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1

Differentiation and the Maximal Function

We start with the remarkable Vitali Covering Lemma. The action takes place on
R, but equally well there are corresponding statement in Rd. We denote by λ the
Lebesgue measure.

LEMMA 1 (VITALI COVERING LEMMA) Let S be a family of bounded open in-
tervals in R and let S be a Lebesgue subset of R with λ(S) <∞ and such that

S ⊆
⋃

I∈S
I.

Then, there exists N ∈ N and pairwise disjoint intervals I1, I2, . . . IN of S such
that

λ(S) ≤ 4
N∑

n=1

λ(In). (1.1)

Proof. Since λ(S) < ∞, there exists K compact, K ⊆ S and λ(K) > 3
4
λ(S).

Now, since
K ⊆

⋃

I∈S
I

there are just finitely many intervals J1, J2, . . . , JM with K ⊆ ⋃M
m=1 Jm. Let

these intervals be arranged in order of decreasing length. Thus 1 ≤ m1 < m2 ≤
M implies that λ(Jm1) ≥ λ(Jm2). We will call this the J list. We proceed
algorithmically. If the J list is empty, then N = 0 and we stop. Otherwise, let I1

be the first element of the J list (in this case J1). Now, remove from the J list,

1



all intervals that meet I1 (including I1 itself). If the J list is empty, then N = 1
and we stop. Otherwise, let I2 be the first remaining element of the J list. Now,
remove from the J list, all intervals that meet I2 (including I2 itself). If the J list is
empty, then N = 2 and we stop. Otherwise, let I3 be the first remaining element
of the J list. Now, remove from the J list, all intervals that meet I3. . .

Eventually, the process must stop, because there are only finitely many ele-
ments in the J list to start with. Clearly, the In are pairwise disjoint, because if
In1 meets In2 and 1 ≤ n1 < n2 ≤ N , then, immediately after In1 was chosen, all
those intervals of the J list which meet In1 were removed. Since In2 was even-
tually chosen from this list, it must be that In1 ∩ In2 = ∅. Now, we claim that
for every Jm is contained in an interval I?n which is our notation for the interval
with the same centre as In but three times the length. To see this, suppose that
Jm was removed from the J list immediately after the choice of In. Then Jm
was in the J list immediately prior to the choice of In and we must have that
length(Jm) ≤ length(In) for otherwise Jm would be strictly longer than In and
In would not have been chosen as a longest interval at that stage. Also Jm must
meet In because it was removed immediately after the choice of In. It therefore
follows that Jm ⊆ I?n.

So, K ⊆ ⋃M
m=1 Jm ⊆

⋃N
n=1 I

?
n and λ(K) ≤ ∑N

n=1 λ(I?n) = 3
∑N

n=1 λ(In). It
follows that (1.1) holds.

We now get an estimate for the Hardy-Littlewood maximal function. Let us
define for f ∈ L1(R,L, λ)

Mf(x) = sup
Iopen interval

x∈I

1

|λ(I)|

∣∣∣∣
∫

I

f(t)dλ(t)

∣∣∣∣ .

THEOREM 2 We have λ({x; |Mf(x)| > s}) ≤ 4s−1‖f‖1.

The result says that Mf satsifies a Tchebychev type inequality for L1. It is
easy to see that we do not necessarily have Mf ∈ L1. For example, if f = 11[−1,1],
then we have

Mf(x) =





1 if |x| ≤ 1,

2

|x|+ 1
if |x| ≥ 1.

and Mf is not integrable even though f is. Note that we may also define the
centred maximal function

Mcf(x) = sup
h>0

1

2h

∣∣∣∣
∫ x+h

x−h
f(t)dt

∣∣∣∣ .
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Proof. First of all, there is no loss of generality in assuming that f ≥ 0. Let a ∈ N
and let S = [−a, a]∩ {x; |Mf(x)| > s}. Let S be the set of intervals I such that

1

λ(I)

∫

I

f(t)dt > s. (1.2)

Then if x ∈ S there is some I such that (1.2) holds and so I is in S . Hence
the hypotheses of the Vitali Covering Lemma are satisfied. We can then find N
disjoint intervals In such that λ(S) ≤ 4

∑N
n=1 λ(In). But

s
N∑

n=1

λ(In) ≤
N∑

n=1

∫

In

f(t)dt =

∫ ( N∑

n=1

11In

)
fdλ ≤ ‖f‖1

Note that the disjointness of the intervals is key here. It is used to show that∑N
n=1 11In ≤ 11. It follows that λ(S) ≤ 4s−1‖f‖1. Now it suffices to let a −→∞

to obtain the desired conclusion.

The results of this section are easily generalized to Rd and in a variety of ways.
In the Vitali Covering Lemma, we can replace intervals by either cubes with sides
parallel to the coordinate axes or with balls. In fact, you can easily find in the
literature many papers generalizing this lemma by replacing intervals with various
families of sets satisfying various sets of conditions. Let us take balls. The key fact
about balls that one is using is the following:

If r ≥ r′ > 0 and if U and U ′ are open balls of radius r and r′

respectively and if U
⋂
U ′ 6= ∅, then U ′ ⊆ 3U where 3U denotes the

ball with the same centre as U and radius 3r.

Then we may define the corresponding maximal function by

Mf(x) = sup
Uopen ball

x∈U

1

|λ(I)|

∣∣∣∣
∫

U

f(t)dλ(t)

∣∣∣∣ .

and the estimate that will be obtained is

λ({x; |Mf(x)| > s}) ≤ Cd s−1‖f‖1.

where Cd is a constant depending only on the dimension. There are also corre-
sponding estimates for the maximal function on Td, the d-dimensional torus.
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1.1 Conditional Expectation Operators

As an example of orthogonal projections, we can look at conditional expectation
operators. These arise when we have two nested σ-fields on the same set. So, let
(X,F , λ) be a measure space and suppose that G ⊆ F . Then, (X,G, λ|G) is an
equally good measure space. It is easy to see that L2(X,G, λ|G) is a closed linear
subspace of L2(X,F , λ). It should be pointed out, that trivialities can arise even
when we might not expect them. For example, let X = R2, F the Borel σ-field of
R2 and G the sets which depend only on the first coordinate. Then unfortunately
L2(X,G, λ|G) consists just of the zero vector.

The situation is very significant in probability theory, where the σ-fields F
and G encode which events are available to different “observers”. For example
G might encode outcomes based on the first 2 rolls of the dice, while F might
encode outcomes based on the first 4 rolls.

A useful example is the case where A = [0, 1[, F is the borel σ-field of X .
Then partition [0, 1[ into n intervals and let G be the σ-field generated by these
intervals. We take λ the linear measure on the interval. In this case EG will turn
out to be the mapping which replaces a function with its average value on each of
the given intervals.

Well, the orthogonal projection operator is denoted EG . We view it as a map

EG : L2(X,F , λ) −→ L2(X,G, λ) ⊆ L2(X,F , λ).

We usually understand EG in terms of its properties. These are

• EG(f) ∈ L2(X,G, λ).

•
∫

(f −EG(f))gdλ = 0 whenever g ∈ L2(X,G, λ).

The probabilists will write this last condition as E(f−EG(f))g = 0 whenever
g ∈ L2(X,G, λ), where E is the scalar-valued expectation.

To get much further we will need the additional assumption that (X,G, λ)
is σ-finite. So we are assuming the existence of an increasing sequence of sets
Gn ∈ G with X =

⋃∞
n=1 Gn and λ(Gn) < ∞. As an exercise, the reader should

check that EG(11Gf) = 11GEG(f) for G ∈ G. We do this by taking the inner
product against every function in L2(X,G, λ) and using property (ii) above.

Next we claim that if G ∈ G and λ(G) <∞ and f is a F measurable function
carried on G and |f | ≤ 1, then |EG(f)| ≤ 1. To see this, let t > 1 and let
g = 11G sgn(EGf)11{|EGf |>t}. Then we have

tλ
(
{|EGf | > t}

)
≤
∫
gEGfdλ =

∫
gfdλ ≤ λ

(
{|EGf | > t}

)
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The only way out is that λ
(
{|EGf | > t}

)
= 0. Since this is true for all t > 1 it

follows that |EGf | ≤ 1 λ-a.e. This gives us a way of extending the definition of
conditional expectation to L∞ functions. We define for f ∈ L∞(X,F , λ),

EGf(x) = EG11Gnf(x) ∀x ∈ Gn

The apparent dependence of this definition on n is illusory because for x ∈ Gn

EG11Gn+1f(x) = (11Gn ·EG11Gn+1f)(x) = EG11Gn11Gn+1f(x) = EG11Gnf(x)

and indeed, as an exercise, the reader can show that the definition is independent
of the choice of sequenceGn. The bottom line here is that EG is a norm decreasing
map

EG : L∞(X,F , λ) −→ L∞(X,G, λ).

Now let 1 ≤ p < ∞ and let f ∈ V where V is the space of bounded F-
measurable simple functions carried by a subset G ∈ G with λ(G) < ∞. In this
case we will have that EGf is a bounded G measurable function still carried by
the subset G. We will estimate the Lp norm of EGf .

∫
|EGf |pdλ =

∫
(EGf)gdλ

where g = |EGf |p−1sgn(EGf),

=

∫
fgdλ

since g is G-measurable and all functions are in the appropriate L2 space,

≤ ‖f‖p‖g‖p′,

by Hölder’s Inequality. On the other hand

‖g‖p′p′ =

∫
|EGf |

p
p−1

(p−1)dλ = ‖EGf‖pp,

leading to ‖g‖p′ ≤ ‖EGf‖p−1
p . So, combining these inequalities yields

‖EGf‖pp ≤ ‖f‖p · ‖EGf‖p−1
p (1.3)

We now obtain ‖EGf‖p ≤ ‖f‖p because this is obvious if ‖EGf‖p = 0 and if not,
then we can divide out in (1.3) because we know that ‖EGf‖p <∞.
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We have obtained that EG is a linear mapping from V to Lp(X,F , λ) and
norm decreasing for the Lp norm. Since V is dense in Lp(X,F , λ), we can ex-
tend this mapping to a norm decreasing linear mapping EG : Lp(X,F , λ) −→
Lp(X,F , λ) by uniform continuity. We naturally use the same notation for this
mapping, although strictly speaking it is a different mapping. This gives a nice
application of “abstract nonsense” ideas to a really quite practical situation. You
can check that the extended mapping satisfies the expected conditions which are
valid even in the case p =∞ handled earlier.

• EG(f) ∈ Lp(X,G, λ) provided f ∈ Lp(X,F , λ) and indeed we have
‖EGf‖p ≤ ‖f‖p.

•
∫

(f −EG(f))gdλ = 0 whenever g ∈ Lp′(X,G, λ).

This is a typical example of the von Neumann program at work by using
Hilbert space methods as a foot in the door to get results that have no obvious
connection to Hilbert space.

1.2 Martingale Maximal Functions

This example develops a similar theorem with a different and instructive proof.
We work on [0, 1[ with the Lebesgue field, we’ll call it F and linear measure
λ. A dyadic interval of length 2−n is an interval [(k − 1)2−n, k2−n[ for k =
1, 2, . . . , 2n and n = 0, 1, 2, . . . The maximal function we deal with here for f ∈
L1([0, 1[,F , λ) is

Mmf(x) = sup
1

λ(I)

∫
11Ifdλ

where the sup is taken over all dyadic intervals that contain x. There is a more
succinct way of writing this maximal function

Mmf(x) =
∞

sup
n=0
|EFnf |

where Fn is the σ-field (it’s actually a field) generated by the dyadic intervals of
length 2−n. Note that for given x ∈ [0, 1[ and n ∈ Z+ there is a unique dyadic
interval of length 2−n to which x belongs.

To get further, we need to develop the probabilistic setting. A sequence of
σ-fields F0 ⊆ F1 ⊆ F2 ⊆ · · · is called a stochastic base . The σ-field Fn contains
those events that can be formulated at time n. The σ-field F is the σ-field gen-
erated by the union of all the Fn, and contains all possible events. In our case,
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times n are nonnegative integers and we can imagine tossing a fair coin. So, at
time 1, we toss the coin and if it ends up heads, we are in [ 1

2
, 1[ and if it comes up

tails, we are in [0, 1
2
[. At time 2, we toss again and we place in the upper half of

the interval if we have a head and the lower half if we have a tail. The tossing is
repeated indefinitely. Thus, if the result of the first 5 tosses is HTTHT, we are in
the interval [1

2
+ 1

16
, 1

2
+ 1

16
+ 1

32
[.

Probabilists need to consider random times. In our case, these are mappings
from the sample space [0, 1[ to the time space Z+∪{∞} which are F measurable.
However, there is a very special class of random times called stopping times. We
can think of a gambler who is following a fixed strategy. The quintessence of being
a good gambler is knowing when to quit. But if the gambler is to quit at time n,
then his decision has to be based on the information that is available to him at
time n. If he were able to base his decision of whether to quit or not at time n
on the information available at time n + 1, then he would be clairvoyant. So,
a stopping time is a random time τ : [0, 1[−→ Z+ ∪ {∞} with the additional
property

{x; τ (x) = n} ∈ Fn, n = 0, 1, 2, . . .

This also implies
{x; τ (x) =∞} ∈ F∞ = F ,

and in fact, you can make this part of the definition if you wish.
Let τ be a stopping time. We ask, what information is available at time τ .

Well, an event A ∈ F can be formulated at time τ if and only if

A ∩ {x; τ (x) = n} ∈ Fn, n = 0, 1, 2, . . .

The collection of all such events A defines a σ-field Fτ (prove this). This idea
does not make a whole lot of sense for random times (the whole space need not
be in Fτ), but it does make sense for stopping times. Now, since Fτ is a σ-field ,
it has an associated conditional expectation operator EFτ . The next thing to show
is that

EFτ f =

( ∞∑

n=0

11{x;τ(x)=n}EFnf

)
+ 11{x;τ(x)=∞}f

We now have enough information to start to tackle the maximal function. Let
f ∈ L1([0, 1[,F , λ) and f ≥ 0. Fix s > 0. We define τ (x) to be the first time n
that EFnf(x) > s. If it happens that EFnf(x) ≤ s for all n = 0, 1, 2, . . . then we
have τ (x) =∞. This is a stopping time because τ (x) = n if and only if

EFkf(x) ≤ s, for k = 0, 1, . . . , n− 1
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and
EFnf(x) > s

These conditions define an event in Fn.
The key observation is that EFτ f(x) > s on the set {x; τ (x) < ∞} =

{x;Mmf(x) > s}. So,

λ({x;Mmf(x) > s}) = λ({x; EFτf(x) > s}) ≤ s−1‖EFτ f‖1 ≤ s−1‖f‖1.

This is the analogue of Theorem 2. There are interesting parallels between, for
example the use of longest intervals in the Vitali Covering lemma and the stopping
time being the first time that EFnf(x) > s. Note that this argument does not
show that Mmf ∈ L1 (a false statement in general) because the stopping time τ
depends on s.

If we were to follow the strategy that we adopted for the Hardy–Littlewood
maximal function, we would consider the set of all dyadic intervals such that

1

λ(I)

∫

I

f(t)dt > s.

But any two dyadic intervals are either disjoint or nested. It follows that the union
of all such intervals is also a disjoint union of a certain subcollection of intervals,
in fact the ones corresponding to the stopping time.

1.3 Fundamental Theorem of Calculus

THEOREM 3 Let f ∈ L1(R) and define F (x) =
∫ x

0
f(t)dt. Then F ′(x) exists

and equals f(x) for almost all x ∈ R.

Proof. Let ε > 0 and write f = g + h where g ∈ Cc(R) and h ∈ L1 with
‖h‖1 < ε. Let us also define G(x) =

∫ x
0
g(t)dt and H(x) =

∫ x
0
h(t)dt. Then

F (x) = G(x) +H(x). Now consider

lim sup
t→0

∣∣∣∣
F (x+ t)− F (x)

t
− f(x)

∣∣∣∣

≤ lim sup
t→0

∣∣∣∣
G(x+ t)−G(x)

t
− g(x)

∣∣∣∣+ lim sup
t→0

∣∣∣∣
H(x+ t)−H(x)

t
− h(x)

∣∣∣∣
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Now, the first lim sup on the right is zero, by the Fundamental Theorem of Cal-
culus, because g is continuous. So,

lim sup
t→0

∣∣∣∣
F (x+ t)− F (x)

t
− f(x)

∣∣∣∣ ≤ lim sup
t→0

∣∣∣∣
H(x+ t)−H(x)

t
− h(x)

∣∣∣∣

≤ |h(x)|+ sup
t6=0

∣∣∣∣
H(x+ t)−H(x)

t

∣∣∣∣

≤ |h(x)|+ sup
t6=0

t−1

∫ x+t

x

|h(s)|ds

≤ |h(x)|+ sup
t>0

t−1

∫ x+t

x−t
|h(s)|ds

= |h(x)|+ 2M |h|(x)

Let δ > 0 and consider the set

Aδ = {x; lim sup
t→0+

∣∣∣∣
F (x+ t)− F (x)

t
− f(x)

∣∣∣∣ > δ}.

Now, if x ∈ Aδ, then either |h(x)| > 1
3
δ or M |h|(x) > 1

3
δ. The first possibility

occurs on a set of measure at most 3εδ−1 (by the Tchebychev Inequality) and the
second on a set of measure at most 12εδ−1 by Theorem 2. So, the measure of Aδ

is bounded by 15εδ−1. ButAδ does not depend on ε, so letting ε −→ 0+, we find
that Aδ is a null set. Finally, taking a sequence of positive δs converging to zero,

we find that {x; lim sup
t→0+

∣∣∣∣
F (x+ t)− F (x)

t
− f(x)

∣∣∣∣ > 0} is also a null set. The

result follows.

1.4 Homogenous operators with nonnegative kernel

We will prove the following result for the homogenous integral operator on the
half line.

Tf(x) =

∫ ∞

0

K(x, y)f(y)dy

where x runs over ]0,∞[. We assume that the kernel function K is nonnegative
and satisfies the homogeneity condition

K(tx, ty) = t−1K(x, y).
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We will also need to know that K is Lebesgue measurable on the positive quad-
rant. We further define

Cp =

∫ ∞

0

t
− 1
p′K(t, 1)dt =

∫ ∞

0

t
− 1
p′K(1, t−1)t−1dt

=

∫ ∞

0

s
1
p′K(1, s)s−1ds

=

∫ ∞

0

s−
1
pK(1, s)ds

and we will assume that Cp is finite.
Now comes a remarkable idea. For f and g nonnegative functions we have

using Hölder’s Inequality and Tonelli’s Theorem
∫ ∞

0

∫ ∞

0

K(x, y)g(x)f(y)dxdy

=

∫ ∞

0

∫ ∞

0

(
x

y

)− 1
pp′

K(x, y)
1
pf(y)

(y
x

)− 1
pp′
K(x, y)

1
p′ g(x)dxdy

≤
{∫ ∞

0

∫ ∞

0

(
x

y

)− 1
p′

K(x, y)f(y)pdxdy
} 1
p
{∫ ∞

0

∫ ∞

0

(y
x

)− 1
p
K(x, y)g(x)p

′
dxdy

} 1
p′

We now have

∫ ∞

0

∫ ∞

0

(
x

y

)− 1
p′

K(x, y)f(y)pdxdy

=

∫ ∞

y=0

{∫ ∞

x=0

K

(
x

y
, 1

)(
x

y

)− 1
p′

y−1dx

}
f(y)pdy

= Cp‖f‖pp

and similarly ∫ ∞

0

∫ ∞

0

(y
x

)− 1
p
K(x, y)g(x)p

′
dxdy = Cp‖g‖p

′
p′

resulting in ∫ ∞

0

∫ ∞

0

K(x, y)g(x)f(y)dxdy ≤ Cp‖f‖p‖g‖p′
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It follows from this by duality that ‖Tf‖p ≤ Cp‖f‖p for f nonnegative and the
same inequality for signed or complex f then follows.

Some specific cases of interest are

• Tf(x) = x−1
∫ x

0
f(y)dy, Cp =

p

p − 1
.

• Tf(x) =
∫∞
x
y−1f(y)dy, Cp = p.

• Tf(x) =
∫∞

0
(x+ y)−1f(y)dy, Cp = πcosec

(
π

p

)
.

1.5 The distribution function and the decreasing rearrangement

Suppose that we have a nonnegative measurable function f defined on a measure
space (X,M, µ) which has the additional property that there exists t > 0 such
that µ({x; f(x) > t}) is finite. If f is not nonnegative, then we replace it by |f |,
its absolute value. The distribution function f? is now defined on ]0,∞[ by

f?(t) = µ({x; f(x) > t}).

LEMMA 4 The distribution function has the following properties.

1. f? takes values in [0,∞].

2. f? is decreasing and right continuous on ]0,∞[.

3. f?(t)→ 0 as t→∞.

4. If f ≤ g pointwise, then f? ≤ g? pointwise.

5. If g(x) = af(x) for all x ∈ X with a > 0 constant, then g?(t) = f?(a
−1t)

for all t > 0.

6. If h(x) = f(x) + g(x) for all x ∈ X , then h?(t+ s) ≤ f?(t) + g?(s) for all
t, s > 0.

7. If fn ↑ f pointwise on X , then fn? ↑ f? pointwise on ]0,∞[.
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The proofs are straightforward. The Monotone convergence theorem is used
to establish the last assertion as well as the right continuity in the second assertion.
Note that f?(t) can be infinite.

The next step is to define

f?(s) = inf{t; f?(t) ≤ s}

In fact, the infimum is attained. To see this, let τ = f ?(s). Then we have tn ↓ τ
with f?(tn) ≤ s. But f? is right continuous, so f?(τ ) ≤ s. This means incidentally
that we also have

f?(s) = sup{t; f?(t) > s} (1.4)

To see this, let τ = f ?(s). Then f?(t) > s if and only if t < τ .
Next, we use this fact to show that f ? is right continuous. Let sn ↓ s and

again, let τ = f?(s). Let τn = f?(sn). Then τn ≤ τ and τn increases with n. The
danger is that supn τn < τ . Now, let ε > 0 then from (1.4), ∃t with f?(t) > s and
t > τ − ε. So for n large enough, f?(t) > sn and it follows that τn ≥ t > τ − ε.
It may also help to observe that f ? is the distribution function of f? for Lebesgue
measure on the half line.

LEMMA 5 The function f? has the following properties.

1. f? takes values in [0,∞[.

2. f? is decreasing and right continuous on ]0,∞[.

3. If f ≤ g pointwise, then f ? ≤ g? pointwise.

4. If g(x) = af(x) for all x ∈ X with a > 0 constant, then g?(t) = af?(t) for
all t > 0.

5. If h(x) = f(x) + g(x) for all x ∈ X , then h?(t+ s) ≤ f?(t) + g?(s) for all
t, s > 0.

6. If fn ↑ f pointwise on X , then f ?n ↑ f? pointwise on ]0,∞[.

7. (f?)? = f?

12



The last assertion expresses the fact that f and f ? have the same distribution
function. The function f? is called the (equimeasurable) decreasing rearrange-
ment of f . Although technically it may not be a rearrangement of f , it behaves
as if it were. It should also be clear that if f1 and f2 are nonnegative decreasing
right continuous functions on ]0,∞[, both having the same distribution function
then f1 = f2. Thus if you can construct somehow a nonnegative decreasing right
continuous function g on ]0,∞[ with the same distribution function as f , then
g = f?. Note also that the intervals of constancy of f? correspond to the jump
discontinuities of f ? and vice-versa.

LEMMA 6 Let f be a nonnegative measurable function on (X,M, µ), finite
almost everywhere and with the additional property. Let M ∈ M be a set of finite
measure. Then ∫

M

f(x)dµ(x) ≤
∫ µ(M)

t=0

f?(t)dt

Proof. We approximate f with an increasing sequence of measurable step func-
tions. It is clear that the result need only be proved in case that f is a measurable
step function. So, we write

f =

n∑

k=1

ak11Ek

where ak > 0 and the Ek are nested measurable sets E1 ⊃ E2 ⊃ E3 . . . Then

f?(t) =
n∑

k=1

ak11[0,µ(Ek)[(t).

Now, we find

∫

M

f(x)dµ(x) =
n∑

k=1

akµ(M ∩ Ek)

and
∫ µ(M)

t=0

f?(t)dt =
n∑

k=1

akµ([0, µ(M)[∩[0, µ(Ek)[) =
n∑

k=1

ak min(µ(M), µ(Ek))

and the result follows.
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LEMMA 7 Let f, g be nonnegative measurable functions on (X,M, µ), finite
almost everywhere and with the additional property. Then

∫
f(x)g(x)dµ(x) ≤

∫ ∞

t=0

f?(t)g?(t)dt

Proof. We apply the same approximation idea as in proof of the previous lemma.
Then, we need to show that

∫ ( n∑

k=1

ak11Ek

)
g(x)dµ(x) ≤

∫ ∞

t=0

(
n∑

k=1

ak11[0,µ(Ek)[(t)

)
g?(t)dt

or by estimating term by term

∫

Ek

g(x)dµ(x) ≤
∫ µ(Ek)

t=0

g?(t)dt

but this is just the content of that lemma.

EXAMPLE Note that on infinite measure spaces, decreasing rearrangements may
not behave quite the way that one would expect. For example on [0,∞[ with
Lebesgue measure, let f(t) = 1 − e−t, then f?(t) = 1 for all t > 0. So, f ? is not
a rearrangment of f and it is clear that one cannot hope to achieve this. 2

LEMMA 8 Let f be nonnegative a measurable function on (X,M, µ), finite
almost everywhere and with the additional property. Then

∫

X

f(x)dµ(x) =

∫ ∞

0

f?(t)dt

Proof. We verify the lemma for step functions. Then, given an arbitrary function
f approximate it by an increasing sequence of step functions.

LEMMA 9 Let f be nonnegative a measurable function on (X,M, µ), finite
almost everywhere and with the additional property. Let ϕ : [0,∞[→ [0,∞[ be
an increasing function continuous on the left. Let g = ϕ ◦ f , then g? = ϕ ◦ f?.

14



Proof. Since ϕ◦f ? is decreasing and right continuous, it is enough to show that it
has the correct distribution function. So, we must show that the sets {ϕ◦f ? > t}
and {ϕ ◦ f > t} have the same measures. It is enought to show that ϕ−1(]t,∞[
is an interval of the form ]s,∞[. This is a consequence of the left continuity of
ϕ. If for example ϕ−1(]t,∞[= [s,∞[, then choose sn ↑ s strictly increasing, then
ϕ(sn) ≤ t and it follows that ϕ(s) ≤ t contradicting s ∈ ϕ−1(]t,∞[.

A typical consequence of the last two results is that
∫

X

f(x)pdµ(x) =

∫ ∞

0

(f?(t))pdt

for p > 0. In particular, ‖f‖p = ‖f?‖p for 1 ≤ p ≤ ∞.

LEMMA 10 On a finite non-atomic measure space of total measure m, let f be
a nonnegative function finite almost everywhere. Let 0 ≤ t ≤ m. Then there is a
measurable subset Et such that

∫

Et

f(x)dµ(x) =

∫ t

0

f?(u)du.

Also, it may be arranged that Et is increasing with t.

Proof. There are two cases. The easy case is where there exists s > 0 such that
f?(s) = t. In this case, it will suffice to take Et = {x; f(x) > s}. The reason is
that

(11Etf)? = 11[0,t[f
?

and this in turn follows from [0, t[= {f ? > s}. We leave the details to the reader.
In the remaining case, t lies in an interval of constancy of f ?. We have t0 <

t ≤ t1 < ∞ where t0 and t1 are the measures of the sets T0 = {f > s} and
T1 = {f ≥ s} respectively. The finiteness of the measure space is used to assert
that t1 is finite. Now, using the fact that the measure space is non-atomic, we may
construct a measurable subset Et with T0 ⊂ Et ⊆ T1 with measure exactly t.
Again, this is an exercise.

We now get
∫

Et

f(x)dµ(x) =

∫

T0

f(x)dµ(x) +

∫

Et\T0

f(x)dµ(x)
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=

∫ t0

0

f?(u)du+ s(t− t0)

=

∫ t

0

f?(u)du

as required.

THEOREM 11 Let f, g be nonnegative measurable functions on a finite non-
atomic measure space (X,M, µ), finite almost everywhere. Then there is a non-
negative measurable function g̃ equimeasurable with g such that

∫

X

f(x)g̃(x)dµ(x) =

∫ ∞

0

f?(t)g?(t)dt (1.5)

Proof. We do not need to consider g, we start from g? which is equimeasurable
with g and produce a sequence of step functions hn = ϕn ◦ g? where

ϕn(x) =

{
2−nb2nxc if x < 2n,
0 if x ≥ 2n.

so that hn ↑ g?. Writing each h = hn in the form h =
∑Jn

j=1 aj11[0,tj [ where tj is
increasing in j and aj > 0 (actually aj = 2−n for all j and Jn = 4n). Then, using
the previous lemma, we can construct Etj measurable sets such that

h̃ =
Jn∑

j=1

aj11Etj

has the property
∫

X

f(x)h̃(x)dµ(x) =

∫ ∞

0

f?(t)h(t)dt.

But a moment’s thought shows that h̃n is itself an increasing sequence of functions
converging to a function g̃ equimeasurable with g? and hence also with g. An
application of the monotone convergence theorem then yields (1.5) as required.

There is also an infinite measure version of this result.
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THEOREM 12 Let f, g be nonnegative measurable functions on a σ-finite non-
atomic measure space (X,M, µ), finite almost everywhere and satisfying the ad-
ditional condition. Let ε > 0. Then there is a nonnegative measurable function g̃
equimeasurable with g such that

∫

X

f(x)g̃(x)dµ(x) >

∫ ∞

0

f?(t)g?(t)dt− ε

Proof. Let Xn be increasing measurable sets of finite measure such that X =⋃∞
n=1 Xn. Then, applying the previous result, there exist functions hn carried by

Xn and equimeasurable with g11Xn such that

∫

Xn

f(x)hn(x)dµ(x) =

∫ µ(Xn)

0

(f11Xn)?(t)(g11Xn)?(t)dt.

Now build g̃n by g̃n = hn + 11X\Xng. Then g̃n is clearly equimeasurable with g
and we have

∫
f(x)g̃n(x)dµ(x) ≥

∫ µ(Xn)

0

(f11Xn)?(t)(g11Xn)?(t)dt.

But by monotone convergence, the right-hand side increases to
∫∞

0
f?(t)g?(t)dt

and the result now follows.

There are examples such as g(x) = 1 − e−x, f any nice strictly positive func-
tion where equality cannot be obtained. We also have immediately

COROLLARY 13 On a σ-finite non-atomic measure space let f be a nonnegative
function finite almost everywhere satisfying the additional condition. Let t ≥ 0
be finite. Then

sup
µ(E)=t

∫

E

f(x)dµ(x) =

∫ t

0

f?(u)du.

We can now recover a form of subadditivity for the decreasing rearrangement.

THEOREM 14 On a σ-finite measure space let f and g be nonnegative functions
finite almost everywhere satisfying the additional condition. Let t ≥ 0 be finite
and h = f + g. Then

∫ t

0

h?(u)du ≤
∫ t

0

f?(u)du+

∫ t

0

g?(u)du.
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Proof. First assume that the measure space is non-atomic. Then

∫ t

0

h?(u)du = sup
µ(E)=t

∫

E

h(x)dµ(x)

= sup
µ(E)=t

∫

E

(
f(x) + g(x)

)
dµ(x)

≤ sup
µ(E)=t

∫

E

f(x)dµ(x) + sup
µ(E)=t

∫

E

g(x)dµ(x)

=

∫ t

0

f?(u)du+

∫ t

0

g?(u)du

as required. If the measure space is atomic, we simply take the product with [0, 1]
and Lebesgue measure.

Now usually, the theorm is not left in this form. We assume t > 0 and divide
by t. This yields

A((f + g)?) ≤ A(f?) +A(g?)

where A is Hardy’s averaging operator. It is easy to see that A(f ?) is a continuous
decreasing function with A(f ?) ≥ f?.

EXAMPLE Let f = 11[0,1[ and g = 11[1,2[. Then h = f + g = 11[0,2[. We have
f? = g? = f and h? = h. It is false that

h? ≤ f? + g? = 2f?

because the left hand side is positive on [1, 2[ while the right hand side is zero.
However, after averaging the situation changes.

(Ah?)(t) =

{
1 if 0 < t ≤ 2,
2t−1 if t ≥ 2.

On the other hand

2(Af?)(t) =

{
2 if 0 < t ≤ 1,
2t−1 if t ≥ 1.

and indeed it is true that (Ah?)(t) ≤ 2(Af?)(t) for t > 0. 2

In this situation, the Hardy operator bears a strong resemblance to the maximal
operator.
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We finish this chapter with a proof of a special case of the Marcinkiewicz
Interpolation Theorem that allows us to conclude that the maximal operator is
bounded on Lp for 1 < p ≤ ∞. We need the following lemma which allows to
compute an Lp norm from the distribution function.

LEMMA 15 Let f be a positive measurable function and 1 < p <∞. Then

‖f‖pp = p

∫ ∞

0

tp−1f?(t)dt.

Proof. We approximate f by an increasing sequence of step functions. By mono-
tone convergence, it is enough to prove the result in the special case that f is a
step function. Let f =

∑J
j=1 tj11Ej where tj are positive and decreasing and the

Ej are disjoint measurable sets. Then clearly

‖f‖pp =
J∑

j=1

tpjµ(Ej).

On the other hand

f?(s) =





∑k
j=1 µ(Ej) if tk+1 ≤ s < tk, 1 ≤ k < J ,∑J
j=1 µ(Ej) if s < tJ (case k = J , interpret tJ+1 = 0),

0 if t1 ≤ s (case k = 0, interpret t0 =∞).

We get, omitting the term k = 0 since f?(s) = 0 in that case,

p

∫ ∞

0

tp−1f?(t)dt = p
J∑

k=1

k∑

j=1

µ(Ej)

∫ tk

tk+1

tp−1dt

= p
J∑

j=1

J∑

k=j

µ(Ej)

∫ tk

tk+1

tp−1dt

= p
J∑

j=1

µ(Ej)

∫ tj

tJ+1

tp−1dt

=

J∑

j=1

tpjµ(Ej).

since tj+1 = 0. The two expressions agree.
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THEOREM 16 Let T be a sublinear operator (defined on L∞ + L1) that maps
L∞ to L∞ with norm 1 and satisfies the estimate

µ({|Tf | > s}) ≤ C‖f‖1

s
.

Then T is bounded on all Lp spaces for 1 < p <∞.

Proof. We take t > 0 and a function f and split it as f = ft + f t where

ft = 11Xtf, f t = 11Ytf, Xt = {|f | ≤ t}, Yt = {|f | > t}.
Then |Tf | ≤ |Tft|+ |Tf t| and |Tft| ≤ t. So

{|Tf | > 2t} ⊆ {|Tf t| > t}
and |Tf |?(2t) ≤ Ct−1‖f t‖1. Note that

‖f t‖1 =

∫

f?(s)>t

f?(s)ds,

by applying Lemma 9 with ϕ the increasing left continuous function

ϕ(s) =
{

0 if s ≤ t,
s if s > t.

We get

‖Tf‖pp = p

∫ ∞

t=0

tp−1|Tf |?(t)dt

= p2p
∫ ∞

t=0

tp−1|Tf |?(2t)dt

≤ p2p
∫ ∞

t=0

tp−2‖f t‖1dt

= p2p
∫ ∞

t=0

tp−2

∫

f?(s)>t

f?(s)dsdt

= p2p
∫ ∞

s=0

f?(s)

∫ f?(s)

t=0

tp−2dtds

=
p

p − 1
2p
∫ ∞

s=0

f?(s)f?(s)p−1ds

= p′2p
∫ ∞

s=0

f?(s)pds

= p′2p‖f‖pp
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and conclude that ‖Tf‖p ≤ 2(p′)
1
p‖f‖p.
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2

Harmonic Analysis — the LCA setting

2.1 Gelfand’s Theory of Commutative Banach Algebra

A commutative Banach algebra A is a Banach space together with a continuous
multiplication so that A becomes a linear commutative associative algebra. The
continuity of the multiplication amounts to the existence of a constant C such
that

‖xy‖ ≤ C‖x‖‖y‖, ∀x, y ∈ A.
The algbra A is said to be unital if it has an identity element which we will denote
11A. In a unital algebra, it may be false that ‖11A‖ = 1, but we can always renorm
the algebra with an equivalent norm that has this property. For this we use the
multiplier norm

‖x‖M = sup
‖y‖≤1

‖xy‖.

While in general, this may fail to define an equivalent norm, in this case it does
because

‖x‖M = sup
‖y‖≤1

‖xy‖ ≤ sup
‖y‖≤1

C‖x‖‖y‖ ≤ C‖x‖

and
‖x‖ = ‖x11A‖ ≤ ‖11A‖‖x‖M .

Generally we will therefore work with a norm that has the property that
‖11A‖ = 1. The multiplier norm has an even more important property, namely
that

‖xy‖M ≤ ‖x‖M‖y‖M ,
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in other words we may always assume without loss of generality that C = 1 (at
least if we are only interested in properties that are preserved under norm equiv-
alence). From now on we are interested only in the case of unital commutative
banach algebras over C. The real case presents substantially more difficulties.

The spectrum of an element x ∈ A is a subset of the complex plane defined
by

σ(x) = {λ;λ ∈ C, (λ11A − x)−1 fails to exist in A}.
The spectrum has the following properties

1. If λ ∈ σ(x) implies |λ| ≤ ‖x‖.
2. σ(x) is closed.

3. σ(x) is nonempty.

The proofs are easy. First if λ > ‖x‖, then we can construct

(11A − λ−1x)−1 =
∞∑

n=0

λ−nxn

the right hand side being a norm convergent sum. It follows then that (λ11A−x)−1

exists.
The second assertion is similar. If µ /∈ σ(x), then (µ11A − x)−1 exists. Now

we consider λ very close to µ and observe

(λ11A−x) = (λ−µ)11A + (µ11A−x) =
(

11A + (λ−µ)(µ11A−x)−1
)

(µ11A− x).

Provided |λ − µ‖‖(µ11A − x)−1‖ < 1, it will be possible to construct (λ11A −
x))−1 with a geometric series argument. So, the complement of σ(x) is open and
therefore σ(x) is closed.

For the third assertion, suppose the contrary. Then (λ11A − x)−1 exists for
all complex λ. Let u be a continuous linear functional on A and consider the
complex-valued function

λ 7→ u((λ11A − x)−1)

It is clear (actually by using the arguments that we have used in proving the first
two assertions) that this is a holomorphic function in the whole complex plane (a
so-called entire function) and also that it tends to zero at infinity since

‖(λ11A − x)−1‖ =

∥∥∥∥∥
∞∑

n=0

λ−n−1xn

∥∥∥∥∥ ≤ |λ|
−1(1 − |λ|−1‖x‖)−1 = (|λ| − ‖x‖)−1.
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It follows from the maximum modulus principle that such a function is identically
zero. It then follows from the Hahn–Banach Theorem that (λ11A − x)−1 = 0 for
all λ which is complete nonsense since inverses can never be zero.

Having dealt with the spectrum, we now turn to the ideal structure of A. An
ideal I is said to be proper if I ⊂ A. We assert that every proper ideal is contained
in a maximal proper ideal. This is proved using a Zorn’s Lemma argument. It is
enough to show that every chain of proper ideals has an upper bound under set
inclusion. Given a chain C of proper ideals, one simply takes

B =
⋃

I∈C
I.

It is easy to see that B is an ideal. If it is not proper, then 11A ∈ B. But then there
exists I ∈ C such that 11A ∈ I contradicting the fact that I is proper. (As soon as
11A ∈ I , then x = x11A ∈ I for every x ∈ A.)

The similar argument shows that every maximal proper ideal is closed. If
M is a maximal proper ideal, then it is clear that cl(M) is an ideal. So either
M = cl(M) or cl(M) is not proper. In other words, either M is closed or M
is dense. But the latter situation is not possible, since then we would be able to
approximate 11A with elements of M . But any element of A sufficiently close to
11A is invertible (by the geometric series argument yet again) and so M would
have to contain invertible elements and hence 11A itself, contradicting the fact that
M is proper.

Now let M be a maximal proper ideal and consider Q = A/M . Then it is
routine to check that Q is a unital commutative Banach algebra in the quotient
norm. Also, from ring theory, it cannot contain any ideals other than the zero
ideal and Q itself. (Let π be the canonical projection π : A → Q and let J be
a nontrivial ideal of Q, then π−1(J) is a proper ideal of A strictly bigger than
M — a contradiction). This implies in turn that every non-zero element of Q
is invertible. We claim that Q = C11Q. Indeed, let x ∈ Q be arbitrary and let
λ ∈ σ(x). Then λ11Q − x fails to be invertible and must therefore be zero. So
x = λ11Q.

This means then that every maximal proper ideal has codimension 1 and is
the kernel of a continuous linear form ϕ : A → C. We are free to normalize ϕ
such that ϕ(11A) = 1. But now, let x, y ∈ A then x−ϕ(x)11A and y−ϕ(y)11A are
elements ofM since they are clearly in the kernel of ϕ. But now (x−ϕ(x)11A)y =
xy − ϕ(x)y is in M and therefore also

xy − ϕ(x)ϕ(y)11A = xy − ϕ(x)y + ϕ(x)(y − ϕ(y)11A).
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It follows that this element is in the kernel of ϕ and hence

ϕ(xy) = ϕ(x)ϕ(y).

Such a ϕ (with ϕ(11A) = 1) is called a multiplicative linear functional (mlf). Every
maximal proper ideal is therefore the kernel of an mlf and conversely, it is obvi-
ous that the kernel of any mlf is a closed ideal of codimension one and hence a
maximal proper ideal.

The next step in the saga is to define MA the space of all mlfs and to give
it a topology. This is the Gelfand topology and it is simply the relative topology
inherited from the weak? (σ(A′, A) topology). It turns out that MA is compact in
this topology and it is also clearly Hausdorff.

To see this first of all we observe that any mlf has norm exactly one. Clearly
x−ϕ(x)11A is in the proper ideal ker(ϕ) and therefore, not invertible. So, ϕ(x) ∈
σ(x) and hence |ϕ(x)| ≤ ‖x‖. On the other hand ϕ(11A) = 1 and ‖11A‖ = 1.

So MA can be specified as the subset of the unit ball of A′ which satisfies the
following closed conditions

ϕ(xy) = ϕ(x)ϕ(y) x, y ∈ A
ϕ(11A) = 1

each depending on only finitely many elements from A (at most three).
Since the unit ball of A′ is compact for the σ(A′, A) topology and since MA is

a σ(A′, A)-closed subset of A′ it follows that MA is itself σ(A′, A) compact.
We now write x̂(ϕ) = ϕ(x) and observe that x̂ is now a continuous function

on MA. The mapping x 7→ x̂ which maps fromA to C(MA) is called the Gelfand
transform of A and is an algebra homomorphism. It can happen that the Gelfand
transform has a non-trivial kernel. We can even characterize the kernel of the
Gelfand transform. It consists of all elements x ∈ A such that σ(x) = {0} or
from power series considerations that

lim sup
n→∞

‖xn‖ 1
n = 0.

It is also the Jacobson radical of A viewed as a ring.
Also it is rarely the case that the Gelfand transform is onto or that the uniform

norm of x̂ is equivalent to the norm of x. In many situations the space MA is easy
to understand, but there are also cases where its structure is totally mind boggling!
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2.2 The non-unital case

We now come to the case that A is a complex commutative Banach algebra, but
it does not have a unit (identity) element. In that case, we simply adjoin an
identity element and use the theory in the previous section. So, the new algebra
has elements

Ã = {t11 + x; t ∈ C, x ∈ A}.
and we define

(t11 + x) + (s11 + y) = (t+ s)11 + (x+ y)

(t11 + x)(s11 + y) = ts11 + (ty + sx+ xy)

For the norm on Ã we simply take ‖t11 + x‖ = |t|+ ‖x‖ and it is straightfor-
ward to verify that this is actually a norm. If multiplication is continuous on A,
then it is also on Ã and then one may replace this norm with the multiplier norm
to get an equivalent submultiplicative norm. It’s important to extend the norm to
Ã first. Taking the multiplier norm immediately does not work.

We now consider the ideals in A and we need to add an extra condition.
Let I be an ideal in A. Then a modular unit (or modular identity) for I is an
element u ∈ A such that x − ux ∈ I for all x ∈ A. When we form the quotient
algebra A/I , the image of u will be an identity element. So, we say that an ideal
is modular, if it possesses a modular unit and this is actually equivalent to A/I
having an identity element. We now have the following lemma.

LEMMA 17 Let I be a modular ideal in A. Then there exists an ideal J in Ã
such that J 6⊆ A and I = J

⋂
A.

Conversely, if J is an ideal in Ã such that J 6⊆ A, then I = J
⋂
A is a modular

ideal in A.

Proof. For the first assertion, let I be a modular ideal of A with modular unit u.
Define J = {x;x ∈ Ã, xu ∈ I}, clearly an ideal of Ã. Since u ∈ A, u− u2 ∈ I ,
i.e. (11−u)u ∈ I . So, 11−u ∈ J . But 11−u /∈ A, so J 6⊆ A. It remains to show that
I = J

⋂
A and clearly I ⊆ J

⋂
A. So, let x ∈ J ⋂A. then since x ∈ J , we have

xu ∈ I and since x ∈ A, we have x− xu ∈ I . Therfore x = (x− xu) + xu ∈ I .
This completes the proof of the first assertion.

For the converse, it is clear that I = J
⋂
A is an ideal in A. But J 6⊆ A,

so there is an element of J of the form 11 − u with u ∈ A. Thus, for x ∈ A,
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x− xu = x(11− u) ∈ J . But also x and xu are both elements of A and hence so
is x− xu. Thus x− xu ∈ I . We have shown that u is a modular unit for I .

The consequence of this correspondence is that the maximal modular ideals
of A are in one-to-one correspondence with the maximal ideals of Ã that are not
contained inA. But since A is itself a maximal ideal in Ã because it has codimen-
sion one, the maximum modular ideal space (also denoted MA) of A is just the
maximal ideal space of MÃ with a single point removed ϕ0. We view this point as
a “point at infinity”, so that MA is a locally compact Hausdorff space having MÃ

as its one-point compactification. Of course, ϕ0 is an mlf on Ã vanishing on A
and hence must be given by

ϕ0(λ11 + x) = λ

for x ∈ A. Every other mlf on Ã restricts to a (non-zero) mlf onA and conversely,
every mlf on A extends to a unique mlf on Ã. For x ∈ A, we have ϕ(x) →
ϕ0(x) = 0 as ϕ → ϕ0 in the MÃ topology, so its Gelfand transform x̂ viewed as
a function on MA vanishes at infinity. We see that x 7→ x̂ is a continuous algebra
homomorphism fromA to C0(MA).

2.3 Finding the Maximal Ideal Space

Usually this is either very easy or totally impossible.

EXAMPLE Let A = C1([0, 1]) the space of continuously differentiable functions
on the unit interval. It’s clearly an algebra with identity and the multiplication is
continuous. Clearly the point evaluations f 7→ f(t) are mlfs for t ∈ [0, 1]. It
seems reasonable that these would be the only ones. How do we prove this? Let
I be some maximal ideal not of this form. Then, for each t ∈ [0, 1] there is a
function ft ∈ I with ft(t) = 1. Let Ut = {s; s ∈ [0, 1], |ft(s)| > 1

2
}. This is

a neighbourhood of t. Applying compactness we have t1, . . . , tN such that Utn
cover [0, 1] for n = 1, . . . , n. Now, make the function f as

f =
N∑

n=1

ftnftn

and observe that f > 1
4

everywhere on [0, 1]. So the reciprocal 11/f is in C1.
But f is in I and hence so is 11. But this means that I = A a contradiction. We
leave the reader to chack that the Gelfand topology is just the standard topology
on [0, 1]. 2
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EXAMPLE Here is another example, very different. Let K be a compact subset
of C. Consider the ring of polynomials, viewed as functions on C, restrict them to
K and let A be the uniform closure. Then A is a closed subalgebra of C(K) and
it has an identity. The key to this algebra is that it is singly generated. We denote
by z the identity function on K . Then everything in A is limit of polynomials in
z. So, if ϕ is an mlf, then knowledge of ϕ(z) essentially determines ϕ everywhere
on A. So ζ = ϕ(z) ∈ C and for every polynomial p, we get ϕ(p) = p(ζ). We will
have ζ ∈ MA if and only if the map p 7→ p(ζ) is continuous and indeed, in this
case we will have

|p(ζ)| ≤ sup
z∈K
|p(z)| for all polynomials p.

The ζ that satisfy this inequality form the polynomially convex hull K̂ of K . It
can be shown thatC\K̂ is the unbounded connected component of C\K . Again
MA = K̂ with the usual topology. 2

EXAMPLE Let A = `∞ = C(Z) the set of bounded two-sided sequences with
the uniform norm. Again, A is a commutative Banach algebra with identity. The
maximal ideal space is horrendous. We clearly have Z ⊆MA. We claim that this
inclusion is dense. Suppose not. Then there is an mlf ϕ which is not in the closure
of Z interpreted as a subset of MA via the point evaluations. Now the topology of
MA is the topology of convergence on finitely many elements of A, so there exists
a neighbourhood of ϕ defined by finitely many functions which avoids the closure
of Z. This means (after adding a suitable constant to each function if necessary)
that there exists N ∈ N and functions f1, f2, . . . , fN ∈ C(Z) such that ϕ(fn) = 0
for n = 1, 2, . . . , N and the origin is not in the closure of the subset

{(f1(k), f2(k), . . . , fN(k)); k ∈ Z}

in CN . Then g =
∑N

n=1 |fn|2 =
∑N

n=1 fnfn has ϕ(g) = 0 and yet on Z, g is
positive and bounded away from zero. It follows that g is invertible and this is a
contradiction.

ThereforeMA is a compactification of Z and in fact it is called the Stone–Čech
compactification. This is the largest possible compactification of Z and enjoys the
following universal property. Let K be a compact topological space into which Z
is mapped injectively and densely (i.e. K is a compactification of Z). Then there
is a mapping π : MA → K which is continuous and onto (but not in general
one-to-one) such that the diagram
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Z K

MA

�
�
��

-
?
π

commutes. The Stone–Čech compactification is close to being incomprehensible
and we should not waste too much time trying to understand it, although of
course some mathematicians have spent many years trying to do so. 2

2.4 The Spectral Radius Formula

THEOREM 18 In a commutative Banach algebra we have

‖x̂‖∞ = lim
n→∞

‖xn‖ 1
n

The quantity ‖x̂‖∞ is called the spectral radius of x.

Proof. Without loss of generality, we can assume that the algebra possesses an
identity element. Clearly

‖x̂‖∞ ≤ ‖xn‖
1
n

for all n ∈ N and hence
‖x̂‖∞ ≤ lim inf

n→∞
‖xn‖ 1

n .

It remains to show that
lim sup
n→∞

‖xn‖ 1
n ≤ ‖x̂‖∞.

If ζ ∈ C and |ζ| < ‖x‖−1, then(11− ζx)−1 =
∞∑

k=0

ζkxk and

xn =
1

2πi

∮

|ζ|=s
(11 − ζx)−1ζ−(n+1)dζ

for s < ‖x‖−1. Now let t < ‖x̂‖−1
∞ , then since ζ 7→ (11 − ζx)−1 is analytic in

|ζ| < ‖x̂‖−1
∞ , we also have

xn =
1

2πi

∮

|ζ|=t
(11 − ζx)−1ζ−(n+1)dζ.
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Taking norms in the integral, this yields

‖xn‖ ≤ t−n sup
|ζ|=t
‖(11− ζx)−1‖

and, since the sup is finite,

lim sup
n→∞

‖xn‖ 1
n ≤ t−1.

But, now letting t approach its maximum value ‖x̂‖−1
∞ , we have the desired result.

2.5 Haar Measure

In this section we just assume the results that we need. The proofs aren’t really
very instructive. A locally compact abelian(LCA) group is an abelian group which
is also a locally compact topological space. We demand that the multiplication
map is continuous as a map from G × G to G and also that group inversion is
continuous as a map from G to G. We will use additive notations. An immediate
consequence of the definitions is the following proposition.

PROPOSITION 19 Given a neighbourhood V of 0 in G, there is a symmetric
neighbourhood U of 0 in G such that U + U ⊆ V .

The basic fact that we need is given by the following theorem.

THEOREM 20 On every LCA group G there is a translation invariant nonnega-
tive regular borel measure η such that η(U) > 0 for every non-empty open subset
U of G and η(K) < ∞ for every compact subset K of G. Furthermore, the
measure η is unique up to a positive multiplicative constant.

The measure η is called the Haar measure ofG. Note that the image of the Haar
measure under group negation is also translation invariant and hence a multiple
of η. Now test both measures on a symmetric open neighbourhood of 0 to see
that the constant must be equal to unity. In other words, any Haar measure is
necessarily negation invariant.
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2.6 Translation and Convolution

For a function f defined on G and x ∈ G we define fx(y) = f(y − x) for all
y ∈ G. We call fx the translate of f by x.

LEMMA 21 Let 1 ≤ p < ∞. For f ∈ Lp(G) we have that x 7→ fx is a
uniformly continuous map fromG to Lp(G).

Proof. Suppose first that f ∈ Cc(G), the space of continuous functions of com-
pact support on G. Then f is uniformly continuous. (Note that G has a natural
uniform structure coming from group subtraction). Let K be the support of f .
Let U be a compact neighbourhood of 0. Then K + U is also compact. Let it
have measure t. Let ε > 0, then, since f is uniformly continuous, there exists a
compact neighbourhood V of 0 such that

x ∈ V =⇒ ‖f − fx‖∞ < t−
1
p ε.

If x ∈ U ∩ V , then the support of f − fx is contained in K + U and it follows
that ‖f − fx‖p < ε.

In the general case, Let h ∈ Lp and let ε > 0. We first approximate h by
a function f ∈ Cc(G) so that ‖f − h‖p < ε. It is in this last step that the fact
p < ∞ is used. Then, since the underlying measure is translation invariant,
‖fx − hx‖p = ‖f − h‖p < ε and we have our result. if x ∈ U ∩ V , then

‖h− hx‖p ≤ ‖f − h‖p + ‖f − fx‖p + ‖fx − hx‖p < 3ε.

We now define convolution. If f and g are suitable functions, we set

f ? g(x) =

∫
f(x− y)g(y)dη(y).

If we make the substitution y = x− z in this integral we get

f ? g(x) =

∫
f(z)g(x− z)dη(z) = g ? f(x),

using that η is both translation and reflection invariant.
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LEMMA 22

1. If f ∈ L1 and g ∈ L∞, then f ? g is bounded and uniformly continuous.

2. If f, g ∈ Cc(G) then f ? g ∈ Cc(G).

3. If 1, p <∞, f ∈ Lp, g ∈ Lp′ , then f ? g ∈ C0.

4. If f, g ∈ L1, then f ? g ∈ L1.

Proof. In 1), Clearly f ? g is bounded by ‖f‖1‖g‖∞. We rewrite

f ? g(x) =

∫
f(x− y)g(y)dη(y) =

∫
h(y − x)g(y)dη(y) =

∫
hx(y)g(y)dη(y)

where h(x) = f(−x) and the uniform continuity is clear since x 7→ hx is uni-
formly continuous for the L1 norm.

For 2), clearly continuous by 1). Also supp(f ?g) ⊆ supp(f)+supp(g). Note
that supp(f) + supp(g) is the continuous image of supp(f)× supp(g) under the
addition map G ×G→ G and hence is compact.

For 3), proceed as in 1). We see that f ? g is bounded by ‖f‖p‖g‖p′ by using
Hölder’s inequality. By 2) f ? g is a uniform limit of continuous functions of
compact support. Hence f ? g ∈ C0.

For 4), we start by oberving that if U is open in G, then (x, y);x ∈ G, y ∈
G,x− y ∈ U} is an open subset of G×G. It follows that if B is a Borel set in G,
then (x, y);x ∈ G, y ∈ G,x−y ∈ B} is Borel inG×G. So, replacing both f and
g with Borel versions, we see that (x, y) 7→ f(x− y) and (x, y) 7→ f(x − y)g(y)
are Borel functions onG×G. By Fubini’s Theorem, this last function is absolutely
integrable on the product space because

∫∫
|g(y)f(x− y)|dη(x)dη(y) =

∫
‖f‖1|g(y)|dη(y) = ‖f‖1‖g‖1 <∞

It now follows that f?g(x) =
∫
f(x−y)g(y)dη(y) is a measurable function (finite

almost everywhere) for the completion of the Borel σ-field with respect to η. It
also follows from Fubini’s Theorem that f ?g ∈ L1 and that ‖f ?g‖1 ≤ ‖f‖1‖g‖1.
It is an exercise to check that different versions of f and g yield the same element
of f ? g viewed as an element of L1.

Note: OK, so I lied. The problem with the proof of 4) above is that one of the
hypotheses of Fubini’s Theorem is that the underlying measure space be σ-finite.
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Unfortunately not all LCA groups are σ-finite, for example any discrete uncount-
able abelian group will fail to be σ-finite. We would have no difficulty handing
the case of discrete groups, because L1 functions on such groups would have to
be carried by countable sets and actually by countable subgroups.

In a general LCA groupG, we take an open relatively compact neighbourhood
U of 0 and consider Un = U + U + · · · + U with n summands. Note that Un is
open and relatively compact. Now consider

G0 =
∞⋃

n=0

Un

an open subgroup of G which is σ-finite. But an open subgroup of G is also
closed (because it is the complement of the union of all the cosets not equal to the
subgroup itself) and it follows that the quotient G/G0 is discrete. You can now
show that given f, g ∈ L1(G), there is a σ-finite open and closed subgroup H of
G such that in fact, f and g are carried on H . Now you apply the argument in 4)
above to H . We reserve the right in these notes to tell this same lie again without
comment.

We now have the following theorem which is easy to check.

THEOREM 23 For g an LCA group, L1(G) is a commutative Banach algebra
with convolution multiplication.

If G is discrete, then δ0 is an identity element. It turns out that if L1(G) has
an identity element, then G is discrete, but this is not too obvious.

A character χ onG is a continuous group homomorphism into the multiplica-
tive group of unimodular convex numbers. We will denote the set of all characters
on G by Γ. We can give Γ the structure of a group in the obvious way. We will
use additive notations for consistency even though they look a trifle strange.

(−χ)(x) = χ(x), (χ1 + χ2)(x) = χ1(x)χ2(x)

The Fourier transform f̂ of f ∈ L1(G) is now given by

f̂ (χ) =

∫
f(x)χ(x)dη(x). (2.1)

This is a linear functional on L1(G) and furthermore multiplicative
∫
f ? g(x)χ(x)dη(x) =

∫ ∫
f(x − y)g(y)dη(y)χ(x)dη(x)
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=

∫∫
f(x− y)χ(x− y)χ(y)g(y)dη(y)dη(x)

=

∫∫
f(z)χ(z)dη(z)χ(y)g(y)dη(y)

= f̂(χ)ĝ(χ)

Note also that
f ? χ = f̂ (χ)χ

THEOREM 24 Every mlf on L1(G) is given by a character as in (2.1).

Proof. Every bounded linear functional on L1 is given by an L∞ function. So,
every non-zero mlf ϕ, which necessarily has norm 1 would have to be given by a
function h ∈ L∞ with ‖h‖∞ = 1 by

ϕ(f) =

∫
f(x)h(x)dη(x).

Now

ϕ(f)

∫
g(y)h(y)dη(y) = ϕ(f)ϕ(g) = ϕ(f ? g) = ϕ

(∫
fyg(y)dη(y)

)

=

∫
(ϕ(fy)g(y)dη(y)

and this holds for all g ∈ L1. Therefore

ϕ(f)h(y) = ϕ(fy) (2.2)

for almost all y. Choosing f so that ϕ(f) 6= 0 and since y 7→ fy is continuous,
we see that h has a continuous version. Replacing h with its continuous version,
it is now clear that (2.2) holds for all y ∈ G (a conull set must be dense). Now
we have

ϕ(f)h(x+ y) = ϕ(fx+y) = ϕ(fx)h(y) = ϕ(f)h(x)h(y)

giving h(x + y) = h(x)h(y). Put now x = y = 0 to get h(0) = 0 or 1. But
h(0) = 0 implies that h and hence ϕ vanishes identically and hence we must have
h(0) = 1. But now h(x)h(−x) = 1 and it comes that |h(x)| = 1 for all x ∈ G.
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2.7 The Dual Group

So, on L1(G), the Gelfand transform and the Fourier transform are the same. We
note that if G is discrete, then L1(G) has an identity and Γ is compact. If G is
compact, then η has finite measure. Normally it is normalized to have total mass
1 in this case. We have

∫
χ(x)dη(x) =

{
1 if χ is the zero element of Γ,
0 otherwise.

since if χ = 11, the first assertion is obvious. Otherwise there is an element y ∈ G
such that χ(y) 6= 1. Then

∫
χ(x)dη(x) =

∫
χ(x+ y)dη(x) = χ(y)

∫
χ(x)dη(x)

so that

(1 − χ(y))

∫
χ(x)dη(x) = 0.

Note that in this case, the characters are themselves elements of L1(G). Thus
χ̂(ψ) = 1 if χ = ψ and = 0 otherwise. Since χ̂ is a continuous function on Γ, it
follows that Γ is discrete.

THEOREM 25

1. (x, χ) 7→ χ(x) is jointly continuous G× Γ→ T.

2. Let K and C be compact in G and Γ respectively, then for t > 0

N(K, t) = {χ; |χ(x)− 1| < t for all x ∈ K}
N(C, t) = {x; |χ(x)− 1| < t for all χ ∈ C}

are open in Γ and G respectively.

3. The sets N(K, t) and their translates form a base for the topology of Γ.

4. Γ is an LCA group.

Proof. For 1) let f ∈ L1(G). We know that x 7→ fx is continuous from G to
L1(G). So, since the Gelfand transform is continuous, x 7→ f̂x is continuous from
G to C0(Γ). But

f̂x(χ) = χ(x)f̂(χ)
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and it follows that (x, χ) 7→ χ(x) is jointly continuous on the set {(x, χ);x ∈
G, f̂ (χ) 6= 0}. But, for each χ ∈ Γ it is easy to construct f ∈ L1(G) such that
f̂(χ) 6= 0 and we see that (x, χ) 7→ χ(x) is jointly continuous on G × Γ.

Next we prove 2). Let C be compact in Γ and let x0 ∈ N(C, t). Then
|χ(x0) − 1| < t for all χ ∈ C . So, for each χ there an open neighbourhood
Vχ of χ in Γ and an open neighbourhood Uχ of x0 in G such that |ψ(x)− 1| < t
for all ψ ∈ Vχ and x ∈ Uχ. Finitely many such neighbourhoods V χ cover C .
Let U be the open intersection of the corresponding Uχ. Then it is clear that
x0 ∈ U ⊆ N(C, t). The other assertion is proved similarly.

Note that 2) states that the Gelfand topology in Γ is finer than the compact
open mapping topology (i.e. the topology of uniform convergence on the compact
sets). For 3), we have to show the converse and for this it is enough to show that
each Gelfand transform f̂ for f ∈ L1(G) is continuous for the compact open
topology. If the function f has compact support, this is obvious since

|f̂(χ1)− f̂(χ2)| ≤
∫

supp(f)

|χ1(x)− χ2(x)||f(x)|dη(x)

≤ ‖f‖1 sup
x∈supp(f)

|χ1(x)− χ2(x)|.

But any L1 function can be approximated in L1 norm by L1 functions of compact
support and the corresponding transforms converge uniformly. This completes
the proof of 3).

To prove 4), we simply observe that compact open topology on Γ is clearly a
group topology. This really amounts to observing that for every compact subset
of G and every t > 0 we have

N(K, t/2) −N(K, t/2) ⊆ N(K, t),

or equivalently that the standard topology on T is a group topology.

The group Γ is called the dual group of G.

2.8 Summability Kernels

Here we give the theory of summability kernels as it applies to LCA groups.
The Bernstein approximation theorem (the proof using the Bernstein polynomials
gives an example of the idea in more general situations).

Let kn ∈ L1(G) be indexed over n ∈ N. (In general other indexing sets are
used). We suppose
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• kn ≥ 0.

•
∫
G
kn(x)dη(x) = 1, for all n ∈ N.

• For every measurable neighbourhood V of 0 we have

lim
n→∞

∫

G\V
kn(x)dη(x) = 0.

We have the following general theorem.

THEOREM 26 LetB be a banach space of objects on whichG acts isometrically
and continuously. We will denote bx for the result of applying of the group element
x to b ∈ B. Then ∫

bxkn(x)dη(x) −→
n→∞

b.

Proof. We have

b−
∫
bxkn(x)dη(x) =

∫
(b− bx)kn(x)dη(x)

and so ∥∥∥∥b−
∫
bxkn(x)dη(x)

∥∥∥∥ ≤
∫
‖b− bx‖kn(x)dη(x).

Now, let ε > 0. There exists V a measurable neighbourhood of 0 such that

x ∈ V ⇔ ‖b− bx‖ < ε

and then there exists N ∈ N such that

n ≥ N ⇔
∫

G\V
kn(x)dη(x) < ε.

We have
∫

G

‖b− bx‖kn(x)dη(x) ≤
∫

V

‖b− bx‖kn(x)dη(x) +

∫

G\V
‖b− bx‖kn(x)dη(x)

≤ ε
∫

V

kn(x)dη(x) +

∫

G\V
(‖b‖+ ‖bx‖)kn(x)dη(x)
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≤ ε
∫

G

kn(x)dη(x) +

∫

G\V
(‖b‖+ ‖b‖)kn(x)dη(x)

≤ ε+ 2‖b‖
∫

G\V
kn(x)dη(x)

≤ ε+ 2‖b‖ε

for n ≥ N .

COROLLARY 27 Let 1 ≤ p < ∞. Let f ∈ Lp(G) and (kn) be a summability
kernel. Then kn ? f → f in Lp norm.

EXAMPLE Let ϕ be a bounded continuous function on G. Show that
∫
ϕ(x)kn(x)dη(x) −→

n→∞
ϕ(0).

2

2.9 Convolution of Measures

Let λ and µ be complex borel measures on G. Then we define thir convolution
product λ ∗ µ by

λ ∗ µ(B) = λ⊗ µ(α−1(B)) (2.3)

where α is the addition map α : G × G → G given by α(x, y) = x + y. This
extends to suitable measurable functions via

∫

G

fdλ ∗ µ =

∫

G

∫

G

f(x+ y)dλ(x)dµ(y). (2.4)

In fact, (2.3) is just the special case f = 11B . It’s easy to check that the convo-
lution multiplication is associative and (on an abelian group) commutative. The
totality of all complex borel measures on G is denoted M(G). Since all complex
borel measures are necessarily bounded, we can put the total mass norm ‖ ‖M
on M(G) and it can then be realised as the dual space of C0(G). Taking the
supremum over all f ∈ C0(G) with norm bounded by one in (2.4), we see that
‖λ ∗ µ‖M ≤ ‖λ‖M‖µ‖M . It follows that M(G) is a commutative Banach algebra
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with identity δ0. The maximal ideal space of M(G) is pathological. It is true that
the mappings

µ 7→ µ̂(χ) =

∫

G

χ(x)dµ(x)

for χ ∈ Γ which define the so-called Fourier-Stieltjes transform of µ are multi-
plicative linear functionals on M(G), but there are other less obvious mlfs as well
(at least when G is non-discrete).

We now have the following uniqueness theorem which is the wrong way
around.

THEOREM 28 Let µ ∈ M(Γ) be such that
∫

Γ
χ(x)dµ(χ) = 0 for all x ∈ G.

Then µ = 0 identically.

Proof. Let f be in L1(G), then
∫
G
f(x)

∫
Γ
χ(x)dµ(χ)dη(x) = 0. Then we have∫

G

∫
Γ
|f(x)|d|µ|(χ)dη(x) <∞ and hence by Fubini’s Theorem, we have

∫

Γ

f̂ (χ)dµ(χ) =

∫

Γ

∫

G

f(x)χ(x)dη(x)dµ(χ) = 0 (2.5)

But the set of Fourier transforms A(Γ) of L1 functions on G is a self-adjoint
subalgebra of C0(Γ) under pointwise mutiplication which separates the points of
Γ (compact case) and the points of the one-point compactification of Γ in the
non-compact case. To verify the self-adjointness, we check

∫
f(−x)χ(x)dη(x) =

∫
f(−x)χ(x)dη(x) =

∫
f(x)χ(−x)dη(x)

so that ĝ(χ) = f̂(χ), where g(x) = f(−x). Therefore, by the Stone–Weierstrass
Theorem,A(Γ) is dense in C0(Γ). It follows from (2.5) that µ = 0.

2.10 Positive Definite Functions

Let ϕ be a complex-valued function on G, then we say that ϕ is positive semidef-
inite if and only the matrix M given by

mj,k = ϕ(xj − xk)
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is positive semidefinite for all choices of finitely many points (xj)
n
j=1 from G.

Explicitly, this means that

n∑

j=1

n∑

k=1

cjckϕ(xj − xk) ≥ 0

for all n ∈ N, cj ∈ C and xj ∈ G. Let ϕ be a positive semidefinite function. Then
clearly ϕ(0) ≥ 0 (take n = 1 and c1 6= 0). Also, a positive semidefinite matrix has
to be hermitian, so ϕ(−x) = ϕ(x). Now the matrix

(
ϕ(0) ϕ(x)
ϕ(−x) ϕ(0)

)
=

(
ϕ(0) ϕ(x)
ϕ(x) ϕ(0)

)

is positive semidefinite and has a nonnegative determinant, so |ϕ(x)| ≤ ϕ(0) for
all x ∈ G. Similarly, the matrix




ϕ(0) ϕ(x) ϕ(y)
ϕ(−x) ϕ(0) ϕ(y − x)
ϕ(−y) ϕ(x− y) ϕ(0)


 =



ϕ(0) ϕ(x) ϕ(y)
ϕ(x) ϕ(0) ϕ(x− y)
ϕ(y) ϕ(x− y) ϕ(0)




is positive semidefinite and hence, using simulaneous row and column reduction,
so is (

ϕ(0) ϕ(x)− ϕ(y)
ϕ(x)− ϕ(y) 2<(ϕ(0)− ϕ(x− y))

)
.

It follows that

|ϕ(x)− ϕ(y)|2 ≤ 2ϕ(0)
(
ϕ(0) −<ϕ(x− y)

)
.

It is easy to check that if f ∈ L2(G), then f̃ ? f is a continuous positive
semidefinite function on G tending to zero at infinity. However, there is a com-
plete characterization of the continuous positive semidefinite functions on G.

THEOREM 29 (BOCHNER’S THEOREM) Every continuous positive semidefinite
function ϕ on G has the form

ϕ(x) =

∫

Γ

χ(x)dµ(χ) (2.6)

where µ is a nonnegative Borel measure (of finite total mass) on Γ and conversely.
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Proof. It is routine to check that if ϕ is defined by (2.6) then ϕ is continuous and
positive semidefinite on G. For the converse, it is an exercise to check that (since
ϕ is bounded and continuous), we have

∫∫

G×G
ϕ(x− y)f(x)f(y)dη(x)dη(y) ≥ 0,

for f ∈ L1(G). We use the formula to define a quasi inner product on L1(G) by

<f, g> =

∫∫

G×G
ϕ(x− y)g(x)f(y)dη(x)dη(y) =

∫

G

(f̃ ∗ g)ϕdη.

This is in all respects like an inner product, except that the implication<f, f> =
0 does not necessarily imply that f is the zero element of L1(G). Nevertheless, the
proof of the corresponding Cauchy–Schwarz–Bunyakowski inequality goes thru,
giving

|<f, g>|2 ≤ <f, f><g, g>
Now pass to the limit as f runs over a summability kernel on G. We get

∣∣∣∣
∫

G

ϕ(x)g(x)dη(x)

∣∣∣∣
2

≤ ϕ(0)<g, g>

for all g ∈ L1(G). Let g1 = g̃ ? g and gn+1 = g̃n ? gn for n = 1, 2, . . . Actually,
g̃n = gn and it follows that gn+1 = ?2ng1, the 2n-fold convolution product of g1

with itself. The point is that

∣∣∣∣
∫

G

ϕ(x)gn(x)dη(x)

∣∣∣∣
2

≤ ϕ(0)<gn, gn> = ϕ(0)

∫

G

ϕ(x)gn+1(x)dη(x)

It follows from this and a simple induction that

∣∣∣∣
∫

G

ϕ(x)g(x)dη(x)

∣∣∣∣
2n

≤ ϕ(0)2n‖ ?2n−1

g1‖1

and, after taking the root of order 2n−1 and passing to the limit with the spectral
radius formula, we get

∣∣∣∣
∫

G

ϕ(x)g(x)dη(x)

∣∣∣∣
2

≤ ϕ(0)2‖ĝ1‖∞ ≤ ϕ(0)2‖ĝ‖2
∞
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or ∣∣∣∣
∫

G

ϕ(x)g(x)dη(x)

∣∣∣∣ ≤ ϕ(0)‖ĝ‖∞

This tell us that
∫

G

ϕ(x)g(x)dη(x) depends only on the value of ĝ and (since

A(Γ) is dense in C0(Γ)) that there is a measure µ on Γ of total mass at most ϕ(0)
such that ∫

G

ϕ(x)g(x)dη(x) =

∫

Γ

ĝ(χ)dµ(χ)

But now,
∫

G

ϕ(x)g(x)dη(x) =

∫

Γ

∫

G

g(x)χ(x)dη(x)dµ(χ)

=

∫

G

g(x)

∫

Γ

χ(x)dµ(χ)dη(x) (2.7)

The functions ϕ and x 7→
∫

Γ
χ(x)dµ(χ) are both continuous on G and since 2.7

holds for all g ∈ L1(G), we have (2.6) holding for all x ∈ G as required.

Something special happened in the proof above. Before this theorem, we
didn’t know that the points of G could be separated by its characters, but now
we do. Given x 6= 0 in G, find a symmetric neighbourhood V of 0 such that
x /∈ V + V . Then apply Bochner’s Theorem to 11V ? 11V .

We are now ready to prove a preliminary form of the inversion theorem.

THEOREM 30 Let f ∈ L1(G) be also given by f(x) =
∫

Γ
χ(x)dµf(χ) where

µf is a complex measure. (Note that complex measures have finite total mass).
Then µf = f̂ν where ν is a suitably normalized Haar measure on Γ.

Proof. Let f and g be two such functions with associated measures µf and µg.
Let h ∈ L1(G). Then
∫∫

h(−x− y)f(x)g(y)dη(x)dη(y) =

∫∫
h(−x− y)χ(x)g(y)dµf(χ)dη(x)dη(y)

=

∫∫
h(−x− y)χ(x)g(y)dη(x)dη(y)dµf(χ)

=

∫∫
h(−x− y)χ(x)g(y)dη(x)dη(y)dµf(χ)
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=

∫∫
h(x− y)χ(x)g(y)dη(x)dη(y)dµf(χ)

=

∫∫
h(x− y)χ(x)g(y)dη(y)dη(x)dµf(χ)

=

∫∫
g ? h(x)χ(x)dη(x)dµf (χ)

=

∫∫
ĝ ? h(χ)dµf (χ)

=

∫∫
ĥ(χ)ĝ(χ)dµf (χ)

and also by the symmetry of the initial expression in f and g

=

∫∫
ĥ(χ)f̂(χ)dµg(χ)

Again, since A(Γ) is dense in C0(Γ), we find ĝdµf = f̂dµg .
Now we can construct functions like f and g easily. Let V be a measurable

neighbourhood of 0 and let h = 11V , then by Bochners Theorem, there is a mea-
sure µh?h̃ such that

h ? h̃(x) =

∫

Γ

χ(x)dµh?h̃(χ)

ĥ ? h̃(χ) = |ĥ(χ)|2

Furthermore, if ψ ∈ Γ

(ψh ? ψ̃h)(x) = ψ(x)h ? h̃(x) =

∫

Γ

χ(x)dµh?h̃(χ− ψ)

=

∫

Γ

χ(x)dµ
(ψh?ψ̃h)

(χ)

ψ̂h ? ψ̃h(χ) = |ĥ(χ− ψ)|2.

Note also that ĥ is continuous and ĥ(0) is nonzero. This leads to

|ĥ(χ− ψ)|2dµf (χ) = f̂(χ)dµ(ψh?ψ̃h)(χ)

showing that µf is uniquely determined near ψ and hence everywhere on Γ.

43



Also we may infer the existence (the details are an exercise) of a positive mea-
sure ν such that

µf = f̂ ν.

A straightforward compactness argument shows that ν is finite on the compact
sets and charges every nonempty open set.

Now let us abbreviate h ? h̃ to g. Then

ψ̂g(χ)dµg(χ) = ĝ(χ)dµψg(χ) = ĝ(χ)dµg(χ− ψ)

leading to
ĝ(χ− ψ)ĝ(χ)dν(χ) = ĝ(χ)ĝ(χ− ψ)dν(χ− ψ).

Now suppose that ψ is given, then, choosing ε suitably small, choose V such that
V ⊆ {x; |ψ(x)−1|< ε}. Then forχ in a neighbourhood of 0Γ, ĝ(χ−ψ)ĝ(χ) 6= 0,
showing that dν(χ) = dν(χ − ψ) at least for values of χ in a neighbourhood of
0Γ. It follows that ν is translation invariant and hence a multiple of Haar measure
on Γ. Again, the details are an exercise.

Now let V be a symmetric neighbourhood of 0 inG. Let g = (η(V )−111V ?11V .
Then g(0) = 1 and g is positive definite. It follows that g(x) =

∫
Γ
ĝ(χ)χ(x)dν(χ).

Now ĝ is in L1(Γ) with norm 1 and there is a compact subset C of Γ such that
∫

Γ\C
g(χ)dν(χ) <

1

5

Suppose that x ∈ N(C, 1
5
). Then

∣∣∣∣1 −
∫

Γ

ĝ(χ)χ(x)dν(χ)

∣∣∣∣ ≤
∫

Γ

ĝ(χ)|1− χ(x)|dν(χ)

≤
∫

Γ\C
ĝ(χ)|1− χ(x)|dν(χ) +

∫

C

ĝ(χ)|1− χ(x)|dν(χ)

≤ 2

5
+

1

5
=

3

5

So, g(x) ≥ 2
5

and x ∈ V +V . It follows from this that the compact open topology
defined onG by means of the duality with Γ is finer than and therefore equivalent
to the original topology on G.
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2.11 The Plancherel Theorem

This is an immediate consequence of the inversion theorm.

THEOREM 31 (PLANCHEREL THEOREM) Let f ∈ L1(G) ∩ L2(G). Then
∫

G

|f(y)|2dη(y) =

∫

Γ

|f̂(χ)|2dν(χ) (2.8)

so that

f 7→ f̂

L1(G) ∩ L2(G) −→ L2(Γ)

extends by continuity to a surjective isometry

L2(G) −→ L2(Γ)

Proof. Let h = f ? f̃ , then h(x) =
∫
G
f(x − y)f(−y)dη(y) and h(0) = ‖f‖2

2.
Since h is both in L1 and is positive definite, it can be represented by a measure

µh of total mass h(0). Also, µh = ĥν. Since ĥ(χ) = f̂ ? f̃(χ) = |f̂(χ)|2, we have
(2.8). The remainder of the result is obvious, except for the fact that the isometry
is surjective. To see this, suppose not. Then there is a nonzero function φ ∈ L2(Γ)
such that ∫

Γ

f̂ (χ)φ(χ)dν(χ) = 0

for all f ∈ L1(G) ∩ L2(G). Fix such an f and consider its translation fx. We get
∫

Γ

χ(x)f̂(χ)φ(χ)dν(χ) =

∫

Γ

f̂x(χ)φ(χ)dν(χ) = 0

for all x ∈ G. But now by Theorem 28 and since f̂φν is a measure (f̂φ ∈ L1), we
have that f̂φ vanishes ν almost everywhere. But we know how to choose f such
that f̂ is non-vanishing in a neighbourhood of any given point of Γ. Hence φ = 0
almost everywhere (and as an element of L2).

COROLLARY 32 Let f, g ∈ L2(G), then f̂g = f̂ ? ĝ.
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Proof. Polarizing the Plancherel identity leads to
∫

G

f(y)g(y)dη(y) =

∫

Γ

f̂(χ)ĝ(χ)dν(χ)

for f, g ∈ L2(G). The notations f̂ , ĝ now stand for the abstract nonsense fourier
transforms of f and g respectively. Replace g by g and f by ψf where ψ ∈ Γ. We
get ∫

G

ψf(y)g(y)dη(y) =

∫

Γ

f̂ (χ+ ψ)ĝ(−χ)dν(χ)

which after a change of variables gives exactly f̂g = f̂ ? ĝ.

COROLLARY 33 Let Ω be a nonempty open subset of Γ. Then there is a func-
tion f ∈ L1(G) such that f̂ is not identically zero and f̂ (χ) = 0 for all χ ∈ Γ \Ω.

Proof. First, find V1 and V2 open nonempty and relatively compact with V1 +

V2 ⊂ Ω. Then let fj ∈ L2(G) be the elements such that f̂j = 11Vj for j = 1, 2.

Then f = f1f2 does the trick, since f̂ = 11V1 ? 11V2 .

2.12 The Pontryagin Duality Theorem

Let H be the dual group of Γ. Every element of G defines a continuous character
on Γ, so there is a map α : G→ H which is clearly one-to-one (different elements
of G define different characters since we know that the characters of G separate
the points of G).

THEOREM 34 (PONTRYAGIN DUALITY THEOREM) The mapping α is an iso-
morphism of topological groups.

Proof. It is clear that α is an injective group homomorphism. We also know that
the topologies of G and H can be identified to the compact open topology when
these spaces are viewed as function spaces on Γ. Therefore the topology of G is
the subspace topology coming from H . Now the uniform structure of an abelian
topological group is given from the topology by means of translation. Therefore,
the uniform structure on G is just the restriction of the uniform structure on
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H . But G is locally compact and hence as a uniform space, it is complete. But
when complete spaces occur as subsets of other spaces, they are necessarily closed.
Hence α(G) is a closed subset of H1.

It remains only to show that α(G) is dense in H . But, if not, then by one
of the corollaries of the Plancherel Theorem, we can find f ∈ L1(Γ) nonzero,
with f̂(x) = 0 for all x ∈ α(G). But then Theorem 28 implies that f is almost
everywhere zero on Γ a contradiction.

Some of the consequences of the Pontryagin Duality Theorem are as follows:

• Every compact abelian group is the dual of a discrete abelian group.

• Every discrete abelian group is the dual of a compact abelian group.

• If µ ∈ M(G) and µ̂(χ) = 0 for all χ ∈ Ĝ, then µ = 0. In particular, both
L1(G) and M(G) are semisimple Banach algebras.

• If G is not discrete, then Ĝ is not compact and hence L1(G) does not have
an identity element.

• We can restate the inversion theorem the correct way around. If µ ∈M(G)
and µ̂ ∈ L1(Ĝ), then there exists f ∈ L1(G) such that µ = fη and the
inversion formula

f(x) =

∫

Ĝ

µ̂(χ)χ(x)dη(χ)

holds.

1If you are reading along in Rudin’s book, please note that it is in general false that a locally
compact subspace of a locally compact topological space is necessarily closed. Whatever Rudin
intended in §1.7 is by no means clear.
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