
THE HEEGNER–STARK THEOREM AND STARK–HEEGNER POINTS

ELIAS CAEIRO AND HENRI DARMON

Abstract. The determination by Heegner, Baker and Stark of the complete list of imag-

inary quadratic orders of class number one relies critically on the theory of complex mul-

tiplication. A conjectural extension of this theory to real quadratic �elds based on the

notion of rigid analytic elliptic cocycles is shown to yield similar lists for some explicit

families of real quadratic orders with small regulators.

Contents

Notations 1

Introduction 2

1. Splitting of small primes in real quadratic �elds 5

2. Modular parametrisations and elliptic cocycles 7

3. Stark-Heegner points 10

4. Rigid analytic period functions 12

5. Rational period functions 16

6. Yokoi’s conjecture 20

7. Chowla’s conjecture 24

References 27

Notations

GivenD ≡ 0, 1 (mod 4), letOD = Z[D+
√
D

2
] be the unique quadratic order of discrim-

inant D, let Cl(D) denote its class group in the wide sense, and let h(D) denote the class

number ofOD. The discriminant D is said to be fundamental ifOD is a maximal order. If

D is of the form D0m
2

with D0 fundamental, then OD is also referred to as the order of
conductorm in OD0 .
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Let χD be the quadratic Dirichlet character attached to KD, and let L(s, χD) be the

associated Dirichlet L-series.

Class �eld theory associates to D an abelian extension HD of KD := Q(
√
D), the ring

class �eld of the order OD, whose Galois group Gal(HD/KD) is isomorphic to Cl(D).

When D is positive, let εD > 1 denote the fundamental unit of OD. It has norm −1
when the wide and narrow class numbers agree, and norm 1 otherwise.

If E is an elliptic curve over Q, let E(D)
denote its D-th quadratic twist.

Introduction

The Heegner–Stark theorem of the title is the celebrated result that there are precisely

13 negative discriminants D for which h(D) = 1, namely

(1) D = −3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67, and − 163.

It was originally conjectured in a slightly di�erent form by Gauss in his Disquisitiones
Arithmeticae, cf. [Go-85]. Heegner’s original proof [He-52] exploits the theory of com-

plex multiplication to show that the negative discriminants of class number one give rise

to integral points on an a�ne “non-split Cartan" modular curve of level 24, reducing

their classi�cation to a tractable Diophantine problem. The method is now the object of

an extensive literature. Stark’s work [St-67], as well as [St-69] vindicating Heegner’s ap-

proach, was immediately preceded by a proof by Baker [Ba-69] exploiting linear forms

in logarithms. Variants involving modular curves of levels 5, 7, 9, 11, 13 and 17 have

also been described in [Si-68], [Ke-85], [Ba-09], [ST-12], [BDMTV-19] and [BDMTV-23]

respectively. See [Se-97, Appendix] for a general survey.

The Diophantine approach initiated by Heegner is somewhat superseded by analytic

techniques based on Dirichlet’s class number formula, which for D < 0 asserts that

(2) L(1, χD) =
2πh(D)

w
√
|D|

, w := #O×D .

Siegel showed that L(1, χD) >> |D|−ε and hence that h(D) grows like |D|1/2−ε, but this

result su�ers from the fact that the implied constant in the lower bound cannot be e�ec-

tively computed owing to the possible existence of Siegel zeroes of Dirichlet L-functions.

An important result of Goldfeld [Go-76], [Go-85] parlays a Hasse-WeilL-function of an

elliptic curve of conductor N with a zero of order % at the central point for the functional

equation into an e�ective lower bound of the form

(3) L(1, χD) >> log(|D|)%−2−ε
√
|D|
−1

for any ε > 0, provided χD(−N) = (−1)%−1
. When combined with (2), this inequal-

ity leads to the lower bound h(D) >> log(|D|)%−2−ε
with an explicit implied constant,
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making it possible in principle to enumerate all the quadratic imaginary orders of a given

class number. The theory of complex multiplication makes a crucial cameo appearance

in Goldfeld’s attack via the theorem of Gross–Zagier, which exploits Heegner points to

produce the desired Hasse-Weil L-series with a zero of order % ≥ 3 at the center. A survey

of the Goldfeld-Gross-Zagier solution to the e�ective class number problem for quadratic

imaginary �elds can be found in the Bourbaki seminar article by Oesterlé [Oe-85].

For positive discriminants, the analytic class number formula

(4) L(1, χD) =
h(D) log(εD)√

D

only yields asymptotic lower bounds on the product of the class number and the regulator.

It is expected that there are in�nitely many D > 0 for which h(D) = 1, re�ecting the

unproved yet widely believed fact that log(εD) can often be roughly as large as |D|1/2.

Proving that h(D) = 1 in�nitely often is perhaps the most important open problem about

class numbers of real quadratic �elds.

The analytic class number formula nonetheless suggests that families of real quadratic

orders with small fundamental units, whose regulators grow like log(D), should behave

like imaginary quadratic orders. This is the case for discriminants of the formD = n2±4,

whereOD contains the explicit unit (n+
√
D)/2. Yokoi conjectured that there are exactly

ten discriminants of the form D = n2 + 4 with class number one, namely

(5) D = 5, 8, 13, 20, 29, 53, 68, 125, 173, and 293 [Yo-86].

It is likewise believed that there are ten class number one discriminants

(6) D = −4,−3, 5, 12, 21, 32, 45, 77, 117, and 437

of the form D = n2 − 4, and Chowla conjectured that there are six such discriminants of

the form 4n2 + 1:

(7) D = 5, 17, 37, 101, 197, and 677 [CF-76].

To yield non-trivial estimates on h(D) in families where the regulator grows like log(D),

Goldfeld’s inequality (3) would require a Hasse-WeilL-function with a zero of order % ≥ 4,

whose existence follows from the Birch and Swinnerton-Dyer conjecture but has yet to

be established unconditionally. In spite of this di�culty, Biro was able to prove Yokoi’s

conjecture [Bi-03a] and Chowla’s conjecture [Bi-03b] by a relatively elementary approach

exploiting analytic estimates for zeta functions attached to ideal classes in real quadratic

�elds (cf.[BG-12]). Further more recent progress has been achieved in [Wa-19].

In conclusion, the Goldfeld-Gross-Zagier approach can, with some further e�ort, be

applied to real quadratic �elds. Adapting the Heegner–Stark approach presents a dif-

ferent kind of di�culty, since it would require an extension of the theory of complex

multiplication to the setting of real quadratic �elds. A largely conjectural theory of “real

multiplication" was proposed in [Da-01] and developed further in [DD-04] and [DV-21],
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so that the main arithmetic objects arising in the theory of complex multiplication — sin-

gular moduli, elliptic units, and Heegner points — now admit well-documented analogues

in this framework.

Our main goal is to explain how the Stark–Heegner points of the title provide the basis

for a natural — albeit conditional — solution, modelled on the Heegner–Stark approach, to

various class number one problems for real quadratic �elds like the conjectures of Yokoi

and Chowla evoked above.

To brie�y summarise the approach, the theory of "rigid analytic elliptic cocycles" is used

to attach to any elliptic curve E of prime conductor p an explicit rigid analytic function

ΦE(τ) on the Drinfeld p-adic upper half plane

Hp := P1(Cp)− P1(Qp),

which enjoys a number of remarkable properties. For instance, letting

D := n2 + 4, εD :=
n+
√
n2 + 4

2
, with n ≥ 1,

the image of ΦE(εD) in E(Cp) under the Tate uniformisation is expected to be a global

point on E — a so-called Stark–Heegner point — de�ned over the ring class �eld HD. In

particular, this point should belong to E(KD) if h(D) = 1. A conjectural Gross-Zagier

formula for Stark–Heegner points further predicts the triviality of this quadratic point if

E has analytic rank ≥ 2 over Q; it follows in this case that

ΦE(εD) = 1 whenever h(n2 + 4) = 1.

When n is larger than p + 2 and p does not divide D, it is shown in Section 1 that the

quadratic elements εD must lie in Hp and even in the standard a�noid subset H◦p ⊂ Hp

consisting of the complement in P1(Cp) of the (p+ 1) distinct Fp-rational mod p residue

discs. To prove Yokoi’s conjecture, it therefore essentially su�ces to verify that all the

zeroes of ΦE(τ) − 1 in H◦p that are quadratic over Qp and of norm −1 are accounted for

by the class number one discriminants listed in (5).

Thanks to Hensel’s lemma, understanding the zeroes of ΦE(τ) − 1 in H◦p can largely

be reduced to the study of the mod p reduction of ΦE(z), denoted RE(z). It is a rational

function on P1 over Fp with all its zeroes and poles in P1(Fp). A formula for RE(z) is

available in terms of the Manin symbols for E, and the factorisation of RE(z)− 1 over Fp
is readily carried out by computer. For example, the smallest elliptic curve of rank two

and prime conductor arises when p = 389, and the degree of RE(z) in this case is 144.

The elliptic curve denoted 389A1 in the tables of Cremona almost su�ces to establish

Yokoi’s conjecture: it implies that any class number one discriminant of the form n2 + 4
not appearing in (5) must be divisible by 389. Several other elliptic curves of rank two also

yield the analogous result, and the full classi�cation readily follows from genus theory.
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The same strategy applies to the discriminantsD of the form n2−4, leading to the con-

clusion that (6) is a complete list of the class number one discriminants of that form. Mod-

i�cations of ΦE can also be constructed to tackle Chowla’s conjecture, or more general

class number one problems for real quadratic �elds of Richaud-Degert type, as explained

in Section 7.

The situation is somewhat reminiscent of Skolem’s p-adic method and its more elabo-

rate version by Chabauty and Coleman, which produces a non-constant p-adic analytic

function on a curve that vanishes at all of its rational points. One gets a full determi-

nation of the set of rational points by examining the zeroes of this function, provided

it has no extraneous ones.The function ΦE(z) − 1 �lls an analogous role for the class

number one discriminants of the form n2 ± 4. The Heegner–Stark approach to Yokoi’s

conjecture is thus imbued with a diophantine �avour, even if the diophantine aspects of

the theory of Stark–Heegner points remain entirely mysterious. See [Ca-86, Chapter 4,

§6 and Chapter 10, §10] for a nice overview of Skolem’s p-adic method, and [BDMTV-19]

and [BDMTV-23] for a discussion of an anabelian re�nement of the Chabauty-Coleman

method, with applications to certain modular curves of level 13 and 17 with direct rele-

vance to the Gauss class number problem.

We close the introduction with three remarks:

1. The names of Heegner and Stark appeared in [Da-01] because of a sentiment that

“Stark–Heegner points are to Heegner points what (Gross–)Stark units are to elliptic or

circular units". That the Heegner–Stark method can be adapted to real quadratic �elds

thanks to the eponymous points is a happy but entirely fortuitous circumstance which

was not anticipated when the terminology was coined.

2. It is amusing that a conjectural Gross–Zagier formula for Stark-Heegner points applied

to certain elliptic curves of rank > 1 features prominently in a strategy which otherwise

has nothing in common with the approach of Goldfeld–Gross–Zagier.

3. Readers inclined to take the jaundiced view may question the value of a conditional

proof—based on a highly conjectural theory—of theorems that are already known. Aside

from its aesthetic appeal, the authors hope that the approach they describe provides con-

vincing if somewhat oblique evidence for the theory of Stark-Heegner points by subject-

ing it to an exacting “stress test" — much as physicists validate their theories by showing

that they accurately predict certain experimental outcomes.

1. Splitting of small primes in real qadratic fields

In this section, we prove that, if D = n2 ± 4 is a fundamental discriminant of class

number one, then the small primes p < n+ 2 are either inert or rami�ed in KD/Q. This

implies that the RM points of discriminant D = n2± 4 belong to Hp so long as n > p+ 2,
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a crucial property which allows the classi�cation of such D to be tackled with the theory

of real multiplication and Stark-Heegner points.

The following proposition is essentially due to Biró [Bi-03a], although it is stated in a

slightly generalised form for later use in Section 7. It is the real quadratic analogue of the

classical fact that every prime strictly smaller than
|D|
4

is inert inKD whenD is a negative

discriminant of class number one.

Proposition 1 ([Bi-03a, Fact B]). Let D > 0 be a discriminant of class number one and let
v be the conductor of Z[εD] relative to OD. Then, every prime p <

√
D−2
v

is inert in OD or
divides its conductor.

Remark 2. This bound is sharp: if D = n2 − 4 has class number one and p = n − 2 is

prime, p rami�es, so the −2 in the numerator is necessary. Nonetheless, it is not hard to

see from our proof that this is the only case in which we cannot replace the bound by√
D−1
v

.

Corollary 3. Let D > 0 be a discriminant of class number one and of the form n2 ± 4.
Then, any prime p < n− 2 which doesn’t divide the conductor of D is inert in KD.

Proof. In this case,
n+
√
D

2
is a power of the fundamental unit εD. Since Z[(n +√

D)/2] = OD already has conductor 1, the same holds for Z[εD]. �

To prove Proposition 1, we shall use the following lemma, again due to Biró.

Lemma 4 ([Bi-03a, Lemma 2]). Let D > 0 be a positive discriminant and let v be the
conductor of Z[εD] relative to OD. If α ∈ OD is such that∣∣NormKD/Q(α)

∣∣ < √D − 2

v
,

then α is associated to a rational integer.

Proof. Set ε = εD = u + v
√
D
2

, where u, v > 0. The statement is vacuous if u ≤ 3
2

(since then

√
D − 2 < 2) so we may assume u ≥ 2. As 4u2 −Dv2 = ±4, we have

D =
4u2 ∓ 4

v2
≤
(

2u+ 1

v

)2

.

In particular, since

√
D ≤ 2u+1

v
, it su�ces to prove the claim for α of norm at most

2u−2
v2

. In the same way, we obtain D ≥
(

2u−1
v

)2
and so

|ε−1| = 1

u+ v
2

√
D
≤ 1

2u− 1
.
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Set vα = aε−1+b for some rational integers a, b. We may assume that ε−1 ≤ |vα| ≤ 1.

If a = 0 then α is already rational so suppose a > 0. The conjugate α of α satis�es

v|α| = |aε± b| =
∣∣a(ε∓ ε−1)± vα

∣∣ ≥ a(ε∓ ε−1)− 1.

It follows that

v2|αα| ≥ ε−1(a(ε∓ ε−1)− 1) ≥ a(1− ε−2)− ε−1.

On the other hand, if a ≥ 2u− 1, we have

a(1− ε−2)− ε−1 > (2u− 1)

(
1− 1

(2u− 1)2

)
− 1

2u− 1
≥ 2u− 2.

We conclude that a < 2u− 1, from which we deduce 0 < aε−1 < 1. As |vα| ≤ 1, we

must have b = 0 or b = −1. If b = 0 we are done, and if b = −1 we �nd

2u− 2 ≥ v2|αα| = a(2u− a)∓ 1

which impossible as 0 < a ≤ 2u− 2. �

Proof of Proposition 1. Suppose p <
√
D−2
v

is a prime which is not inert and doesn’t

divide the conductor of OD. Then, since D has class number one, ±p is represented by

the principal form, i.e. we can write ±p as the norm of some element α ∈ OD. Lemma 4

then implies that p is a square, a contradiction. �

2. Modular parametrisations and elliptic cocycles

We begin with a presentation of classical modular parametrisations of elliptic curves

designed to motivate their p-adic counterparts: the rigid analytic elliptic cocycles that are

the basis for the theory of Stark-Heegner points.

Let E be an elliptic curve of conductor N , and let

a`(E) = `+ 1−#E(F`), for all primes ` - N.
The �rst cohomology H1(Γ0(N),Z) of the Hecke congruence group Γ0(N) is endowed

with an action of Hecke operators, and the modularity theorem of Wiles and Taylor-Wiles

asserts that there are two classes ϕ+
E and ϕ−E ∈ H1(Γ0(N),Z) satisfying

ϕ±E

(
a −b
−c d

)
= ±ϕ±E

(
a b
c d

)
, T`(ϕ

±
E) = a`(E) · ϕ±E, for all ` - N.

Wiles’ proof produces suitable eigenclasses in the étale cohomology of the modular curve

X0(N), from which the classes ϕ±E are deduced via comparison theorems between étale

and singular cohomology.

The group Γ0(N) acts discretely on the Poincaré upper half plane H by Möbius trans-

formations, and hence on the additive groupOH of holomorphic functions on H. Falting’s

proof of the isogeny conjecture for abelian varieties implies the following proposition:
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Proposition 5. There are two complex numbers Ω+
E ∈ R and Ω−E ∈ iR satisfying the

following conditions:

(1) The lattice ΛE := ZΩ+
E + ZΩ−E is commensurable with the Néron lattice of E;

(2) the class

(8) Ω+
E · ϕ

+
E + Ω−E · ϕ

−
E ∈ H1(Γ0(N),C)

is in the kernel of the natural map

H1(Γ0(N),C)−→H1(Γ0(N),OH).

In particular, there is a 0-cochain JE ∈ C0(Γ0(N),OH) satisfying

(9) JE(γ−1z)− JE(z) = Ω+
E · ϕ

+
E(γ) + Ω−E · ϕ

−
E(γ), for all γ ∈ Γ0(N).

The resulting function

(10) JE : Γ0(N)\H−→C /ΛE ' E(C)

is called the modular parametrisation attached toE. An important application of JE is the

construction of a plentiful and arithmetically interesting supply of algebraic points on E
which are the basis for the best known results towards the Birch and Swinnerton-Dyer

conjecture: the Heegner points arising from the image of (imaginary) quadratic arguments

in H. Namely, letting HCM
be the set of points of H satisfying a quadratic equation over

Q, the holomorphic function JE on H induces a map

(11) JE : HCM−→E(C),

whose image lies in the Mordell-Weil groups ofE over ring class �elds of quadratic imag-

inary �elds.

We now turn to elliptic cocycles which are a p-adic analogue of the modular parametri-

sation JE of (11) suitable for a theory of real multiplication.

Suppose that p is a prime at which E has multiplicative reduction. The periods Ω±E (or

rather, the complex exponential of 2πi · Ω−E/Ω
+
E) then admit a p-adic analogue, the Tate

period q ∈ Q×p attached to E, for which

(12) E(Cp) = C×p /qZ.

The prime p necessarily divides the conductor N of E. For simplicity, and because this is

the only case that will arise in the application to the class number one problem, assume

from now on that N = p.

The class in (8) admits two natural p-adic multiplicative counterparts, namely

qϕ
+
E , qϕ

−
E ∈ H1(Γ0(p),Q×p ).
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To transpose the discussion of the previous section to a p-adic setting, it is natural to

replace H by the Drinfeld p-adic upper half plane

Hp := P1(Cp)− P1(Qp)

equipped with its structure of a rigid analytic space. Let OHp denote the ring of rigid

analytic functions on Hp. The group Γ0(p) acts on Hp by Möbius transformations, and

hence onO×Hp , but the class qϕE is not trivialised under the natural inclusion Q×p −→O×Hp .
This is because the analogue of the cochain JE of (9) would have to be invariant under

integer translations, and Z is not discrete p-adically, but dense in Zp.

It turns out to be fruitful to replace Γ0(p) by the larger Ihara group Γ := SL2(Z[1/p]),

which is an amalgamated product

Γ = SL2(Z) ∗Γ0(p) SL2(Z).

The Mayer-Vietoris sequence in group cohomology supplies a map

H1(Γ0(p),Z)−→H2(Γ,Z)

with �nite cokernel. Let α+
E, α

−
E ∈ H2(Γ,Q×p ) be the images of ϕ+

E and ϕ−E respectively,

under this map.

The exceptional zero conjecture of Mazur, Tate and Teitelbaum proved by Greenberg

and Stevens can be used to show the following p-adic counterpart of Proposition 5, in

which the degree of cohomology is shifted by one:

Proposition 6. The classes

qα
+
E , qα

−
E ∈ H2(Γ,Q×p )

lie in the kernel of the natural map

H2(Γ,Q×p )−→H2(Γ,O×Hp).

In particular, there are one-cochains J+
E and J−E ∈ C1(Γ,O×Hp) satisfying

J±E (γ2)(γ−1
1 z)÷ J±E (γ1γ2)(z)× J±E (γ1)(z) = qα

±
E(γ1,γ2), for all γ1, γ2 ∈ Γ.

The natural images of J+
E and J−E in H1(Γ,O×Hp /q

Z) are called the (even and odd, re-

spectively) rigid analytic elliptic cocycles attached to E. They play much the same role as

the modular parametrisation of E in (10) in the setting of real multiplication theory, as

will be explained in the next section.

The construction in [Da-01] shows that the cocycles J±E can be represented by parabolic

cocycles which are trivial on the standard parabolic subgroup, and hence can also be

described as a Γ-invariant modular symbol with values in O×Hp /q
Z
. This point of view,

which is convenient for explicit calculations, will be systematically adopted from now on,

namely, the symbols J±E will be used interchangeably to describe parabolic one-cocycles
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on Γ and their associated modular symbol. Hence the cocycles J+
E and J−E are now to be

envisaged as functions

J+
E , J

−
E : P1(Q)× P1(Q)−→O×Hp /q

Z

satisfying the usual additivity properties of modular symbols:

J±E {r, s} = J±E {s, r}
−1, J±E {r, s} × J

±
E {s, t} = J±E {r, t} for all r, s, t ∈ P1(Q),

as well as an invariance property under Γ:

J±E {γr, γs}(γτ) = J±E {r, s}(τ), for all γ ∈ Γ.

The cohomology class c can be recovered from its associated Γ-invariant modular symbol

m by choosing a basepoint t ∈ P1(Q) and setting

c(γ) := m{t, γt}.

3. Stark-Heegner points

An element τ ∈ Hp is called an RM point if it satis�es a quadratic equation with integer

coe�cients and positive discriminant. The �eld Kτ = Q(τ) is then a real quadratic �eld

in which p is non-split, and the order

Oτ :=

{(
a b
c d

)
∈M2(Z[1/p]) such that cτ 2 + (d− a)τ − b = 0

}
is isomorphic to a Z[1/p]-order in Kτ , embedded via(

a b
c d

)
7→ cτ + d.

The discriminant ofOτ (a positive integer which is prime to p, by de�nition) is also called

the discriminant of τ .

The stabiliser of τ in GL2(Z[1/p]), denoted Γτ , is isomorphic to the group O×τ of units

in Oτ , and hence is of rank one. A generator γτ for Γτ , which we call the fundamental
automorph of τ , can be normalised by choosing a fundamental unit ετ > 1 ofOτ , embed-

ding it into Cp, and requiring that γτ acts on the column vector (τ, 1) as multiplication by

ετ . The value of J+
E at τ ∈ HRM

p is then de�ned by setting

J+
E [τ ] := J+

E (γτ )(τ) = J+
E {0, γτ0}(τ) ∈ C×p /qZ = E(Cp).

(To evaluate the odd cocycle J−E , it is necessary to replace γτ by a generator of the sta-

biliser of τ in Γ ⊂ GL2(Z[1/p]) modulo torsion. i.e., to replace γτ by its square when the

fundamental unit of Oτ has norm −1.)

The value J±E only depends on the cohomology class of J±E : if ϕ(γ) = f−1 · (γf) is a

one-coboundary, then

ϕ[τ ] = f(γ−1
τ τ)f(τ)−1 = 1.
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Moreover, the assignment τ 7→ J±E [τ ] is Γ-invariant: if γ ∈ Γ, the fundamental automorph

of γτ is γγτγ
−1

and we have

J±E [γτ ] = J±E (γγτγ
−1)(γτ) = J±E (γ)(γτ)× J±E (γτ )(τ)× J±E (γ−1)(τ) = J±E [τ ].

The cocycles J+
E and J−E thus yield two maps

(13) J+
E , J

−
E : Γ\HRM

p −→E(Cp)

directly analogous to (11), where HRM
p denotes the set of RM points in Hp. The main

conjecture of [Da-01] (see [Da-01, Conjectures 5.6, 5.15]) predicts that the image of J+
E

(resp. J−E ) lies in the union of the Mordell-Weil groups of E over all ring class �elds in the

wide (resp. narrow) sense of real quadratic �elds, suggesting the construction of a plentiful

and arithmetically interesting supply of algebraic points onE, the so-called Stark-Heegner
points:

Conjecture 7. 1. If τ ∈ HRM
p is an RM point with (not necessarily maximal) associated

order Oτ = OD, then the image of J+
E [τ ] (resp. J−E [τ ]) under (12) is a global point of E

de�ned over the ring class �eld HD (resp. the narrrow ring class �eld) attached to D.

2. There is a Gross-Zagier formula of the form

htE(TraceHDKD(J+
E [τ ])) ∼ L′(E/K, 1),

where htE is the Néron-Tate canonical height on E over KD, and ∼ denotes an equality up
to an explicit non-zero fudge factor.

Remark 8. Conjecture 7 can be supplemented with a conjectural Shimura reciprocity law

[Da-01, Conjecture 5.9], which allows the trace in Part 2 to be expressed as a sum over the

class group rather than over the Galois group of HD/KD. This makes Part 2 somewhat

more independent of Part 1.

Remark 9. While Part 1 of Conjecture 7 seems inaccessible short of an essentially new

idea, Part 2 might be amenable to the methods of [BD-09] and [Mo-21], where the p-adic

logarithms of the traces of Stark-Heegner points to certain genus �elds of real quadratic

�elds are shown to agree with the p-adic logarithms of global points, by a comparison with

Heegner points arising from suitable Shimura curve parametrisations. It does not seem

out of the question that a tame re�nement of this approach and its extension in the spirit

of de Shalit’s proof [De-95] of a tame re�nement of the theorem of Greenberg-Stevens

could eventually lead to a proof of, or at least partial theoretical evidence for, Part 2 of

Conjecture 7.

The special case of Conjecture 7 that is germane to the class number one problem for

real quadratic �elds involves only the even cocycle J+
E , which shall henceforth be denoted

JE to lighten the notations.

A simple but crucial observation is that if

L(E/Q, 1) = L′(E/Q, 1) = 0,
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the L-series derivative that appears in Part 2 of Conjecture 7 always vanishes. The non-

degeneracy of the Néron-Tate height then implies that the trace toKτ of the Stark-Heegner

point JE[τ ] is torsion. This leads to a non-trivial property of the class number one real

quadratic orders in which p is inert:

Conjecture 10. Let E be an elliptic curve of prime conductor p and analytic rank ≥ 2. If
D is a discriminant of class number one for which (D

p
) = −1, then JE[D+

√
D

2
] maps to a

torsion point inE(KD) under (12). In particular, JE[D+
√
D

2
] = 1 ifE has trivial torsion over

quadratic �elds.

Remark 11. If E is any elliptic curve over Q, then E(KD)tor = E(Q)tor for all but �nitely

discriminants D. Moreover, the list of exceptional D’s can be found in the LMFDB data-

base entry for E (under "growth of torsion in number �elds"). It turns out that all elliptic

curves over Q of analytic rank ≥ 2 and prime conductor ≤ 10000 have trivial torsion

over quadratic �elds.

Remark 12. The assumption on the analytic rank is implied by a similar assumption on the

algebraic rank, thanks to the deep results of Gross-Zagier and Kolyvagin. The converse is

still open and very little is known about it without assuming the Birch and Swinnerton-

Dyer conjecture or at least the Shafarevich-Tate conjecture. This is why we have phrased

Conjecture 10 in terms of the weaker assumption on the analytic rank.

Although Conjecture 10 gives a non-trivial property satis�ed by all real quadratic dis-

criminants of class number one, it is unclear whether it brings us any closer to under-

standing the class number one problem for real quadratic �elds. Since JE is a cocycle and

not a function, its �bers are clearly not �nite: indeed if they were it would contradict the

widely believed in�nitude of D for which h(D) = 1.

4. Rigid analytic period functions

The (even) rigid analytic period function attached to E is simply the rigid analytic func-

tion on Hp de�ned by

ΦE(z) := JE{0,∞}.

There is no loss of information in passing from JE to its associated rigid analytic period

function. Indeed, the Euclidean algorithm for the gcd implies that any path from one cusp

to an other can be expressed as a �nite sum of unimodular paths, of the form {a
b
, c
d
} with

ad − bc = ±1, and these unimodular paths are all equivalent under Γ (under SL2(Z), in

fact) to {0,∞}.

The rigid analytic period function ΦE is far from being invariant under Γ, but it is

invariant under τ 7→ −τ (because JE is even) and under the map τ 7→ p2τ . It also
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satis�es the following two and three-term relations:

(14) ΦE

(
1

z

)
= ΦE(z)−1,

ΦE(z + 1)

ΦE(z)
= ΦE

(
z + 1

z

)
,

as well as some more complicated functional equations whose precise nature depends on

the prime p.

The value of the cocycle JE at τ ∈ HRM
p can be expressed as a product of values of

ΦE at a collection of SL2(Z)-translates of τ arising from its continued fraction expansion

(viewed as a real number)

τ = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

, with ai ∈ Z≥1 .

The number τ is real quadratic if and only if (a0, a1, . . .) is eventually periodic, and it is

said to be reduced if (a0, a1, . . .) is periodic. This is equivalent to the condition

τ > 1, −1 < τ ′ < 0,

where τ ′ is the algebraic conjugate of τ . Assume now that τ is reduced and that its con-

tinued fraction expansion has minimal period lengthm. Then, denoting by [x] the integer

part of a positive real number x, we can write

τ0 = τ, a0 = [τ0],
τ1 = (τ0 − a0)−1, a1 = [τ1],
τ2 = (τ1 − a1)−1, a2 = [τ2],
.
.
.

.

.

.

.

.

.

τm−1 = (τm−2 − am−2)−1, am−1 = [τm−1]
τm = (τm−1 − am−1)−1, τm = τ0.

The sequence (τ0, τ1, . . . , τm−1) is called the reduced cycle attached to τ0 = τ . The τi
represent the roots of binary quadratic forms in a cycle of reduced forms of discriminant

D.

Lemma 13. The value of the even elliptic cocycle JE at a reduced τ ∈ HRM
p is given by

JE[τ ] := ΦE(τ0) · ΦE(τ1) · ΦE(τ2) · · ·ΦE(τm−2) · ΦE(τm−1).

Proof. Let T = ( 1 1
0 1 ) and S = ( 0 1

1 0 ). For each i < m, set γi = T aiS so that

τi+1 = γ−1
i τi. Set γ = γ0 · · · γm−1. The periodicity of the continued fraction of τ

implies that γτ = τ . Conversely, since τ is reduced, the fundamental automorph γτ
of τ has positive coe�cients and the Euclidean algrithm shows that it can be written as

T b0ST b1S · · ·T bm−1S for some positive integers b0, . . . , bm−1 ≥ 1. The equality γττ =
τ then translates to [b0, . . . , bm−1] being the continued fraction of τ . It follows from
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the uniqueness of the continued fraction that γ = γτ is the fundamental automorph

of τ . Accordingly,

JE[τ ] = JE{0, γτ0}(τ) =
m−1∏
i=0

JE{γ0 · · · γi−10, γ0 · · · γi0}(τ)

=
m−1∏
i=0

JE{0, γi0}(γ−1
i−1 · · · γ−1

0 τ) =
m−1∏
i=0

ΦE(τi).

�

It transpires from Lemma 13 that JE[τ ] is a product of values of ΦE , the number of

factors in the product depending on the length of the period in the continued fraction

expansion of τ .

Most importantly, when D is of the form n2 + 4, we can express JE[τ ] as a single value
of the rigid meromorphic period function ΦE at

(15) εD :=
n+
√
n2 + 4

2
= n+

1

n+
1

n+ · · ·

.

The same is true with discriminants of the form D = n2 − 4, where

εD =
n+
√
n2 − 4

2

except whenD = 5 and n = 3, where this unit of norm 1 is the square of the golden ratio

εD.

Proposition 14. For all D of the form n2 ± 4,

JE

[
D +

√
D

2

]
= ΦE(εD).

If D = 5, then furthermore

JE

[
1 +
√

5

2

]
= ΦE(ε5), and JE

[
1 +
√

5

2

]2

= ΦE(ε2
5).

Proof. For D = n2 + 4, this follows from Lemma 13 combined with (15). In general,

one can directly see that the fundamental automorph of εD is

γD =

(
n ±1
1 0

)
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so that

JE

[
D +

√
D

2

]
= JE[εD] = JE{0, γD0}(εD) = JE{0,∞}(εD) = ΦE(εD).

The discriminant D = 5 is exceptional because it is the only discriminant which can

be written as both n2 + 4 and n2 − 4. In the latter case,
3+
√

32−4
2

= ε2
5 is actually the

square of the fundamental unit ε5 = 1+
√

5
2

. For the same reason ( 3 −1
1 0 ) is the square

of the automorph γ5, so the above computation yields

ΦE(ε2
5) = JE

[
1 +
√

5

2

]2

.

�

Proposition 14 leads to the following concrete consequence of Conjecture 10:

Conjecture 15. Let E be an elliptic curve of prime conductor p and analytic rank ≥ 2 over
Q having no quadratic torsion. IfD = n2±4 is a discriminant of class number one in which
p is inert, then ΦE(εD) = 1. If p is inert in K5, then ΦE(ε2

5) = 1 as well.

For the negative discriminants D = −4 and D = −3 that occur in (6), a substantial

part of Conjecture 15 can be proven independently of Conjecture 10.

More precisely, ifK is any imaginary quadratic �eld in which p is inert and τ ∈ Hp ∩K ,

we can de�ne JE[τ ] to be JE{0, γτ0}(τ), where γτ is a generator of the stabiliser Γτ of τ ,

suitably renormalised so as to have positive and imaginary parts when viewed inOτ ⊂ K .

SinceK is imaginary quadratic, the unit group ofOτ now has rank 0 so γτ — and hence

JE[τ ] as well — is torsion. In fact, when τ has discriminant other than D = −3,−4, the

unit group of Oτ is trivial, which means that γτ = ( 1 0
0 1 ) and JE[τ ] = 1. Letting ε−4 = i

and ε−3 = 1+i
√

3
2

, which correspond to ε = n+
√
n2−4
2

forn = 0, 1, we �nd, as in Proposition

14,

γ−4 =

(
0 −1
1 0

)
, JE[ε−4] = ΦE(ε−4),

γ−3 =

(
1 −1
1 0

)
, JE[ε−3] = ΦE(ε−3).

Lemma 16. If (−4
p

) = −1, then JE[ε−4] = ±1, and if (−3
p

) = −1, then JE[ε−3] is a cube
root of unity.

Proof. The element γ−3 is 3-torsion so the same holds for JE[ε−3]. For the same

reason, JE[ε−4] is 4-torsion, but in fact, as γ2
−4 = −( 1 0

0 1 ) �xes 0,

JE[ε−4]2 = JE{0, γ2
−40}(ε−4) = 1.
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�

Remark 17. In concrete instances, it is not hard to determine when these "CM Stark-

Heegner points" are trivial: this happens precisely when they are congruent to 1 modulo

p, since the only torsion point in O×Cp congruent to 1 modulo p is 1. Experiments with

curves of prime conductor of rank 0, 1 and 2 and conductor ≤ 2089 suggest that these

points, in addition to being torsion, appear to always be trivial. This resonates with the

philosophy that Stark-Heegner points ought to be de�ned overK whenK has class num-

ber one, given that the rank two elliptic curves we have examined have trivial torsion over

quadratic �elds, (even if, of course, Part 2 of Conjecture 7 no longer holds in this setting).

It should be noted that the elements εD belong to the standard a�noid H◦p ⊂ Hp when

p in inert in KD. Conjecture (15) suggests tackling Yokoi’s conjecture by studying the

solutions of the equation

ΦE(z) = 1

that lie in the standard a�noid. The next section shows that this question can largely be

reduced, thanks to Hensel’s lemma, to similar question for the mod p reduction of ΦE(z)
(more precisely: of its restriction to H◦p), a rational function over the �eld with p elements.

5. Rational period functions

Let X := P1−P1(Fp) be the “pointless" a�ne curve over Fp consisting of the comple-

ment of the Fp-rational points in P1, and let

OX = Fp[x][(xp − x)−1] ⊂ Fp(x)

be its ring of regular functions. If ordp(q) = 1, the function ΦE ∈ O×Hp /q
Z

can be trans-

lated by a suitable power of q to that it maps the standard a�noid H◦p toO×Cp ⊂ OCp . This

representative belongs to the integral Tate algebraOint
H◦
p
⊂ OH◦

p
. Reduction modulo p gives

rise to maps

redp : H◦p−→X(Fp), redp : Oint
H◦
p
−→OX .

The image

RE(x) := redp(ΦE|H◦
p
) ∈ O×X

of ΦE is called the (mod p) rational period function attached to E.

The following is a direct consequence of Hensel’s lemma:

Lemma 18. Let z0 ∈ X(Fp) be a solution of the equation RE(z0) = 1, for which R′E(z0) 6=
0. Then there is a unique z ∈ H◦p satisfying

redp(z) = z0, ΦE(z) = 1.

We obtain the following corollary:
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Corollary 19. Let E be an elliptic curve of prime conductor p and rank ≥ 2 over Q having
no quadratic torsion. Assuming Conjecture 7, RE(εD) = 1 for all discriminantsD = n2± 4
of class number one in which p is inert. If εD is a simple zero of RE(x) − 1, then εD is the
only solution to ΦE(τ) = 1 in its mod p residue disc.

Corollary 19 reduces the study of Yokoi’s conjecture to the determination of the zeroes

of a single rational function over Fp, the function RE(z)− 1. We now proceed to give an

explicit formula for RE(z) which allows it to be calculated e�ciently on the computer.

This formula depends on the even Γ0(p)-invariant modular symbol

mE{r, s} :=
1

Ω+
E

Re

(∫ s

r

2πifE(z)dz

)
∈ Z

attached to E, and on the associated Manin symbol

ME : P1(Fp)−→Z
de�ned by

ME(a) :=

{
mE

{
a
p
,∞
}
, if a = 0, 1, . . . , p− 1,

−mE{0,∞}, if a =∞.
The value ME(0) is a non-zero multiple of L(E, 1) and hence vanishes when E has ana-

lytic rank ≥ 1. The following proposition examines the GL2(Z)-invariant modular sym-

bol

J̄E : P1(Q)× P1(Q)→ O×X
de�ned by

J̄E{r, s} = redp(JE{r, s}|H◦
p
).

Proposition 20. For all r, s ∈ P1(Q),

(16) J̄E{r, s} =
∏
a∈Fp

(z − a)Mrs(a) (mod F×p ),

where

Mrs(a) := mE

{
r − a
p

,
s− a
p

}
.

Proof. Let us �rst quickly recall the construction of the Γ-invariant elliptic modular

symbol JE . LetD(P1(Qp),Z) denote the space of Z-valued measures of total mass zero
on P1(Qp), that is, the space of measures µ on the topological space P1(Qp) for which

µ(U) ∈ Z for any compact-open subset U and µ(P1(Qp)) = 0. If µ ∈ D(P1(Qp),Z)
is such a Z-valued measure, we may de�ne a multiplicative integral by considering

Riemann products instead of Riemann sums: for any continuous f : P1(Qp)→ C×p ,

×
∫
P1(Qp)

f(t)dµ(t) := lim
P1(Qp)={Uα}

∏
α

f(tα)µ(Uα)
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where the limit is taken over �ner and �ner coverings of P1(Qp) by mutually disjoint

compact open subsets Uα and tα ∈ Uα is a sample point.

It is proved in [Da-01, §1.2] that the even modular symbol mE may be upgraded

uniquely to an even modular symbol

µE : P1(Q)× P1(Q)→ D(P1(Qp),Z)

satisfying

µE{r, s}(Zp) = mE{r, s}, µE{γr, γs}(γU) = µE{r, s}(U)

for all r, s ∈ P1(Q) and γ ∈ GL2(Z). For simplicity and to avoid the qZ ambiguity,

we now restrict ourselves to the standard a�noid H◦p. Using this modular symbol, we

de�ne a multiplicative line integral: for all τ0, τ ∈ H◦p and r, s ∈ P1(Q),

(17) ×
∫ τ

τ0

∫ s

r

ωE := ×
∫
P1(Qp)

(
τ − t
τ0 − t

)
dµE{r, s}(t).

The elliptic modular symbol JE corresponds to the unique inde�nite integral

JE{r, s}(τ) = ×
∫ τ ∫ s

r

ωE,

a Γ-invariant modular symbol with values in O×Hp /q
Z

satisfying

(18) ×
∫ τ ∫ s

r

ωE ÷×
∫ τ0

∫ s

r

ωE = ×
∫ τ

τ0

∫ s

r

ωE

for all τ0, τ ∈ H◦p and r, s ∈ P1(Qp). (See [Da-01, §3.3].) Restricting JE to H◦p and

translating it by a suitable power of q, it becomes a GL2(Z)-invariant modular symbol

with values in (Oint
H◦
p
)×. For all a ∈ P1(Fp), let

Ba =

{
a+ pZp if a 6=∞,
P1(Qp) \ Zp if a =∞

denote the preimage of {a} under the reduction map P1(Qp)→ P1(Fp). We can then

write Ba = γa Zp, where

γa = ( p a0 1 ) if a 6=∞, γa =
(

0 −1
p 0

)
if a =∞.

For all r, s ∈ P1(Qp) and any a = 0, 1, . . . , p− 1, one �nds that

µE{r, s}(Ba) = µE{γ−1
a r, γ−1

a s}(Zp) = mE

{
r − a
p

,
s− a
p

}
= Mrs(a).

The divisor of J̄E{r, s}(τ) is the same as that of the image under redp of the function

in (17), where τ0 is an arbitrary base point in H◦p and τ is treated as the variable. This

divisor is equal to

Div(J̄E{r, s}) =
∑

a∈P1(Fp)

Mrs(a)〈a〉,
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where

Mrs(∞) = −Mrs(0)− · · · −Mrs(p− 1).

Proposition 20 follows directly since the rational function on the right of (16) has the

same divisor. �

By specialising this proposition to (r, s) = (0,∞) we obtain

Corollary 21. The rational period function RE(z) satis�es

RE(z) =
∏
a∈Fp

(z − a)ME(a) (mod F×p ).

Corollary 21 already su�ces to compute the rational period functionRE(z) in practice,

since the three-term relation can be used to identify the correct constant. It is however

possible to give a simple closed formula for RE(z) in all cases.

Proposition 22. The rational period function RE(z) is given by

(19) RE(z) = zME(0) ×
∏

ME(a)>0

(z − a)ME(a) ×
∏

ME(a)<0

(
1− z

a

)ME(a)

,

where the products are taken over the a ∈ F×p . If E has (analytic) rank at least two, it is
given by the simpler expression

(20) RE(z) =

p−1∏
a=1

(z − a)ME(a).

Proof. Corollary 21 shows that (19) is true up to a multiplicative scalar. To check that

this scalar is trivial, it su�ces to verify that the formula for RE(z) in (19) satis�es the

two and three term identities of (14) which RE(z) inherits from the rigid analytic

period function ΦE(z). Set

c =
∏

M(a)<0

(−a)M(a) =
∏

M(a)<0

aM(a)
and R(z) =

∏
a∈Fp

(z − a)M(a)

(sinceM is even) so that the right-hand-side of (19) is c−1R. After computing the �rst

non-zero Laurent coe�cients at 0 of

R

(
1

z

)
= z−M(0)

∏
a∈F×

p

z−M(a)(1− az)M(a)

R

(
z + 1

z

)
= z−M(0)(z + 1)M(0)

∏
a∈F×

p

z−M(a)(z + 1− az)M(a)

R(z + 1) = zM(1)
∏
a∈F×

p

(z − a)M(a+1),
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we see that the two and three-term relations RE(z)RE(1
z
) = 1 and RE( z+1

z
)RE(z) =

RE(z + 1) amount to∏
a∈F×

p

aM(a) × 1 = c2
and 1×

∏
a∈F×

p

aM(a) = c×
∏
a∈F×

p

aM(a+1)

respectively. The �rst equality follows from the observation that

c =
∏

M(a)>0

aM(a) =
∏

M(b)<0

bM(b),

as seen by letting b = 1
a

and recalling that M( 1
a
) = −M(a), and the second by

grouping together a with
1
a

on the right-hand-side and recalling that M(a + 1) −
M( 1

a
+ 1) = M(a).

We now turn to the formula in rank ≥ 2. In this case, we need to prove that the

scalar c is trivial, whose square is

ΩMT(E) :=

p−1∏
a=1

aME(a) ∈ F×p .

This interesting quantity arises as the “�rst derivative" of the “theta element"

θE :=
∑

a∈(Z /pZ)×

ME(a) · 〈a〉 ∈ Z[(Z /pZ)×]

attached toE, an object that belongs to the integral group ring of Gal(Q(µp)/Q) and

can be viewed as a tame re�nement of the Mazur-Swinnerton-Dyer p-adic L-function

attached toE. This tame re�nement is studied in [MT-85], where it is conjectured that

it belongs to the r-th power if the augmentation ideal in the integral group ring, where

r is the rank ofE/Q, and even to its (r+1)-st power whenE has split multiplicative

reduction at p. The quantity ΩMT (E) encodes the image of θE in I/I2
and hence is

equal to 1 when r ≥ 2. Evidence towards the Mazur-Tate conjecture building on the

p-adic insights of Greenberg and Stevens is presented in [De-95]. The fact that the

scalar c, a canonical square root of ΩMT (E), is also equal to 1 appears to be a slight

but non-trivial re�nement of the Mazur-Tate conjecture in this setting. �

6. Yokoi’s conjecture

The elliptic curve of rank two and smallest prime conductor is the curve denoted E =
389A1 in the tables of Cremona [Cr-05], with equation given by

E : y2 + y = x3 + x2 − 2x.

A computer calculation shows that the rational period function RE(x) has degree 144,

and the numerator of the rational functionRE(x)−1, a polynomial of degree 142, factors

into:
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• 66 linear factors, with roots 0 (twice) ±1 (three times), ±2 (twice) ±1/2 (twice), and

±115 (once), and twelve quadruples of roots of the form a,−a, 1/a,−1/a with

a = 3, 4, 6, 10, 13, 15, 62, 98, 101, 117, 123, and 2/3.

• 6 quadratic factors of the form x2 ± nx− 1, with n = 2, 5, 7, corresponding to the dis-

criminantsD = 8, 29, and 53 in (5). These are precisely the discriminants in (5) which are

not quadratic residues modulo 389. This proves that any class number one discriminant

of the form n2 + 4 with n > 391 must be divisible by 389.

• 10 quadratic factors of the form x2 ± nx + 1, with n = 1, 4, 5, 6, 21, corresponding to

the discriminants D = −3, 12, 21, 32, and 437 in (6). The integers in this list are precisely

the discriminants in (6) which are not quadratic residues modulo 389. The fact that ΦE

vanishes at the roots of the polynomials x2 ± x+ 1 can be deduced directly from Lemma

16, by observing that the vanishing of RE at ε−3 means that JE[ε−3] is congruent to 1
modulo p, and so is equal to 1 since the only such torsion point in O×Cp is 1. This proves

that any class number one discriminant of the form n2−4 with n > 391 must be divisible

by 389.

• 4 irreducible factors of degree 11, namely

h(x) = x11+61x10−192x9+134x8+19x7−80x6+66x5+64x4+48x3−159x2−50x−70,

as well as h(−x), x11h(1/x), and x11h(−1/x).

The factorisation of RE(x) − 1 shows that the equation ΦE(τ) = 1 has exactly 76
solutions in H◦389. Four of these are the CM points of the form±ε−3 and ±ε−1

−3. Assuming

Conjecture 15, there are 28 further roots given by the RM points

±1±
√

2,
±5±

√
29

2
,
±7±

√
53

2
, ±2±

√
3,

±5±
√

21

2
, ±3± 2

√
2, and

±21±
√

437

2
.

Finally, ΦE(τ)− 1 vanishes at 44 presumably transcendental elements of the unrami�ed

extension of Q389 of degree 11.

Repeating the same calculation with other elliptic curves of rank 2 and prime conductor,

one sometimes encounters polynomials of the form x2 + nx ± 1 in the factorisation of

RE(x) − 1, where n is small but D = n2 ∓ 4 does not have class number one. These

factors, while they are seemingly not accounted by Conjecture 7, are sometimes explained

by a twisted version of the Gross-Zagier formula of Conjecture 7 [Da-01, Conjecture 5.15]

(some cases of which were proven in a weaker form in [LMH-20], building on [BD-09]

and [Mo-21]): if χ is a character of Cl(D) ' Gal(HD/KD), the Néron-Tate height of the

χ-isotypical component

P (χ) :=
∑

σ∈Gal(HD/KD)

χ(σ)P σ ∈ (E(HD)⊗ C)(χ)
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of P := JE[τ ] should be a multiple of the derivative L′(E/KD, χ, 1) of the twisted Hasse-

Weil L function L(E/KD, χ, s).

In particular,P is torsion wheneverL′(E/KD, χ, 1) = 0 for every characterχ of Cl(D).

In the case where the class group is an elementary 2-group, i.e. every form is ambiguous,

all the characters of Cl(D) are quadratic and described by genus theory as a Kronecker

symbol

(
d
·

)
for some d | D. (See [Co-78, Theorem 18.27].) In this case, up to �nitely many

Euler factors,

L(E/K, χ, s) = L(E(d)/KD, s) = L(E(d)/Q, s)L(E(D/d)/Q, s)

and its order of vanishing is the sum of the analytic ranks of the quadratic twistsE(d)
and

E(D/d)
of E.

For example, consider the elliptic curve of rank 2 and conductor p = 563, labelled

563A1 in Cremona’s tables. When factoring the numerator ofRE−1 overFp[x], we obtain

the quadratic factors x2 + 31x− 1 and x2 + 41x− 1 corresponding to the discriminants

D1 = 312 + 4 = 5 · 193, and D2 = 412 + 4 = 5 · 521

of class number 2. For each of j = 1, 2, the non-trivial character of Cl(Dj) is given by(
5
·

)
. It turns out that E(5)

has rank 2 and hence that L′(E(5)/Q, 1) = 0. It follows that

all the χ-components of P are trivial, hence this Stark-Heegner point is torsion. Since it

is moreover congruent to 1 modulo p, it must correspond to an actual zero of ΦE − 1.

Our results on the factorisation of RE(x) − 1 for the curve 389A1 are summarised in

the �rst line of Table 1, in which similar data is gathered for all the elliptic curves of

analytic rank two of prime conductor ≤ 1000, as well as for the elliptic curve 5077A1
of smallest prime conductor and rank 3. (This curve, which also plays a key role in the

work of Goldfeld-Gross-Zagier, su�ces to prove Yokoi’s conjecture for discriminants not

divisible by 5077, but not its extension to discriminants of the form n2 − 4.)

The �rst column gives the label for the elliptic curve E of rank ≥ 2 following the

conventions of Cremona. (The reader is cautioned that these sometimes di�er from the

ones in the LMFDB.) The second column gives the degree of the rational function RE(z),

which in all cases provides a (strict) upper bound for the number of solutions to ΦE(z) = 1
in H◦p . The third column indicates the number of elements of P1(Fp) that occur (with

multiplicity) in the �ber of RE(z) above 1, which is always less than the degree of RE(z).

The integers in the fourth and �fth columns of Table 1 that are printed in a regular font

correspond to class number one discriminants in the lists (5) and (6) respectively. Those

in boldface correspond to discriminants with larger class numbers, but for which we are

nevertheless able to predict that the associated Stark-Heegner point vanishes because of

“excess vanishing" of suitable twisted L-series of E, as explained above. The elements

with a superscript of ? indicate more problematic mod p roots which do not seem to

correspond to a Stark-Heegner point of �nite order. It is entirely possible that the solutions
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of ΦE(z) = 1 in the associated residue discs of H◦p, although quadratic over Qp, are not

RM points and are even likely to be transcendental over Q. When such “parasitic factors"

occur in the factorisation ofRE(z)−1, they present a more serious obstruction to proving

Yokoi’s conjecture or its analogue for discriminants of the form n2 − 4.

Finally, the last column of Table 1 lists the degrees of the irreducible factors of the

numerator of RE(z)− 1 that are not of the form x2 ± nx± 1.

E deg(RE)
Linear

factors
x2 ± nx− 1 x2 ± nx+ 1

Degrees of

other factors

389A1 144 68 2, 5, 7 1, 4, 5, 6, 21 114

433A1 162 62 1, 4, 5, 11, 13 3, 5, 7, 9 54102122

563A1 152 66
1, 2, 4, 5, 7, 11
13, 17,31,41

0, 1, 3, 6, 7 2264

571B1 204 86 2, 7, 8 0, 4, 6, 9, 21,31 226274104

643A1 180 58 1, 2, 3, 4, 8, 11
0, 3, 4, 5, 6, 7, 9
11, 21,33, 160? 46162

709A1 296 72 2, 3, 7, 8, 13,16 6, 11, 21,24 104222242262

997B1 460 56
1, 2, 4, 5, 8
11, 17, 64? 3, 5, 6, 7 26421682

997C1 328 72
1, 2, 4, 5, 8

11,16, 17,31
53, 380?, 463?

3, 5, 6, 7,17 2684722

5077A1 4624 56 1, 2, 3, 4, 5, 8, 11
3, 6, 7, 9, 11, 21,

956?, 2000?

244282242494

7027222742

358213422

Table 1. Factorisation of RE − 1

The data gathered in Table 1 is amply su�cient to prove Yokoi’s conjecture. The two

rows attached to the elliptic curves 389A1 and 433A1 imply that any class number one

discriminant of the form n2 + 4 with n ≥ 435 must be divisible by both 389 and 433. But

this is impossible by genus theory.

Remark 23. It may appear somewhat surprising that the �ber R−1
E (1) has so many Fp-

rational elements while RE itself already has all its zeros and poles in P1(Fp). Such zeros

do not lift to the standard a�noid H◦p, re�ecting the fact that the equation ΦE(τ) = 1
has less solutions in H◦p than the equation ΦE(τ) = t for all but �nitely many t. This

phenomenon seems to fall outside the framework of real multiplication. The authors

have checked that this pattern persists for all curves of rank ≥ 2 and conductor less than

10000. Moreover, for curves of rank 2, the elements 0, 1, 2, 3, 4, 6,
2
3

and
3
4

seem to always

be roots of RE − 1 with respective multiplicites 2, 3, 2, 1, 1, 1 and 1. These also seem to

be the only critical points of RE − 1, i.e. roots with multiplicity ≥ 2.
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For elliptic curves of rank 1, the pattern breaks down and RE − 1 has almost no Fp-
rational zeros, never exceeding 18 such roots. We checked that 1 and −1 were always,

for curves of conductor ≤ 2089 which are unique in their isogeny class, in the �ber of 1
with multiplicity 3, as well as∞ with multiplicity 2. Again, these appear to be the only

critical points. Sometimes there are no other Fp-rational zeros.

For curves of rank 0 and conductor ≤ 2089 which are unique in their isogeny class,

RE − 1 always has 1 and −1 as simple roots as well as∞ with multiplicity 2. The only

critical point is∞. Most of the time it has few rational zeros (at most 18), sometimes it

has no other rational zeros, sometimes it has around 50. This is for instance the case for

the elliptic curve with LMFDB label 1171B1.

7. Chowla’s conjecture

We now turn to the determination of all the discriminants of the form D = 4n2 + 1
such that h(D) = 1. We follow the same steps as before. It is convenient to �rst work in

a greater generality.

Let D > 0 be any positive discriminant, OD the quadratic order of discriminant D,

and εD = u + v
√
D
2

its fundamental unit. The stabiliser of a primitive binary form Q =
ax2 + bxy + cy2

of discriminant D is generated by

γQ =

(
u− bv

2
−cv

av u+ bv
2

)
.

In particular, γQ∞ has denominator av. Let ρ be the matrix ( 1 w
0 av ) where w = u− bv

2
. If

τQ denotes a root of Q(x, 1), the fundamental automorph of τQ is γ±1
Q and we have

JE[τQ]±1 = JE{∞, γτQ∞}(τQ) = JE{ρ∞, ρ0}(τQ).

Putting ρ =
(

1 q
0 1

)
( 1 r

0 av ) in Hermite normal form, we end up with

JE[τQ]±1 = JE

{
∞, r

av

}
(τQ − q)

wherew = qav+r is the Euclidean division ofw by av. This suggests trying to enumerate

real quadratic �elds of class number one based on the "quadratic part" v, i.e. the conductor

of the order Z[εD] generated by the fundamental unit. Indeed, �xing v and letting Q be

the principal form (which has a = 1), we see that JE[τQ] can be written as the evaluation

of some function j at some translate of τQ, where j belongs to the �nite set of functions

of the form JE
{
r
v
,∞
}±1

for some integer 0 ≤ r < v.

Proposition 24. Let Q = ax2 + bxy + cy2 be a primitive binary form of discriminant
D > 0 and let τQ be a root of Q(x, 1). Let εD be the fundamental unit of OD and let v be
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the conductor of the order Z[εD]. Then, there exist integers 0 ≤ r < av and q ∈ Z such that
gcd(r, av) = 1 and

JE[τQ]±1 = JE

{ r

av
,∞
}

(τQ − q) ,

where the ±1 sign depends on the chosen root of Q(x, 1).

Proof. We have proved everything except that r ≡ u − bv
2

(mod av) is coprime to

av, which follows from the equality(
u− bv

2

)(
u+

bv

2

)
+ (av)(cv) = det ρ = ±1.

�

In the previous section, we implemented this strategy when the conductor is 1, which

corresponded to discriminants of the form n2 ± 4. We now proceed to do it when the

conductor is 2, this time corresponding to the families D = 4n2 + 1 and D = 4(n2 − n).

Indeed, in the former case one has (2n)2−D · 12 = −1 and in the latter case (2n− 1)2−
D · 12 = 1.

Just like 5 both had the form n2 + 4 and n2 − 4, the unit m +
√
D, where m ∈ {2n−

1, 2n} depending on the form of D, need not be fundamental but merely a power of the

fundamental unit (in fact it is either the fundamental unit or its square). Let

αD =

{
−2n−1+

√
4n2+1

2
, if D = 4n2 + 1,

−n+
√
n2 − n if D = 4(n2 − n).

be a root of x2 + (2n+ 1)x+ n in the former case and x2 + 2nx+ n in the latter. Making

Proposition 24 explicit for those families, we obtain

Corollary 25. LetD > 0 have the form 4n2 + 1 or 4(n2 − n) and let τD = D+
√
D

2
. Then a

power of JE[τD] is equal to JE
{
−1

2
,∞
}

(αD).

Corollary 25 and Conjecture 10 invite us to examine the quadratic factors in the fac-

torisation of R
(2)
E − 1, where

R
(t)
E = redp

(
JE{−1/t,∞}|H◦

p

)
.

As before, let E be the unique elliptic curve of rank 2 and conductor p = 389, labelled

389A1 in Cremona’s tables. The quadratic factors of R
(2)
E are then

2x2 − 1 2x2 − 2x− 1 x2 + 7x+ 3 x2 + 11x+ 5 x2 + 15x+ 7
x2 + 27x+ 13 x2 + 59x+ 29 x2 + 4x+ 2 x2 + 8x+ 4 x2 + 20x+ 10

as well as their images by the matrix ( −1 −1
0 1 ), which exchanges −1

2
and∞. All of these

are as predicted by Proposition 24: the �rst two factors correspond to a = 2 and v = 1,

and the rest to a = 1 and v = 2. Each of the discriminants of these quadratic polynomials
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has class number one, apart from x2 + 59x+ 29 and x2 + 20x+ 10 whose discriminants

have class number two.

In the �rst case, the discriminant is D = 4 · 292 + 1 = 5 · 673 and, letting χ be

the non-trivial character of Cl(D), one computes that the twisted Hasse-Weil L-function

L(E/KD, χ, s) = L(E(5)/KD, χ, s) vanishes to order 3 at s = 1. As explained before,

this is enough to suggest that the Stark-Heegner point of discriminant D is trivial.

In the second case, D = 23 · 32 · 4 = 360 and OD is the order of conductor 3 in

the maximal order Z[
√

10] of discriminant 40. Letting χ be the non-trivial character of

Cl(360) = Cl(40), the χ-component, denoted P40(χ) ∈ E(H40), of the Stark-Heegner

point of discriminant 40 appears to be non-trivial, since the twisted Hasse-WeilL-function

L(E/K40, χ, s) = L(E(5)/K40, s) vanishes to order 1 at s = 1. The Stark-Heegner point

P360(χ) is de�ned over the same �eld asP40(χ) sinceH360 = H40, however, the two points

are not the same. Rather, general norm compatibility properties of Stark-Heegner points

show that

P360(χ) = (a3(E)− χ(p3)− χ(p̄3))P40(χ),

where a3(E) is the third Fourier coe�cient of the cusp form attached to E, and p3 and p̄3

are the two prime ideals of Z[
√

10] above 3. Since these primes are inert in H40/K40, we

have χ(p3) = χ(p̄3) = −1, and one veri�es that a3(E) = −2. It follows that P360(χ) = 0
because of the presence of this local factor at the prime 3, even though P40(χ) need not be

trivial. Since the trace P360(1) of the Stark-Heegner point P360 is also torsion, it follows

that P360 is itself a point of �nite order, as suggested by our experiment.

Proposition 1 combined with the �rst line of Table 2 implies Chowla’s conjecture for dis-

criminants of conductor not divisible by 389. To deduce the full conjecture, we repeat the

argument with another rank two curve of prime conductor q ≡ 1 (mod 4) (for instance,

q = 433) and invoke genus theory as in the proof of Yokoi’s conjecture. As a byproduct of

this analysis, we also deduce the following list of class number one discriminants of the

form 4(n2 − n):

Corollary 26. Assuming Conjecture 7 and its twisted variant, there are exactly four dis-
criminants of the form D = 4(n2 − n) with class number one:

D = 8, 24, 48, and 80.

Table 2 summarises the factorisation ofR
(2)
E −1 for rank 2 curves of prime conductor≤

1000, with the same conventions as in the previous section. For each of the two quadratic

factors columns, we only write one representative for the orbit of a factor under ( −1 −1
0 1 ).

Note that the factor 2x2 + 2x + 1 that appears sometimes corresponds to the negative

class number one discriminant D = −4 and is again explained by Lemma 16.

The integer denoted 37?
in the row attached to the elliptic curve E = 571B1 corre-

sponds to the prime discriminant D = 4 · 372 + 1 = 5477 of class number three. It would
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E deg(R
(2)
E )

Linear

factors
x2 + (2n+ 1)x+ n x2 + 2nx+ n

Degrees of

other factors

389A1 166 38 1
2
, 3, 5, 7, 13,29 3

2
, 2, 4,10 442

433A1 194 46 1, 5, 13 5,10 22182442

563A1 176 50 1
2
, 1, 3, 13 1

2
, 2, 3, 5,7 42422

571B1 208 50 1
2
, 2, 5, 7,23,29, 37?

1
2
, 3

2
, 2, 4

10,12
42254

643A1 188 42 1
2
, 1, 2, 3, 7, 11

1
2
, 3

2
, 2, 4

5,11,17
64362

709A1 338 54 1
2
, 2, 3, 5, 7, 13 2, 3, 13

2
243444102942

997B1 494 34 1
2
, 1, 2, 3, 7, 13 2, 3, 5

42122174222

262322822

997C1 354 42 1
2
, 1, 2, 3, 7,11, 13 2, 3, 5 684

5077A1 4852 32 1
2
, 1, 2, 3, 5, 7, 13 2, 3, 5,9

22262322674

75410141102

151417843362

34623942

Table 2. Factorisation of R
(2)
E − 1

be interesting to check that the Hasse-Weil L-series ofE twisted by any cubic unrami�ed

character of KD vanishes to order ≥ 3, but we have not attempted this.
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