ V [1].

The first two eigenspaces are isotropic and together generate a hyperbolic plane in
VQp whose orthogonal complement is V [1]. The fixed points ξ+ and ξ− of γ in
CV (Qp) correspond to the isotropic lines V [� ] and V [�−1] respectively. Let w+ be
a generator of V [� ], let w− be a generator of V [�−1], and e a generator of V [1]. It
follows from this discussion that we can scale these vectors so that

L0 := 〈w+, w−, e〉

is a unimodular Zp-lattice of VQp . Then, L0 admits an eigenspace decomposition
under the conjugation action of γ as a module over Zp. The same is true for the
lattices

L j := 〈w+
j := p jw+, w−

j := p− jw−, e〉, j ∈ Z.

The unimodular lattices L j and L j+1 are p-neighbours, and the element γ sends L j

to L j+2t . The sequence of successive p-neighbours

gγ =
{
. . . , L−2, L−1, L0, L1, L2, L3, . . .

}

determines an infinite geodesic on T which is globally preserved by γ . We suppose
that the scaling of the eigenvectors w+, w− and e are chosen so that the lattice L0 is
an even vertex of T .

Definition 5.2 Let L ⊆ VQp be a unimodular Zp-lattice in VQp . The lattice Li ∈ gγ

that is closest to L is called the parent of L . The distance from L to its parent Li is
called the depth of L with respect to γ .

A fundamental region for γ Z\T0 can therefore be defined by setting

T0,γ :=
{
L ∈ T0 with Parent(L) ∈ {L0, L1, L2, . . . L2t−1}

}
.

The subset T0,γ ⊂ T can be written as an increasing union of finite subsets

T0,γ =
⋃

n≥0
T ≤n
0,γ , T ≤n

0,γ := {L ∈ T0,γ with depth(L) ≤ n}.

LetAγ respectivelyA≤n
γ be the subsets ofHp given as the preimages of T0,γ respec-

tively T ≤n
0,γ under the reductionmap. The setAγ can thus be expressed as an increasing

union of affinoid subsets,

Aγ =
⋃

n≥0
A≤n

γ . (12)
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Using T0,γ , we proceed to give several fundamental regions for γ Z\T1. Define
T1,γ,e to be the set of edges in T1 such that its even vertex is in T0,γ . For a given vertex
L ∈ T0, let WL ⊂ T1 be the set of open edges that have L as one of its endpoints. We
then have,

T1,γ,e =
⋃

n≥0
T ≤n
1,γ,e, T ≤n

1,γ,e :=
⋃

L even
L∈T ≤n

0,γ

WL .

LetWγ,e andW≤n
γ,e be the preimage by red of T1,γ,e and T ≤n

1,γ,e, respectively. We then
have

Wγ,e =
⋃

n≥0
W≤n

γ,e. (13)

Observe that for every n the set W≤n
γ,e can be written as the disjoint union of sets of

the formWL −AL , where L runs over even vertices in T ≤n
0,γ . Similarly, define T1,γ,o,

T ≤n
1,γ,o, Wγ,o and W≤n

γ,o by replacing even by odd everywhere.

5.2 Computation of jD (�) for divisors of strong degree 0

With the notations given in the previous section in place, we can prove the following
formulas.

Proposition 5.3 Let D be a divisor onHp of strong degree zero supported on preim-

ages of vertices of T under the reduction map. Let D̂ = ∑
α∈� αD ∈ Div†(Hp).

Then,

jD (γ ) = lim
n→∞

[
(ξ+)− (ξ−); D̂ ∩A≤n

γ

]
.

Proof Since D is of strong degree 0 we can write D = ∑r
i=1DLi , where DLi is a

degree 0 divisor supported on ALi and the Li are vertices in T0. By Lemma 5.1, we
have

jD (γ ) =
∏

α∈γ Z\�

[
(ξ+)− (ξ−);αD] =

r∏

i=1

∏

α∈γ Z\�

[
(ξ+)− (ξ−);αDLi

]
. (14)

Now, it follows from the definition of T0,γ , that for every i ∈ {1, . . . , r} and for every
class [α] ∈ γ Z\�, there is precisely one representative γ ki,αα such that γ ki,ααDLi is
supported on Aγ . This implies that if we write

D̂ =
∑

α∈�

αD =
r∑

i=1

∑

α∈γ Z\�

+∞∑

k=−∞
γ kαDLi ,
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we have

D̂ ∩Aγ =
r∑

i=1

∑

α∈γ Z\�
γ ki,ααDLi .

On the other hand, using (14) and that ξ+ and ξ− are fixed by γ we can write

jD (γ ) =
r∏

i=1

∏

α∈γ Z\�

[
(ξ+)− (ξ−); γ ki,ααDLi

]
.

Combining the last two equalities, and specifying the order of multiplication on the
last expression for jD (γ ) given by the increasing union of (12), we obtain the desired
result. ��

We can obtain similar expressions for jD (γ ) when D is a divisor of strong degree
0 supported on preimages of edges by the reduction map.

Proposition 5.4 Let D be a divisor on Hp supported on preimages of edges of T by

the reduction map. Let D̂ = ∑
α∈� αD ∈ Div†(Hp). We have:

(1) If D = De is of strong degree 0 in an even sense, then

jDe(γ ) = lim
n→+∞

[
(ξ+)− (ξ−); D̂ ∩W≤n

γ,e

]
.

(2) If D = Do is of strong degree 0 in an odd sense, then

jDo(γ ) = lim
n→+∞

[
(ξ+)− (ξ−); D̂ ∩W≤n

γ,o

]
.

Proof We only give the proof for the first case, the second being similar. Write D =∑r
i=1DLi , where DLi is a degree 0 divisor supported on WLi − ALi and the set

{L1, . . . , Lr } consists of even vertices of T0. Hence, we have

jD (γ ) =
∏

α∈γ Z\�

[
(ξ+)− (ξ−);αD] =

r∏

i=1

∏

α∈γ Z\�

[
(ξ+)− (ξ−);αDLi

]
.

Now, for every class [α] ∈ γ Z\� and Li even vertex as above, there exists precisely one
representative γ ki,αα such that γ ki,ααLi ∈ T0,γ . It follows from there that the divisor
γ ki,ααDLi is supported on γ ki,ααWLi −γ ki,ααALi =W

γ
ki,α αLi

−A
γ
ki,α αLi

⊂Wγ,e.
This implies that if

D̂ =
r∑

i=1

∑

α∈γ Z\�

+∞∑

k=−∞
γ kαDLi ,
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we have

D̂ ∩Wγ,e =
r∑

i=1

∑

α∈γ Z\�
γ ki,ααDLi .

On the other hand,

jD (γ ) =
∏

α∈γ Z\�

[
(ξ+)− (ξ−); γ ki,ααDLi

]
. (15)

Note that W≤n
γ,e can be written as a union of sets of the form WLi − ALi , where the

union is over even vertices in T ≤n
0,γ . Hence, D̂ ∩W≤n

γ,e is a degree 0 divisor (becauseD
is of strong degree 0). Moreover, the increasing union over n of the sets W≤n

γ,e covers
Wγ,e, as we deduced in (13). This implies that we can use these sets to specify an
order of multiplication on (15) to obtain the desired expression. ��

6 Abel–Jacobi images of Heegner divisors

We use the results of Sect. 5 to compute Abel–Jacobi images of the Heegner divisors
introduced in Sect. 2. More precisely, let� be a convenient Schwartz–Bruhat function
and fix D ∈ DS . Choose D�(D)e,D�(D)o divisors on Hp of strong degree 0 in
an even and odd sense respectively that lift ��(D) and let D̂�(D) = π∗��(D). If
��(D) is supported on preimages of vertices under the reduction map, we suppose
that D�(D)e = D�(D)o and we will drop the subindices e and o. At last, let γ ∈ �

be an element hyperbolic at p. We will compute jD�(D)e · jD�(D)o(γ ).

6.1 Values of theta functions associated to Heegner divisors

Since � is invariant under multiplication by p, we have ��(D) = ��(Dp2n) for
every n ≥ 0. Therefore, we will assume here and for the rest of the section that D is an
element of DS with ordp(D) ∈ {0, 1}. In view of the notion of depth of a lattice with
respect to γ , which was introduced in Definition 5.2, the following definition will be
relevant.

Definition 6.1 Let v ∈ V be a vector such that Q(v) = D. The depth of v with respect
to γ is

depth(v) := min
L�v

{depth(L)},

where the minimum is taken over all unimodular Zp-lattices in VQp such that v ∈ L .

Note that by Lemma 2.4 there exist at most two unimodular Zp-lattices containing v.
If there is a unique unimodular lattice containing v, denote it by Lv ∈ T0. If there are
two unimodular lattices containing v, denote by ev ∈ T1 the edge connecting them.
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We now present the computation of jD�(D)e · jD�(D)o(γ ), which is slightly different
according to the p-adic valuation of D. Let n ≥ 1. If ordp(D) = 0, consider

D̂�(D) ∩A≤n
γ =

∑

Q(v)=D,

Lv∈T ≤n
0,γ

�(v)�(v),

where the sum is over the vectors v ∈ V . Since this divisor is of degree zero, as � is
convenient, the function on CV given by

ξ �−→
∏

Q(v)=D,

Lv∈T ≤n
0,γ

〈ξ̃ , v〉�(v),

where ξ̃ is any vector in the isotropic line generated by ξ in VCp , is well-defined

and has divisor equal to D̂�(D) ∩ A≤n
γ . Therefore, if ξ̃+ and ξ̃− are vectors in VCp

generating the Cp-lines ξ+ and ξ− introduced in Sect. 5, Proposition 5.3 implies

jD�(D)(γ ) = lim
n→∞

∏

Q(v)=D,

Lv∈T ≤n
0,γ

(
〈ξ̃+, v〉
〈ξ̃−, v〉

)�(v)

= lim
n→∞

∏

v∈γ Z\V
Q(v)=D,
depth(v)≤n

(
〈ξ̃+, v〉
〈ξ̃−, v〉

)�(v)

. (16)

Here, the second equality follows from the fact that the terms appearing in the expres-
sion of the middle do not change if we replace v by γ v. If ordp(D) = 1, we can
proceed similarly. In that case, the function on CV (Cp) given by

ξ �−→
∏

Q(v)=D
ev∈T ≤n

1,γ,e

〈ξ, v〉�(v)
∏

Q(v)=D
ev∈T ≤n

1,γ,o

〈ξ, v〉�(v)

has divisor equal to

D̂�(D) ∩W≤n
γ,e + D̂�(D) ∩W≤n

γ,o.

It then follows from Proposition 5.4 that

jD�(D)e · jD�(D)o(γ ) = lim
n→+∞

∏

Q(v)=D
ev∈T ≤n

1,γ,e

(
〈ξ̃+, v〉
〈ξ̃−, v〉

)�(v) ∏

Q(v)=D
ev∈T ≤n

1,γ,o

(
〈ξ̃+, v〉
〈ξ̃−, v〉

)�(v)

= lim
n→+∞

∏

v∈γ Z\V
Q(v)=D

depth(v)≤n−1

(
〈ξ̃+, v〉
〈ξ̃−, v〉

)�(v) ∏

v∈γ Z\V
Q(v)=D

depth(v)≤n

(
〈ξ̃+, v〉
〈ξ̃−, v〉

)�(v)

,

(17)

123



The Gross–Kohnen–Zagier theorem via p-adic...

where the second equality is obtained by rearranging the terms of the products in the
following way. Recall that T ≤n

1,γ,e is the union of edges that have an endpoint in T0,γ
which is even and at distance less than or equal to n from the geodesic gγ . Similarly,
T ≤n
1,γ,o is given by replacing even by odd in the definition above. It follows from

this description that, up to γ Z-equivariance, the double product in the first equality
considers vectors v ∈ V such that ev is at distance less than or equal than n− 1 twice
(as ev , or a γ Z-translate of it, belongs to both T ≤n

1,γ,e and T ≤n
1,γ,o). On the other hand,

the double product of the first equality considers v ∈ V such that ev is at distance
equal to n exactly once (as ev belongs to either T ≤n

1,γ,e and T ≤n
1,γ,o). The equality can

be deduced from there and from the fact that the expression 〈ξ̃+, v〉�(v)
/〈ξ̃−, v〉�(v)

does not change if v is replaced by γ v.

6.2 Vectors of length D in �Z\V

Recall that D ∈ DS is such that ordp(D) ∈ {0, 1}. We give a concrete choice of
representatives of the quotient

{
v ∈ γ Z\V ∣∣ Q(v) = D, depth(v) ≤ n

}
. (18)

This will lead to a relation between jD�(D)(γ ) and Fourier coefficients of theta
series in the next section. We begin by recalling some of the notation introduced in
Sect. 5.1. Recall that the conjugation action of γ on VQp diagonalizes, with eigenval-
ues {�,�−1, 1}, and that ordp(�) = 2t ∈ 2Z. Let w+, w−, e be the corresponding
eigenvectors, scaled so that L0 = 〈w+, w−, e〉 is a unimodular Zp-lattice of VQp . For
j ∈ Z, let

w+
j := p jw+, w−

j := p− jw−

and consider the Zp-lattice L j = 〈w+
j , w−

j , e〉. Then, as discussed in Sect. 5,

L0, L1, . . . , L2t−1 form a set of representatives modulo γ Z of the vertices in the
geodesic of T stabilized by γ .

Define

L+j [n] :=
{
v ∈ L j ∩ V

∣∣ Q(v) = Dp2n and 〈v,w+
j 〉 ∈ Z×p

}

and define L−j [n] in a similar way as above but replacing the symbol+ by the symbol

− everywhere. The motivation for the definition of L+j [n] and L−j [n] is the following.
Let T +

j [n] be the subset of T = T0 ∪ T1 of elements x ∈ T that are at distance equal
to n from L j and satisfy that:

(1) If x = L is a vertex and Parent(L) = Lk , then k ≥ j .
(2) If x is an edge, for any of its endpoints L we have that if Parent(L) = Lk , then

k ≥ j .
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DefineT −
j [n] in a similarwaybut replacing the symbol≥by the symbol≤ everywhere.

It then follows from the description of the action of γ Z in T that the disjoint union

2t−1⋃

j=0

{
v ∈ V

∣∣ Q(v) = D, red(�(v)) ⊂ T +
j [n]

}

gives a set of representatives of (18). Similarly, the same holds if we replace the symbol
+ by the symbol −.

Lemma 6.2 The map

L+j [n]
∼−−→

{
v ∈ V

∣∣ Q(v) = D, red(�(v)) ⊂ T +
j [n]

}
, u �−→ u/pn

is bijective. The same result holds if we replace the symbol + by the symbol −
everywhere.

Proof We start proving that the map is well-defined. Let u ∈ L+j [n] and let v =
u/pn . Since u is primitive, Lv (resp. ev) is at distance n from L j if ordp(D) = 0
(resp. ordp(D) = 1). Moreover, the condition 〈u, w+

j 〉 ∈ Z×p implies that if for any
unimodular lattice L containing v we denote Parent(L) = Lk , we have k ≥ j . Hence,
red(�(v)) ⊂ T +

j [n].
The injectivity of the map is clear, so we are left to prove surjectivity. For that, let

v ∈ V be such that Q(v) = D and red(�(v)) ⊂ T +
j [n]. Since there is a unimodular

Zp-lattice in VQp containing v at distance n from L j , we have that pnv ∈ L j . Note that
〈pnv,w+

j 〉 �= 0. Indeed, for the sake of contradiction suppose that 〈pnv,w+
j 〉 = 0.

This implies that

pnv = aw+
j + be,

for a, b ∈ Zp. Then,

γ · (pnv) = a�w+
j + be.

Subtracting these two equations,weget thatγ v−v ∈ V is either 0 or it is an eigenvector
for the Q-linear action of γ on V of eigenvalue � . Since γ v− v ∈ V and � /∈ Q, the
only possibility is that γ v − v = 0. This implies that v ∈ 〈e〉, giving a contradiction
with the fact that

√−D /∈ Qp. We can therefore choose i ≤ j such that pnv ∈ L+i [n].
Now, the fact that the map is well-defined applied to the index i , together with the
observation that the sets T +

i [n] and T +
j [n] are disjoint if i �= j proves that i = j and

we are done. ��

We can combine the information of Lemma 6.2 for j = 0, . . . , 2t − 1 to obtain the
following result.
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Proposition 6.3 Let n ≥ 0, we have a bijection

L+0 [n] ∪ · · · ∪ L+2t−1[n]
∼−−→

{
v ∈ γ Z\V ∣∣ Q(v) = D, depth(v) ≤ n

}

given by v �→ [p−nv], where [p−nv] denotes the class of p−nv ∈ V modulo γ Z.
Moreover, the same result is true if we replace the symbol + by the symbol −.
Proof By Lemma 6.2 we have that the map

L+0 [n] ∪ · · · ∪ L+2t−1[n]
∼−−→

2t−1⋃

j=0

{
v ∈ V

∣∣ Q(v) = D, red(�(v)) ⊂ T +
j [n]

}
,

u �−→ u/pn

is bijective. We conclude the proof by recalling that the right hand side gives a set of
representatives of

{
v ∈ γ Z\V ∣∣ Q(v) = D, depth(v) ≤ n

}
.

��
As a consequence, we obtain the following expression for jD�(D)e · jD�(D)o(γ ).

Theorem 6.4 Consider the same notation as above.

(1) If ordp(D) = 0, we have

jD�(D)(γ ) = lim
n→+∞

2t−1∏

j=0

∏
v∈L+j [n]〈w

+
0 , v〉�(v)

∏
v∈L−j [n]〈w

−
0 , v〉�(v)

.

(2) If ordp(D) = 1, we have

jD�(D)e · jD�(D)o(γ ) = lim
n→+∞

2t−1∏

j=0

∏
v∈L+j [n]∪L+j [n+1]〈w

+
0 , v〉�(v)

∏
v∈L−j [n]∪L−j [n+1]〈w

−
0 , v〉�(v)

.

Proof Suppose that ordp(D) = 0. By (16) and Proposition 6.3, we have

jD�(D)(γ ) = lim
n→+∞

2t−1∏

j=0

∏
v∈L+j [n]〈w

+
0 , vp−n〉�(v)

∏
v∈L−j [n]〈w

−
0 , vp−n〉�(v)

.

Here we used that w+
0 (resp. w−

0 ) generates the line ξ+ (resp. ξ−) and that �(pv) =
�(v) for every v ∈ V . Since the divisorD�(D) is of degree 0, the product of the factors
p−n�(v) is equal to 1, leading to the desired expression. The case when ordp(D) = 1
is proven in an analogous way, but using (17), instead of (16). ��
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6.3 Computation of p-adic valuations

We end the section by using the previous calculations to compute the p-adic valuation
of jD�(D)e · jD�(D)o(γ ).

Proposition 6.5 Let � be a convenient Schwartz–Bruhat function. Then

ordp( jD�(D)e · jD�(D)o(γ )) = 0

for all γ ∈ �. In particular, we have

G+
�(q) ∈ Hom(�, Z×p )[[q]].

Proof Using Theorem 6.4, together with the fact that ordp(〈w+
0 , v〉) = − j if v ∈

L+j [n], and ordp(〈w−
0 , v〉) = j if v ∈ L−j [n], we deduce that it is enough to show

that, for every j ∈ {0, . . . , 2t − 1} and for every n ≥ 0, we have

∑

v∈L+j [n]
�(v)+

∑

v∈L+j [n+1]
�(v) = 0

and that the same statement replacing the symbol+ with− everywhere holds (which
is proven analogously). Note that the quantity on the left hand side can be interpreted
as follows. Denote byA+

j [n] the preimage of T +
j [n] under the reduction map. Then,

D̂�(D) ∩
(
A+

j [n] ∪A+
j [n + 1]

)

=
∑

v∈V
Q(v)=D

red(�(v))⊂T +
j [n]

�(v)�(v)+
∑

v∈V
Q(v)=D

red(�(v))⊂T +
j [n+1]

�(v)�(v),

and

deg
(
D̂�(D) ∩

(
A+

j [n] ∪A+
j [n + 1]

))

=
∑

v∈V
Q(v)=D

red(�(v))⊂T +
j [n]

2�(v)+
∑

v∈V
Q(v)=D

red(�(v))⊂T +
j [n+1]

2�(v)

=
∑

v∈L+j [n]
2�(v)+

∑

v∈L+j [n+1]
2�(v),

where in the last equality we used Lemma 6.2 together with the fact that� is invariant
under multiplication by p. Recall that for a given lattice L we defined the wide open
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WL ⊂Hp in Sect. 4.2. Since we have the disjoint union

A+
j [n] ∪A+

j [n + 1] =
⋃

L∈T +
j [n+1]∩T0

WL ∪
⋃

L∈T +
j [n]∩T0

AL

and ��(D) is of strong degree 0, the result follows. ��

7 First order p-adic deformations of ternary theta series

Fix a convenient Schwartz–Bruhat function �. By Proposition 6.5 above we know
that G+

�(q) belongs to Hom(�ab, Z×p )[[q]]. In order to prove modularity of G+
�(q) it

is therefore enough to prove that

logγ (G+
�)(q) :=

∑

D∈DS

logp( jD�(D)e · jD�(D)o(γ ))qD ∈ Qp[[q]]

is amodular form for everyγ ∈ � hyperbolic at p,whichwefix fromnowon.Here logp
denotes the branch of the p-adic logarithm such that logp(p) = 0. In this section, we
use γ and� to construct a p-adic family of theta series�k , of weight k+3/2 and level
�0(4N ), satisfying the following two properties. First, �0 = 0. Second, if we denote
by �′

0 the derivative with respect to the p-adic variable k evaluated at k = 0, and eord
the so-called p-ordinary projector, then eord(�′

0) ∈ S3/2(�0(4N ), Qp). Furthermore,
the generating series logγ (G+

�)(q) is the projection to the Up2 = 1 eigenspace of
2eord�′

0. In particular, it is a cusp form of weight 3/2 and level �0(4N ), which proves
Theorem 2.7.

7.1 Ordinary subspaces

Let k be a non-negative integer. For � � 2N denote by T�2 the associatedHecke operator
acting on Sk+3/2(�0(4N ), Z) and if � | N denote byU�2 the associatedHecke operator
acting on Sk+3/2(�0(4N ), Z). We similarly consider the Hecke operators T� if � � N ,
andU� if � | N acting on S2k+2(�0(2N ), Z). The following key theorem relates these
spaces of modular forms.

Theorem 7.1 For k ≥ 0, we have an isomorphism

S : Sk+3/2(�0(4N ), Q)
∼−−→ S2k+2(�0(2N ), Q)

which is Hecke-equivariant, i.e.

S ◦ T�2 = T� ◦S ∀� � 2N ,

S ◦U�2 = U� ◦S ∀� | N .
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Proof The result follows from the work of Niwa [32, §1 and Remark 4], the fact that
theC-span of Sk+3/2(�0(4N ), Q) is equal to the space of cusp forms of weight k+3/2
and level �0(4N ) by the theorem of Serre and Stark in [33], together with the fact that
Hecke operators preserve Sk+3/2(�0(4N ), Q). Although the calculations in [32] are
done for k ≥ 1, they are also valid for k = 0 as pointed out by Kohnen on page 59 of
[24]. ��

Consider the space Zp[[q]] ⊗Zp Qp equipped with the norm

∣∣∣
∑

n≥0
anq

n
∣∣∣ = maxn{|an|}.

Since the eigenvalues ofUp2 acting on Sk+3/2(�0(4N ), Q) are algebraic integers, the
operator

eord : Sk+3/2(�0(4N ), Zp) −→ Sk+3/2(�0(4N ), Zp), f �−→ lim
m→+∞Um!

p2 ( f )

is well-defined. Denote by Sordk+3/2(�0(4N ), Zp) the image of this map, and similarly

define Sordk+3/2(�0(4N ), Qp). We also consider the analogous definition for integral
weight cusp forms and use similar notation.

Proposition 7.2 The rank of the finitely generated modules Sordk+3/2(�0(4N ), Zp) is
constant as long as k varies over non-negative integers such that k ≡ 0 mod (p−1)/2.

Proof It is enough to prove that dimQp S
ord
k+3/2(�0(4N ), Qp) is constant as long as

k ∈ Z≥0 and k ≡ 0 mod (p − 1)/2. It follows from Theorem 7.1 that we have an
isomorphism

Sordk+3/2(�0(4N ), Qp)
∼−−→ Sord2k+2(�0(2N ), Qp).

But the dimensions of the right hand side are constant as long as k ≡ 0 mod (p− 1).
(See the proof of Theorem 3 in Section 7.2 of [18].) The result follows. ��

7.2 3-adic forms of half-integral weight

We study the space of �-adic modular forms of half-integral weight and prove a
classicality result in this setting. We follow [18] and [19].

Let� = Zp[[T ]] denote the Iwasawa algebra overZp and put u = 1+p ∈ 1+pZp.
A �-adic cusp form of half-integral weight is a formal power series

F =
∑

n≥1
Anq

n ∈ �[[q]]
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such that there exists k0 (dependent on F) satisfying that for all k ≥ k0 and k ≡
0 mod (p − 1), the so-called weight k specialization

Fk := F(uk − 1) :=
∑

n≥1
An(u

k − 1)qn ∈ Zp[[q]],

belongs to Sk+3/2(�0(4N ), Zp). We denote the space of such forms by P. We define
ordinary �-adic cusp forms of half-integral weight in the same way as above but
replacing Sk+3/2(�0(4N ), Zp) by Sordk+3/2(�0(4N ), Zp), and we denote this space by

Pord.
A key input to study the space Pord is the fact that rord =

rankZp S
ord
k+3/2(�0(4N ), Zp) is constant as long as k ≥ 0 and k ≡ 0 mod (p − 1),

proven in Proposition 7.2.

Theorem 7.3 Pord is free of finite rank over �. In particular, rank�(Pord) ≤ rord.

Proof Aproof of this statement can be found in Proposition 4 of [19]. There, Hida con-
siders different level structures than the ones considered here, but the same reasoning
works in this case. ��

For every k ≥ 0, we can define a map

ϕk : Pord/PkP
ord −→ Zp[[q]], F �−→ Fk,

where Pk = T − (uk − 1) ∈ Zp[[T ]], which is injective. The image of this map is
a submodule of Zp[[q]]. We can also view Sordk+3/2(�0(4N ), Zp) as a submodule of
Zp[[q]]. The relation between these two submodules is the so-called control theorem,
which is again a consequence of Proposition 7.2.

Theorem 7.4 Let k ≥ 0 such that k ≡ 0 mod (p − 1). Then, the map ϕk induces an
isomorphism

ϕk : Pord/PkP
ord ∼−−→ Sordk+3/2(�0(4N ), Zp).

Proof The analogous statement for ordinary cuspidal �-adic forms of integral weight
is known. A proof can be found in Theorem 3, Section 7.3 of [18]. The same proof
given there works for the case of half-integral weight forms once we have Proposition
7.2.

Indeed, it can be proven that every element f ∈ Sordk+3/2(�0(4N ), Zp) is in the image
ϕk as in the case of integral weight forms. For example, this is done in Proposition
5 of [19]. Since Pord is free of finite rank, this already implies the result for k large
enough. To obtain the result for all k note that

Sordk+3/2(�0(4N ), Zp) ⊂ Im(ϕk) ⊂ Zp[[q]]. (19)

This implies

rord ≤ rankZp (Im(ϕk)).
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Since rankZp (Im(ϕk)) ≤ rank�(Pord), the previous inequality and Proposition 7.3
imply rord = rankZp (Im(ϕk)). Hence, it follows from (19) that Im(ϕk) =
Sordk+3/2(�0(4N ), Zp) and we are done. ��
Fix a �-basis {B1, . . . , Br } of Pord and write

Bi =
∑

n≥1
Ai,nq

n ∈ �[[q]].

By Theorem 7.4, the set {B1(0), . . . , Br (0)} forms a Zp-basis of Sord3/2(�0(4N ), Zp).
Thus, there exist n1, . . . , nr such that

det
(
(Ai,n j (0))1≤i, j≤r

) �= 0.

Since det((Ai,n j (T ))1≤i, j≤r ) ∈ �, it follows by continuity that there exists k0 such
that if k ≥ k0 and k ≡ 0 mod (p − 1), then

det
(
(Ai,n j (u

k − 1))1≤i, j≤r
)
�= 0. (20)

Now define

bi =
∑

n≥1
ai,nq

n,

where ai,n : Zp → Zp is the analytic function determined by ai,n(k) = Ai,n(uk − 1)
for every k ≥ 0 such that k ≡ 0 mod (p − 1).

We will now prove that certain first order derivatives of �-adic modular forms of
half-integral weight are modular forms themselves. Let F be a �-adic modular form
of half-integral weight such that F0 = 0. Let

F ′ := d

dk
Fk |k=0 = lim

k→0

Fk
k
∈ Zp[[q]]

be the first derivative of F with respect to k evaluated at k = 0. It is a weight 3/2
analogue of a p-adic modular form in the sense of Serre. Here the limit is taken in
Zp[[q]] ⊗ Qp with respect to the norm introduced above. Recall that Up2 has the
following expression at the level of q-expansions:

∑

n≥0
anq

n �−→
∑

n≥1
anp2q

n .

Since |U 2
p f | ≤ | f | for any f ∈ Zp[[q]] ⊗ Qp and Up2 is linear, it follows that we

can define the p-adic modular form of weight 3/2

eord(F
′) := lim

k→0
eord

(
Fk
k

)
.
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Moreover, it is a calculation to verify that the limit

lim
m→+∞Um!

p2 (F
′)

exists in Zp[[q]] ⊗Qp and is equal to eord(F ′).

Corollary 7.5 For every F ∈ P with F0 = 0 the p-adic modular form eord(F ′0) is
classical. More precisely, it belongs to Sord3/2(�0(4N ), Qp).

Proof By definition,

eord(F
′) = lim

k→0
eord

(
Fk
k

)
.

Now, Theorem 7.4 implies that, for every k > 0 and k ≡ 0 mod (p−1), we can write

eord

(
Fk
k

)
=

r∑

i=1
xi (k)bi (k),

where xi (k) ∈ Qp for every i . Let n1, . . . , nr be as above, and note that (xi (k))i is
the solution of the linear system of equations

(
ai,n j (k)

)
j,i

(xi (k))i =
(
an j

(
Fk
k

))

j
.

Moreover, since the determinant of the matrix defining this system is an analytic
function, which is non-zero if k ≥ k0 and k ≡ 0 mod (p − 1) by (20) and the
discussion above it, we deduce that for every i the limit limk→0 xi (k) exists in Qp.
Denote it by xi (0). Then,

eord(F
′) = lim

k→+∞ eord

(
F

k

)
=

r∑

i=1
xi (0)bi (0)

and it follows from Theorem 7.4 in the particular case that k = 0 that the right hand
side belongs to Sordk+3/2(�0(4N ), Qp), which concludes the proof. ��

7.3 p-adic families of theta series

Recall that the element γ ∈ � determines a collection of Zp-lattices L j of depth zero,
and let w+

j , w
−
j and e be as in Sect. 5.1, so that L j = 〈w+

j , w−
j , e〉. Note that w+

j , w−
j

can be viewed both as elements of VQ(γ ) and VQp , using the embedding Q(γ ) ↪→ Qp

satisfying that ordp(�) = 2t > 0. These data, together with �, can be used to define
the following Schwartz–Bruhat functions

�+
j = �⊗ 1{

v∈L j

∣∣ 〈v,w+
j 〉∈Z

×
p

}, and �−
j = �⊗ 1{

v∈L j

∣∣ 〈v,w−
j 〉∈Z

×
p

}
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on VA∞ for every j ∈ {0, . . . , 2t−1}. We have that� is invariant under K0(4N/p)(p)

by assumption. Moreover,

1{
v∈L j

∣∣ 〈v,w+
j 〉∈Z

×
p

} = 1L j − 1L j∩L j−1 , 1{
v∈L j

∣∣ 〈v,w−
j 〉∈Z

×
p

}

= 1L j − 1L j∩L j+1 (21)

and L j is unimodular, while L j ∩ L j−1 has level p for every j . It follows that �±
j

is invariant under K0(4N ) for every j . Since w+
j and w−

j are isotropic, the functions

v �→ 〈w±
j , v〉k are harmonic polynomials on VQ(γ ) for all integers k ≥ 0. Hence, the

q-series

�k :=
2t−1∑

j=0

∑

v∈V
�+

j (v)〈w+
j , v〉kqQ(v) −

2t−1∑

j=0

∑

v∈V
�−

j (v)〈w−
j , v〉kqQ(v) (22)

is a linear combination of classical theta-series with coefficients in the quadratic imag-
inary field Q(γ ) of weight k + 3/2 and level �0(4N ) by [4, Theorem 4.1]. Via the
embedding Q(γ ) ↪→ Qp, we can also view the Fourier coefficients of �k as ele-
ments in Zp. Moreover, since the non-zero terms in the infinite sum defining �k

solely involve elements of V for which 〈w+
j , v〉 (resp. 〈w−

j , v〉) are p-adic units, it
follows that the Fourier coefficients of�k vary analytically as functions of the variable
k ∈ (Z/(p − 1)Z)× Zp. We can therefore define �k for k ∈ (Z/(p − 1)Z)× Zp. It
gives a prototypical instance of a �-adic modular form of half-integral weight, in the
sense that there exists a F ∈ P such that Fk = �k for every k ≡ 0 mod (p − 1).

Lemma 7.6 The weight 3/2 specialization �0 is identically zero.

Proof By (21), we have

�0 =
2t−1∑

j=0

∑

v∈V
�(v)

(
1L j − 1L j∩L j−1

)
(v)qQ(v)

−
2t−1∑

j=0

∑

v∈V
�(v)

(
1L j − 1L j∩L j+1

)
(v)qQ(v)

= −
∑

v∈V
�(v)1L0∩L−1(v)qQ(v) +

∑

v∈V
�(v)1L2t−1∩L2t (v)qQ(v) = 0,

where in the last equality we used that γ (L0 ∩ L−1) = L2t ∩ L2t−1 and that the
functions � and v �→ Q(v) are invariant under the action of γ Z. ��

Lemma 7.6 together with Corollary 7.5 immediately imply the following:

Corollary 7.7 The p-adic modular form eord(�′
0) is classical. More precisely, it

belongs to Sord3/2(�0(4N ), Qp).

We now relate eord(�′
0) with the generating series logγ (G+

�)(q).
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Lemma 7.8 For every D ∈ DS and every n ≥ 0 the following equality holds:

aDp2n
(
logγ (G+

�)(q)
) = aDp2n

(
eord

(
(1+Up2)�

′
0

))
.

Note that, since aDp2n (logγ (G+
�)(q)) = aD(logγ (G+

�)(q)) for all n ≥ 0, the right
hand side does not depend on n.

Proof It is enough to prove the formula when ordp(D) ∈ {0, 1}. Using (22), we can
compute

aDp2m (�′
0) =

2t−1∑

j=0

∑

v∈L+j [m]
�(v) logp(〈w+

j , v〉)−
2t−1∑

j=0

∑

v∈L−j [m]
�(v) logp(〈w−

j , v〉).

Hence, it follows from Theorem 6.4 that

aD
(
logγ (G+

�)(q))
) = lim

m→+∞ aDp2m (�′
0)+ aDp2(m+1) (�

′
0). (23)

and that the limit on the right hand side exists. Indeed, the case when
ordp(D) = 1 follows directly from the second part of Theorem 6.4. The case
ordp(D) = 0 can be deduced by noting that the first part of Theorem 6.4 implies
logp( jD�(D)(γ )) = limm→+∞ aDp2m (�′

0) (and therefore also logp( jD�(D)(γ )) =
limm→+∞ aDp2(m+1) (�

′
0)) and taking the sum of these two equalities.

On the other hand, from the expression of the ordinary projection given above, we
have that for every n ≥ 0

aDp2n (eord(�
′
0 +Up2(�

′
0))) = lim

m→+∞ aDp2(n+m!) (�
′
0)+ aDp2(n+m!+1) (�

′
0).

Since the right hand side of the previous equation is a subsequence of the right hand
side of (23), we deduce that

aD
(
logγ (G+

�)(q))
) = aDp2n (eord(�

′
0 +Up2(�

′
0))),

which proves the desired equality. ��
The action of Up2 on Sord3/2(�0(4N ), Qp) diagonalizes. This can be justified, for

example, using Theorem 7.1 and the fact that the analogous statement for weight 2
forms of level �0(2N ) is well-known. In particular, we can consider

pr1 : Sord3/2(�0(4N ), Qp) −→ Sord3/2(�0(4N ), Qp)

to be the projection to the Up2 = 1 eigenspace. Its image consists of p-newforms.
Again, this follows from Theorem 7.1 and the corresponding statement for weight 2
forms, which is a consequence of the Weil conjectures for abelian varieties. We prove
the main identity of this work, which implies Theorem 2.7.
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Theorem 7.9 The identity

logγ (G+
�)(q) = 2pr1(eord(�

′
0))

of formal power series holds. In particular, logγ (G+
�)(q) is an element of

Sord3/2(�0(4N ), Qp).

Proof Since Up2 and eord commute, it is enough to prove that if

f = eord(�
′
0 +Up2�

′
0) =

∑

n≥1
an( f )q

n,

we have logγ (G+
�)(q) = pr1( f ). Note that by Theorem 7.8, we have that if D ∈ DS ,

aDp2n (logγ (G+
�)(q)) = aDp2n ( f ).

for every n ≥ 0. Therefore, the equality of the theorem follows from proving that, if
D ∈ Z≥0 is such that ordp(D) ∈ {0, 1} and N ≥ 0, then:

(1) If
(−D

p

)
= 1, aDp2n (pr1( f )) = 0.

(2) If
(−D

p

)
∈ {0,−1}, aDp2n (pr1( f )) = aDp2n ( f ).

We start by proving the first point. Since pr1( f ) is a p-newform, Theorem 1 of [30]
implies that theAtkin–Lehner involution at p acts bymultiplicationwith−1onpr1( f ).
Then, (1) follows from the description of the eigenspaces of the Atkin–Lehner invo-
lution given in [30, Remark 2]. (See also [24, Proposition 4].) We proceed to prove
the second point. Write f as a sum of eigenvectors for Up2 , namely

f =
r∑

i=1
fi ,

where fi ∈ Sord3/2(�0(4N ), L) and there exists αi such that Up2 fi = αi fi for every
i . Here L is a finite extension of Qp containing all the elements αi . We can suppose
without loss of generality that αi �= α j if i �= j and that α1 = 1. In particular,
f1 = pr1( f ) (which is possibly zero). Let D be such that it satisfies the conditions of
(2). For every n ≥ 0, we can consider the Dp2n-th Fourier coefficient of each side of
the previous equality to obtain

aD( f ) = aD( f1)+
r∑

i=2
αn
i aD( fi ),

where we used that aD( f ) = aDp2n ( f ) for every n ≥ 0, which holds by Theorem 7.8.
Considering this equality for n = 0, . . . , r−1 and using that the Vandermonde matrix
associated to {1, α2, . . . , αr } is non-singular we deduce that we must have aD( f ) =
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aD( f1), implying the desired equality. Once we have logγ (G+
�)(q) = 2pr1(eord(�

′
0)),

the fact that logγ (G+
�)(q) ∈ S3/2(�0(4N ), Qp) follows from Corollary 7.7. ��

8 Numerical example

We conclude by presenting a concrete example where we numerically compute the
p-adic family �k and the reduction modulo p of eord(�′

0/p). In future work, we aim
to present a complete numerical computation of eord(�′

0/p). However, in this section,
we focus on its reduction modulo p, as these computations are technically simpler and
already illustrate interesting phenomena.

Let S = {7, 13,∞}, let p = 7 and consider B be the quaternion algebra over Q

ramified exactly at {13,∞}. It can be viewed as the algebra overQ generated by i, j, k
where

i2 = −2, j2 = −13, i j = − j i = k.

Let R̃ be the maximal Z[1/p]-order of B given by 〈1/2 + j/2 + k/2, i/4 + j/2
+ k/4, j, k〉, let α = 1+ i ∈ B×, which has reduced norm � = 3 /∈ S, and consider
the Eichler Z[1/p]-order R = R̃ ∩ α R̃α−1 of level 3. Denote by � the group of norm
one units in R modulo {±1}. The quotient �\Hp is isomorphic to the Cp-points of
the Shimura curve X .

8.1 Construction of the p-adic family2k

Recall the definition of the p-adic family �k given in (22). This family depends on
a choice of a Schwartz–Bruhat function �, an element γ ∈ � hyperbolic at p and
the eigenvectors of the action of γ on VQp . We proceed to fix these data. Let R̃0

be the subgroup of elements of R̃ of reduced norm zero. As before, write 1R̃0
for

the characteristic function of R̃0 ⊗ Ẑ(p). Consider the R̂× × K0(4 · 13)(p)-invariant
Schwartz–Bruhat function

� = 1R̃0
− 1R̃0

· α−1.

Since we have the factorization of ideals (7) = (7, x + 3)(7, x + 4) in the ring of
integers of Q[x]/(x2 + 5), the element (x + 3)/(−x + 3) = 3x/7 + 2/7 is a p-unit
in Q[x]/(x2 + 5). Its image in B with respect to the embedding

Q[x]/(x2 + 5) ↪−→ B, x �−→ i

4
+ j

2
+ k

4
,

is equal to

γ = 2

7
+ 3i

28
+ 3 j

14
+ 3k

28
,
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and it can be verified that γ ∈ �. Let p be the prime ideal spanned by 7 and x + 4 and
fix the embedding

Q[x]/(x2 + 5) ↪−→ Qp (24)

such that ordp((p)) = 1. Using that γ is hyperbolic at p, we deduce that its action on
V ⊗Q[x]/(x2 + 5) (and therefore on VQp ) diagonalizes. The eigenvectors of γ are

w+ = i +
(
4x

39
− 2

39

)
j +

(
−4x

39
− 1

39

)
k

e = i + 2 j + k

w− = i +
(
−4x

39
− 2

39

)
j +

(
4x

39
− 1

39

)
k

with eigenvalues� = −12x/49−41/49, 1 and�−1 respectively. Since vp(�) = 2,
we have that t = 1. Note that 〈w+, w−〉 ∈ Z×p , which implies that {w+, w−} generate
a hyperbolic plane. Finally, consider the unimodular Zp-lattices

L0 = 〈w+, e, w−〉 = 〈i, j, k〉
L1 = 〈pw+, e, w−/p〉 =

〈
i + 2 j + k, 14i − 28 j

39
− 14k

39
,
i

7
+ j + 8k

7

〉
.

We can therefore consider the p-adic family �k given in (22) attached to the data
�, γ and {w+, e, w−}.

8.2 Calculation of20 and eord(2′
0)

Consider the same notation as above. For every M ≤ 421 · p2 we can run over the
following sets:

{
v ∈ V

∣∣ 〈v, v〉 = M, 1R̃0
(v) · 1L0(v) = 1, 〈v,w+〉 or 〈v,w−〉 ∈ Z×p

}
,

{
v ∈ V

∣∣ 〈v, v〉 = M, 1R̃0
(v) · 1L1(v) = 1, 〈v, pw+〉 or 〈v, p−1w−〉 ∈ Z×p

}
,

{
v ∈ V

∣∣ 〈v, v〉 = M, 1
α·R̃0

(v) · 1L0(v) = 1, 〈v,w+〉 or 〈v,w−〉 ∈ Z×p
}

,
{
v ∈ V

∣∣ 〈v, v〉 = M, 1
α·R̃0

(v) · 1L1(v) = 1, 〈v, pw+〉 or 〈v, p−1w−〉 ∈ Z×p
}

.

From there, it is possible to compute the first 421 · p2 Fourier coefficients of �k , for
k ∈ Z, as well as of �′

0. The necessity to calculate exactly this number of Fourier
coefficients comes from the Sturm bound, which is used in the proof of Proposition 8.1
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Table 1 First Fourier coefficients of the theta series �±
R̃0,L j

Theta series q-expansion
2 5 6 7 8 11 13 15 18 19 20 21 24 26 28 31 32

�+
R̃0,L0

2 2 4 4 6 8 2 8 6 6 8 8 8 6 6 10 14

�−
R̃0,L0

2 0 4 2 6 8 0 8 6 4 8 8 12 6 6 8 14

�+
R̃0,L1

2 0 4 2 6 8 0 8 6 4 8 8 12 6 6 8 14

�−
R̃0,L1

2 2 4 4 6 8 2 8 6 6 8 8 8 6 6 10 14

below. In particular, define

�+
R̃0, j

:=
∑

v∈V
〈v,p+ jw+〉∈Z

×
p

1R̃0
(v) · 1L j (v)qQ(v)

and define �−
R̃0, j

with the same expression but replacing the symbol+ by the symbol

− everywhere. Define also �+
α·R̃0, j

and �−
α·R̃0, j

analogously. Then,

�0 =
(
�+

R̃0,L0
+�+

R̃0,L1
−�−

R̃0,L0
−�−

R̃0,L1

)

−
(
�+

α·R̃0,L0
+�+

α·R̃0,L1
−�−

α·R̃0,L0
−�−

α·R̃0,L1

)

and we verify that the first 421 · p2 Fourier coefficients are 0. For example, the first 4
terms that appear in the previous expression are given below (Table 1).

The coefficients of qn for n < 32 that do not appear in the table are 0, as theta
series attached to lattices in V have non-zero Fourier coefficients only if −D is not a
square modulo 13. We will follow a similar convention from now on. The forms on
the previous table belong to M3/2(�0(4 · 91), Q), a space of dimension 32, and these
coefficients fully determine them.

From (22), we see that the derivative of �k with respect to k evaluated at k = 0 is
equal to

�′
0=

2t−1∑

j=0

∑

v∈V
�+

j (v) logp〈p jw+, v〉qQ(v)−
2t−1∑

j=0

∑

v∈V
�−

j (v) logp〈p− jw−, v〉qQ(v).

(25)

Note that the dot products 〈v,w±〉 belong to Q[x]/(x2+5) and have p-adic valuation
0. Using the embedding (24), we can view them as elements in Z×p . Therefore, the
p-adic logarithm of these numbers lies in pZp. We can then consider �′

0/p as an
element in Zp[[q]] and study its reduction modulo p.
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Similarly as above, we can calculate the first 421 · p2 Fourier coefficients of �′
0/p

modulo p. The first ones are

�′
0

p
= 2q2 + 3q5 + 2q6 + 4q7 + 5q8 + 4q11 + 3q13

+3q15 + 2q18 + 3q20 + 6q21 + · · · .

Since it is possible to calculate the first 421 · p2 Fourier coefficients of �′
0/p mod p,

we obtain the first 421 Fourier coefficients of Up2(�
′
0/p) modulo p. The first ones

are

Up2(�
′
0/p) = 3q2 + 3q5 + 5q6 + 2q7 + 3q11

+ 6q13 + 3q15 + 5q18 + q19 + 2q20 + 2q21

+ 2q24 + 3q26 + q28 + 6q31 + q32 + q33 + 4q34 + q37

+ 3q39 + q44 + · · · .

The following proposition, which is verified experimentally using the calculations
mentioned above and Magma, is key for the next calculations.

Proposition 8.1 There exists a cusp form in S3/2(�0(4 · 91), Z) whose reduction
modulo p is equal to Up2(�

′
0/p) mod p.

Proof Since �0 = 0, we deduce from the expressions of �′
0 in (25) and of �k in (22)

that

�′
0

p
≡ �p−1

p(p − 1)
mod p = 7.

In particular, Up2(�
′
0/p) is the reduction mod p of an element g1 ∈ S3/2+6(�0(4 ·

91), Z). We can then verify experimentally using Magma that the first 421 Fourier
coefficients of g1 are congruent modulo p to the first 421 Fourier coefficients of a
modular form g2 ∈ S3/2(�0(4 · 91), Z).

We claim that this implies g1 ≡ g2 mod p. Indeed, let g̃2 ∈ S3/2+6(�0(4 · 91), Z)

be such that g2 ≡ g̃2 mod p. Then, the modular form g1− g̃2 ∈ S3/2+6(�0(4 ·91), Z)

has the first 421 Fourier coefficients equal to 0 modulo p. This implies that the first
4 · 421 Fourier coefficients of (g1 − g̃2)4 ∈ S30(�0(4 · 91), Z) are congruent to 0
modulo p. Since

421 · 4 >
30 · [SL2(Z) : �0(4 · 91)]

12
= 1680 = 420 · 4,

it follows from the Sturm bound [36, Theorem 1] that g1 − g̃2 ≡ 0 mod p, implying
the desired result. ��

Using a basis of S3/2(�0(4 · 91), Z) given by Magma, and using Proposition 8.1,
we can then compute U 2

p2
(�′

0/p) and verify the following:
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(1) 1
2 (Up2 +U 2

p2
)(�′

0/p) mod p is an eigenvector for Up2 of eigenvalue 1.

(2) 1
2 (Up2 −U 2

p2
)(�′

0/p) mod p is an eigenvector for Up2 of eigenvalue −1.
It follows from there that, modulo p,

eord

(
�′

0

p

)
= lim

n→+∞Un!
p2

�′
0

p
= lim

n→+∞Un!−1
p2

Up2

(
�′

0

p

)

= lim
n→+∞Un!−1

p2

(
1

2
(Up2 +U 2

p2)(�
′
0/p)+

1

2
(Up2 −U 2

p2)(�
′
0/p)

)

= 1

2
(Up2 +U 2

p2)(�
′
0/p)−

1

2
(Up2 −U 2

p2)(�
′
0/p) = U 2

p2
(
�′

0/p
)
.

Based on this decomposition of eord
(
�′

0/p
)
, we will write

pr1(eord(�
′
0/p)) = (Up2(�

′
0/p)+U 2

p2(�
′
0/p))/2,

pr−1(eord(�′
0/p)) = −(Up2(�

′
0/p)−U 2

p2(�
′
0/p))/2.

The results of the calculation are summarized in the following table (Table 2).

Remark 8.2 In the decomposition eord(�′
0/p) = pr1(eord(�

′
0/p)) + pr−1(eord

(�′
0/p)) both summands are non-zero. The first summand is related to the Gross–

Kohnen–Zagier generating series, as proved in Theorem 7.9. It would be interesting to
find an arithmetic interpretation of the second summand, namely pr−1(eord(�′

0/p)).

8.3 Shimura lift and Hecke equivariance

The space Snew2 (�0(7 · 13)) has dimension 7, and there is a unique (up to scalars)
cuspidal form such that U7 acts by 1 and has odd analytic rank (so in particular, the
Hecke operator U13 acts also by 1). Its Fourier expansion is given by

f = q − 2q3 − 2q4 − 3q5 + q7 + q9 + 4q12 + q13

+ 6q15 + 4q16 − 6q17 − 7q19 + . . .

≡ q + 5q3 + 5q4 + 4q5 + q7 + q9 + 4q12 + q13

+ 6q15 + 4q16 + q17 . . . mod p = 7.

Recall the Shimura lift

SD := SD,0,91 : S3/2(�0(4 · 91), Q) −→ S2(�0(2 · 91), Q)

defined in Sect. 7.1, where D is a square-free integer such that−D > 0. We computed
the Shimura lift of eord(�′

0/p) for different values of D and obtained the following
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identities modulo p

S−2
(
pr1(eord(�

′
0/p))

) ≡ 6 f mod p,

S−11
(
pr1(eord(�

′
0/p))

) ≡ 3 f +U2 f mod p,

S−15
(
pr1(eord(�

′
0/p))

) ≡ 3 f + 6(U2 f ) mod p.

(26)

In particular, we see that pr1eord(�
′
0/p) is a Hecke eigenvector (mod p) with Hecke

eigenvalues congruent to those of f .
The Schwartz–Bruhat function� is convenient. Indeed, since� is the difference of

characteristic functions of the trace zero elements of two maximal orders, we deduce
that ��(D) is of degree 0 for every D. Moreover, degT0(�) lands in the subspace of
Funct(�\T0, Z) corresponding to weight two cusp forms of level�0(13·3) that are old
at 3. Since S2(�0(13), Q) = 0, we deduce degT0(�) = 0 implying the desired claim
by the proof of Lemma 4.6. Applying Theorem 7.9 to the Schwartz–Bruhat function
� one obtains the equality

logγ (G+
�)(q) = 2pr1(eord(�

′
0)).

In particular, (1/p) logp(G
+
�(γ )) mod p is a Hecke cuspidal eigenform of weight 3/2

with the same Hecke eigenvalues as the cusp form f of weight 2 and level �0(91).
On the other hand, consider G�(q) ∈ J (Qp2)Q[[q]] and observe:

• The classes [��(D)] are invariant under the action of R× for every D ∈ DS .
• The projection of the class [��(D)] to a Hecke eigenspace is non-zero only if the
eigenspace corresponds to an eigenform of rank 1 by the Gross–Zagier formula.

• Via Jacquet–Langlands the Hecke action of TN on J (Qp2) factors through the

action on S91−new2 (�0(91 · 3), Qp2).
• Since the divisors ��(D) on X are obtained via pullback from divisors of a
Shimura curve X̃ that is p-adically uniformized by �̃\Hp, with �̃ the norm 1 units
of R̃, it follows that the classes [��(D)] belong to the subspace corresponding to
forms that are old at 3.

Hence, the functionals ϕ : J (Qp2) −→ Qp2 such that ϕ(G�(q)) is non-zero are
generated by projections to eigenspaces where TN acts with the same eigenvalues
as it acts on eigenforms on Snew2 (�0(91)) which have rank 1 and U7 = 1. As we
discussed above, there is a unique (up to scaling) such eigenform in Snew2 (�0(91)),
which is f . Uniqueness implies that G�(q) ∈ J (Qp2)Q[[q]] is a non-zero multiple
of logγ (G+

�)(q), which has the same Hecke eigenvalues of f modulo p. Hence, the
calculation we presented gives an example (modulo p) of the Hecke equivariance
property of the geometric theta lift provided by the Gross–Kohnen–Zagier generating
series.
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