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Summary. The purpose of inverse probability of treatment (IPT) weighting in estimation of marginal treatment effects is
to construct a pseudo-population without imbalances in measured covariates, thus removing the effects of confounding and
informative censoring when performing inference. In this article, we formalize the notion of such a pseudo-population as a
data generating mechanism with particular characteristics, and show that this leads to a natural Bayesian interpretation of
IPT weighted estimation. Using this interpretation, we are able to propose the first fully Bayesian procedure for estimating
parameters of marginal structural models using an IPT weighting. Our approach suggests that the weights should be derived
from the posterior predictive treatment assignment and censoring probabilities, answering the question of whether and how
the uncertainty in the estimation of the weights should be incorporated in Bayesian inference of marginal treatment effects.
The proposed approach is compared to existing methods in simulated data, and applied to an analysis of the Canadian
Co-infection Cohort.
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1. Introduction
Propensity score adjustment (Rosenbaum and Rubin, 1983),
in the form of either weighting, matching, stratification, or
covariate adjustment, provides a way to control for confound-
ing in non-experimental settings without having to model the
dependence between the confounders and the outcome of in-
terest, given that the probability of the treatment assignment
can be correctly modeled with respect to confounding vari-
ables. Adjustment via the propensity score is typically carried
out in a two stage procedure: first, a parametric propensity
score model for the treatment given the covariates is proposed,
and parameters estimated from the observed data; second, ap-
propriately comparable individuals—so assessed using the es-
timated propensity score—are compared in order to assess the
unconfounded effect of treatment. The two stage estimation
is most commonly justified, and studied theoretically, using
frequentist semiparametric theory. It is not typically regarded
as being derived from a likelihood-based paradigm.

Bayesian inference, on the other hand, always derives
from a full probability model specification, which is why,
in general, propensity score adjustment methods do not
appear to have obvious Bayesian counterparts. For matching
methods, there is no clearly defined joint probability model
for the observable quantities; for covariate adjustment using
the propensity score (or outcome regression) the presumed
likelihood is based on a patently misspecified model, as the

propensity score predictor cannot readily be thought of as a
genuine component of the data generating process. For inverse
weighting-based adjustments, no fully Bayesian justification
has yet been proposed; we aim to fill this gap in the literature.

The recent causal inference literature has seen several at-
tempts to introduce Bayesian versions of propensity score
based methods, including inverse probability of treatment
(IPT) weighting (Hoshino, 2008; Kaplan and Chen, 2012),
covariate adjustment (McCandless, Gustafson, and Austin,
2009; McCandless et al., 2010; Zigler et al., 2013) and match-
ing (An, 2010). In this article, we provide a fully Bayesian
argument that gives further insight into aspects of the pre-
viously proposed approaches. Our specific focus will be on
IPT weighting in the context of marginal structural mod-
els (MSMs, Robins, Hernán, and Brumback, 2000; Hernán,
Brumback, and Robins, 2001).

The advantage of a marginal model specification, coupled
with weighting, is that in addition to controlling for mea-
sured confounding, due to the marginalization over the co-
variate distribution, the impact of any related mediation and
effect modification need not be modeled explicitly. Under lon-
gitudinal settings, explicit modeling and integration over the
(possibly high dimensional) intermediate variables represents
a formidable task even in simple settings, and this is why the
ability to circumvent this modeling step appears to be an im-
portant advantage that inverse probability weighted methods
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have over Bayesian inferences based on fully specified proba-
bility models.

Our motivating example is introduced in Section 2, while
in Section 3 we propose a Bayesian interpretation of IPT
weighting and a corresponding estimation approach. Since
IPT weighted estimation can be interpreted as construction
of a pseudo-population with measured covariate imbalances
removed, a Bayesian version of the procedure can be linked
to sampling from such a pseudo-population, and a Bayes de-
cision rule derived from a change of probability measure, or
equivalently, an importance sampling argument. The result-
ing inference procedure is related to the relevance weighted
likelihood of Hu and Zidek (2002) and Wang (2006) and the
weighted likelihood bootstrap of Newton and Raftery (1994).

We contrast the fully Bayesian procedure to some existing
Bayesian proposals in Section 4. It is a well-known (e.g.,
Hernán et al., 2001; Henmi and Eguchi, 2004) result that an
IPT weighted estimator with estimated weights has a smaller
asymptotic variance than the corresponding estimator with
the true weights known, which can be intuitively understood
in terms of the sample balance given by the estimated propen-
sity score (Rosenbaum and Rubin, 1983, p. 47). However,
many of the approaches suggested for Bayesian propensity
score adjustment (e.g., Kaplan and Chen, 2012, p. 592) incor-
porate an additional variance component acknowledging the
estimation of the propensity scores. We identify the source
of this apparent anomaly to be the lack of a well defined
joint probability distribution. In Section 5, we investigate
the frequency-based properties of the different Bayesian
approaches in a simulation study. In Section 6, we analyze
data from the Canadian HIV/Hepatitis C Co-Infection
Cohort Study. We conclude with a discussion in Section 7.

2. Motivating Example: Antiretroviral Therepy
Interruption and Liver Fibrosis in HIV/HCV
Co-Infected Individuals

Our motivating example is a complex longitudinal data set
relating to health outcomes for individuals simultaneously
infected with HIV and the hepatitis C virus (HCV), in partic-
ular, the possible negative influence of treatment interruption
on specific endpoints. Although antiretroviral therapy (ART)
has reduced morbidity and mortality due to nearly all HIV-
related illnesses, this is not the case for mortality due to end-
stage liver disease, which has increased since ART treatment
became widespread (Klein et al., 2010, p. 1162). In part, this
increase may be due to improved overall survival combined
with HCV associated hepatic liver fibrosis, the progress of
which is accelerated by immune dysfunction related to HIV-
infection. The Canadian Co-infection Cohort (CCC) Study
(Klein et al., 2010) is one of the largest projects set up to study
the role of ART on the development of end-stage liver disease
in HIV–HCV co-infected individuals. Given the importance of
ART in improving HIV-related immunosuppression, it is hy-
pothesized (Thorpe et al., 2011, p. 968) that liver fibrosis pro-
gression in co-infected individuals may be partly related to ad-
verse consequences of ART interruptions. The available data
constitute health information for over a thousand co-infected
individuals recorded longitudinally over a series of clinic
visits, which take place at approximately 6-month intervals.

The objective of our analysis is to assess the causal effect
of ART interruption in a between-clinic visit interval on pro-
gression to liver fibrosis. As in the majority of observational
data sets, there is a strong suggestion of possible confound-
ing, in that factors that influence ART interruption in any
interval—for example, involvement in risky lifestyle practices
such as intravenous drug use or alcohol abuse—also are likely
to induce liver fibrosis. Furthermore, the effect ART interrup-
tion in one interval may be felt directly but also be mediated
through subsequent health status, and also it may influence
subsequent ART interruption incidents.

In the presence of both time-varying confounding and me-
diation, estimation of the (marginal) causal effect of interest
via standard regression methods is not possible, motivating
marginal structural modeling. However, from a Bayesian per-
spective, such procedures seem potentially problematic, as
there is no corresponding likelihood function. Our method-
ological objective in this article is to provide a formal Bayesian
justification and estimation procedure for MSMs.

3. A Bayesian Formulation and Interpretation of
IPT Weighting

3.1. Marginal Structural Models

Consider a longitudinal observational study setting involving
the individuals i = 1, . . . , n, with measurements of covariates
and subsequent treatment decisions carried out at discrete
time points j = 1, . . . , m. Let z̃i ≡ (zi1, zi2, . . . , zim) denote
the observed history of treatment assignments or prescribed
doses. Further, let yi be the outcome of interest observed
after sufficient time has passed from the last time-point,
and x̃i ≡ (xi1, xi2, . . . , xim) denote an observed history of
vectors of covariates, including a sufficient set of (possibly
time-dependent) confounders, recorded before each treatment
assignment. Partial histories up to and including timepoint j

are denoted as, for example, x̃ij ≡ (xi1, xi2, . . . , xij). We use the
shorthand notation vi = (x̃i, yi, z̃i) for all observed variables,
and v without subscript for the corresponding vectors for n

observations. Table 1 in Supplementary Appendix A provides
a succinct summary of the notation.

Marginal structural models (Robins et al., 2000; Hernán
et al., 2001) are formulated as marginal distributions of po-
tential outcome/counterfactual random variables which are
functionally dependent on hypothetical treatment interven-
tions. Letting aj index r discrete treatment alternatives at
time-point j, the rm potential outcomes for individual i are
denoted as yãi, ã ≡ (a1, . . . , am). Assuming that the interven-
tion is well-defined and there is no interference between sub-
jects (the consistency assumption), the observed outcome is
given by yi = ∑

ã
1{̃zi = ã}yãi. A marginal structural model then

specifies the rm marginal distributions p(yãi | θ) through the
parameters θ.

Under a data generating mechanism without confound-
ing, the marginal structural model can be estimated using
its observed counterpart p(yi | z̃i, θ). Assuming that the no
unmeasured confounding/sequential randomization condition
yãi ⊥⊥ zij | (z̃i(j−1), x̃ij) and the positivity condition p(zij = aj |
z̃i(j−1), x̃ij) > 0 hold true for all i, j, and ã, the parameter θ

may be estimated by maximizing the IPT-weighted pseudo-
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likelihood function

q(θ; v, γ, α) ≡
n∏

i=1

p(yi | z̃i, θ)
wi , (1)

where

wi =

m∏
j=1

p(zij | z̃i(j−1), αj)

m∏
j=1

p(zij | z̃i(j−1), x̃ij, γj)

defines “stabilized” case weights. Here α ≡ (α1, . . . , αm) and
γ ≡ (γ1, . . . , γm) parametrize the marginal and conditional
treatment assignment probabilities, respectively, with the true
values of the parameters (γ, α) (for now) taken to be known.
The weights wi in (1) have the property that E[wi] = 1 (see,
e.g., Hernán and Robins, 2006, p. 584). This fact does not
make (1) a proper likelihood in the sense that the correspond-
ing score variance would equal the Fisher information.

Since the effect of the weighting is to construct a pseudo-
population in which there are no imbalances on measured co-
variates between the treatment groups (Robins et al., 2000, p.
553), (1) can be understood in terms of the relevance weighted
likelihood discussed by Hu and Zidek (2002) which arises
when a sample from the population of interest is not directly
available, but samples from other populations are relevant for
learning about this target population. Now the target pop-
ulation is one where zij ⊥⊥ x̃ij | z̃i(j−1) holds true; the weights
convey information on how much the observed population re-
sembles the target population. This information in turn is con-
tained in the parameters γ. In addition, the target population
has the same marginal treatment assignment distribution as
the observed population, characterized by the parameters α.
In the following section we formalize the notion of the target
population and relate it to the observed population.

If the true values of the parameters (γ, α) are known, the
weights wi are fixed; to represent random sampling of the
original n subjects of equal information contribution, we may
consider the likelihood-analogue

q(θ; v, γ, α, π) =
n∏

i=1

p(yi | z̃i, θ)
nπiwi , (2)

where π ≡ (π1, . . . , πn) ∼ Dirichlet(1, . . . , 1), as in the
weighted likelihood bootstrap of Newton and Raftery
(1994, p.4). An alternative formulation could be ob-
tained by replacing in (2) nπi with ξ ≡ (ξ1, . . . , ξn) ∼
Multinomial(n; n−1, . . . , n−1). In Sections 3.2–3.4 we show
that randomly drawing vectors π(k) (or ξ(k)), k = 1, . . . , l, and

taking θ̂(k) ≡ arg maxθ q(θ; v, γ, α, π(k)) produces an approx-
imate sample of size l from the posterior distribution of θ.
In practice, parameters (γ, α) would have to be estimated as
well, which we also address below.

3.2. Bayesian Model Parametrization

In addition to the variables introduced previously, longitudi-
nal settings often involve latent individual level “frailty” vari-

ables, which are determinants of both the outcome and the
intermediate variables, but can sometimes be assumed con-
ditionally independent of the treatment assignments. We de-
note these variables by ui, and now consider a formal Bayesian
construction. We assume that the quadruples (x̃i, yi, z̃i, ui) are
infinitely exchangeable over the unit indices i = 1, . . . , n, n +
1, . . ., and deduce the de Finetti representation (e.g., Bernardo
and Smith, 1994, Chapter 4) for the joint distribution of a
random sample of size n from such a super-population as

p(v | O) =
∫

φ,γ,u

p(x̃, y, z̃, u | φ, γ,O)p(φ, γ) dφ dγ

=
∫

φ,γ

n∏
i=1

[∫
ui

p(yi | x̃i, z̃i, ui, φ1)

×
m∏

j=1

p(xij | z̃i(j−1), x̃i(j−1), ui, φ2j)p(ui | φ3) dui

×
m∏

j=1

p(zij | z̃i(j−1), x̃ij, γj,O)

]
p(φ, γ) dφ dγ, (3)

assuming that the prior distribution for parameters (φ, γ) im-
plied by the representation theorem—presumed here to be
finite dimensional for convenience—is absolutely continuous
with respect to Lebesgue measure, with density p(φ, γ). Fur-
ther, φ = (φ1, φ2, φ3) is a partitioning of φ corresponding to
the above factorization of the likelihood function, that is,
φ1 specifying the conditional outcome model, φ2 the covari-
ate process, and φ3 the marginal distribution of the frailties.
The notation O indexes the data generating mechanism un-
der the observational setting where the treatment assignment
can depend on the x̃ij covariates (cf. Dawid and Didelez, 2010;
Røysland, 2011).

Equation (3) follows under the assumption that zij ⊥⊥ ui |
(x̃ij, z̃i(j−1),O), which is the counterpart of the no unmea-
sured confounding condition stated in the previous section
(cf. Arjas, 2012, Definition 2). The parameter vectors φ and
γ, specified by the representation theorem as some functions
of the infinite sequence of observables, are assumed a priori
independent. We note that here φ is not of direct interest:
what is central to what follows is the interpretation of the
parameter vector γ. We define a correctly specified treatment
assignment model as the sequence of conditional distributions
implied by (3), parameterized via γ. It follows that the out-
comes are non-informative about the treatment assignment
mechanism, characterized by the parameters γ. To see this,
the marginal posterior density for γ may be written

p(γ | v,O) =
∫

φ,u

p(γ, φ, u | v,O) dφ du

∝
∫

φ,u

p(x̃, y, z̃, u | φ, γ,O)p(φ)p(γ) dφ du

∝
n∏

i=1

m∏
j=1

p(zij | z̃i(j−1), x̃ij, γj,O)p(γ)

∝ p(γ | x̃, z̃,O). (4)
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Under the usual regularity assumptions, the posterior in (4)
converges to a degenerate distribution at the true value of γ

when n → ∞ (cf. van der Vaart, 1998, p. 139).
For causal considerations, we need to envision sampling

taking place from another, entirely conceptual, super-
population where treatments are assigned completely at
random so that zij ⊥⊥ (x̃ij, ui) | (z̃i(j−1), E), j = 1, . . . , m. The
indexing of the probability distributions by E refers to
the characteristics of a conceptual “randomized” version
of the treatment assignment mechanism, corresponding to
the randomized trial measure considered by Røysland (2011).
Causal inferences are then possible if the treatment effect un-
der E can be estimated based on the data observed under O.
In addition, the marginal treatment assignment probabilities
under E are taken to be the same as under the observational
setting. The resulting de Finetti representation is

p(v | E) =
∫

φ,α

n∏
i=1

[∫
ui

p(yi | x̃i, z̃i, ui, φ1)

×
m∏

j=1

p(xij | z̃i(j−1), x̃i(j−1), ui, φ2j)p(ui | φ3) dui

×
m∏

j=1

p(zij | z̃i(j−1), αj, E)

]
p(φ)p(α) dφ dα. (5)

Under standard conditions, the corresponding posterior
p(α | z̃, E) converges to a degenerate distribution at the true
value of α. An alternative parametrization would be obtained
by assuming the pairs (yi, z̃i) to be infinitely exchangeable
over the unit indices i. Under the treatment assignment
mechanism E this is sensible, since now the covariates x̃i are
not confounders and are thus irrelevant to learning about the
relationship between the treatment and the outcome. The
resulting parametrization is

p(y, z̃ | E) =
∫

θ,α

n∏
i=1

[
p(yi | z̃i, θ)

m∏
j=1

p(zij | z̃i(j−1), αj, E)

]
× p(θ)p(α) dθ dα. (6)

The parameters α are the same as in (5), and θ parameterizes
the marginal treatment effect of interest. In the Appendix, we
motivate the above definitions by linking the representations
(3) and (5) to the causal parameter. In order to make causal
inferences about θ in (6), one needs to hypothesize generating
predictions v∗

i ≡ (x̃∗
i , y

∗
i , z̃

∗
i ) from the super-population/data

generating mechanism characterized by (5), based on the
actually observed sample v of size n from (3). This is in
principle straightforward, since

p(v∗
i | v, E) =

∫
φ,α,u∗

i

p(v∗
i , u

∗
i | φ, α)p(φ, α | v, E) du∗

i dφ dα

where p(φ, α | v, E) = p(φ | v)p(α | z̃, E), and further

p(φ | v) ∝
n∏

i=1

[∫
ui

p(yi | x̃i, z̃i, ui, φ1)

×
m∏

j=1

p(xij | z̃i(j−1), x̃i(j−1), ui, φ2j)p(ui | φ3) dui

]
× p(φ).

However, we wish to avoid specifying the model components
parameterized in terms of φ, as they reference the latent and
unobserved ui. If, on the other hand, the latent variables
are ignored, the modeling approach would be susceptible
to the “null paradox” discussed by Robins and Wasserman
(1997). We note that our formulation of causal inference as
a posterior predictive problem closely resembles the original
Bayesian approach by Rubin (1978).

3.3. IPT Weighting Derived Through a Bayes Decision
Rule

The representations (3) and (5) are linked through the im-
portance sampling identity (e.g., Robert and Casella, 2004,
p. 92). Let U(·) be a utility function relevant to the estima-
tion/decision problem. Then

E[U(v∗
i ) | v, E] =

∫
v∗
i

U(v∗
i )p(v∗

i | v, E) dv∗

=
∫

v∗
i

U(v∗
i )

p(v∗
i | v, E)

p(v∗
i | v,O)

p(v∗
i | v,O) dv∗

≡
∫

v∗
i

w∗
i U(v∗

i )pn(v
∗
i ) dv∗

i , (7)

where pn is taken to be a non-parametric posterior predictive
density in the sense of Walker (2010, p. 26), and w∗

i = p(v∗
i |

v, E)/p(v∗
i | v,O), which simplifies into

w∗
i =

∫
α

m∏
j=1

p(z∗
ij | z̃∗

i(j−1), αj,O)p(α | z̃,O) dα

∫
γ

m∏
j=1

p(z∗
ij | z̃∗

i(j−1), x̃
∗
ij, γj,O)p(γ | x̃, z̃,O) dγ

=
Eα

[
m∏

j=1

p(z∗
ij | z̃∗

i(j−1), αj,O) | z̃,O
]

Eγ

[
m∏

j=1

p(z∗
ij | z̃∗

i(j−1), x̃
∗
ij, γj,O) | x̃, z̃,O

] , (8)

an estimated version of the weight in (1). The form (7) is
expressed entirely in terms of observable quantities, since
p(zij | z̃i(j−1), αj, E) = p(zij | z̃i(j−1), αj,O). In (7), we require
that the ratio p(v∗

i | v, E)/p(v∗
i | v,O) is well-defined (formally,

we require absolute continuity of the experimental measure
with respect to the observational measure, cf. Dawid and
Didelez, 2010, p. 196). This implies in particular that the
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treatment assignments zij under O may not be deterministic,
and is the counterpart of the positivity condition (see, e.g.,
Hernán and Robins, 2006, pp. 582–583). The no unmeasured
confounding condition zij ⊥⊥ ui | (x̃ij, z̃i(j−1),O) is also required
for obtaining the simplified form (8), the terms involving the
latent variables ui canceling out of the fraction.

Based on (6), we choose the utility function U(v∗
i ; θ) ≡

log p(y∗
i | z̃∗

i , θ) ≡ �(y∗
i | z̃∗

i , θ) say, and then maximize the ex-
pected utility with respect to the parameters of inter-
est θ. Following Walker (2010, p. 27) and adopting the
Bayesian bootstrap strategy pn(v

∗
i ) = ∑n

k=1
πkδvk

(v∗
i ) where

π ≡ (π1, . . . , πn) ∼ Dirichlet(1, . . . , 1), we then obtain the log-
likelihood-analogue corresponding to (2) through

E [�(y∗
i | z̃∗

i , θ) | v, E] =
∫

v∗
i

w∗
i �(y

∗
i | z̃∗

i , θ)

n∑
k=1

πkδvk
(v∗

i ) dv∗
i

=
n∑

i=1

πiwi�(yi | z̃i, θ). (9)

Consequently,

arg max
θ

E [�(y∗
i | z̃∗

i , θ) | v, E]

= arg max
θ

[
n∑

i=1

πiwi�(yi | z̃i, θ)

]
≡ θ̂(v;π), (10)

the weighted maximum likelihood estimator of θ.

3.4. A Computational Algorithm

As in Newton and Raftery (1994), an approximate sample
from the posterior distribution of θ may now be produced
by taking a sample (π(1), . . . , π(l)) of the weight vectors of
length n from the uniform Dirichlet distribution, and taking
(θ(1), . . . , θ(l)) = (̂θ(v;π(1)), . . . , θ̂(v;π(l))) to be a sample from
p(θ | v, E). Alternatively, π could be replaced by the multino-
mial random vector ξ. It should be noted that the weighted
log-likelihood function (9) cannot be used in place of a like-
lihood function in Bayes’ formula, and its curvature does not
play a direct part in quantifying the uncertainty on θ. This es-
timation approach as such does not allow specifying an infor-
mative (non-flat) prior on θ. However, if required, informative
priors could be incorporated using the sampling-importance
resampling (SIR, Rubin, 1988) approach as discussed by
Newton and Raftery (1994). In short, in this procedure a
(say, kernel) density estimate g would be calculated from the
initial sample (θ(1), . . . , θ(l)), followed by resampling with the
importance weights L(θ(k))p(θ(k))/g(θ(k)), where L is a likeli-
hood function and p is the informative prior. In the present
setting we do not have a closed form likelihood function,
but the posterior density estimate g under flat priors can
be taken as a numerical likelihood, resulting in importance
resampling weights p(θ(k)). Alternatively, to avoid potential
issues in the importance resampling weights, the numerical
likelihood g may be used directly in the Bayes’ formula in
place of a closed form likelihood function, enabling the use
of standard Markov chain Monte Carlo (MCMC) methods,
and informative prior specifications for θ. We illustrate this
augmented procedure in Supplementary Appendix B.

Prior specifications for γ and α and posterior inferences
from p(γ | x̃, z̃,O) and p(α | z̃,O) proceed in the usual way,
the evaluation of the weights (8) using Monte Carlo integra-
tion requiring only a single MCMC sample from these posteri-
ors. We note that when there is no confounding under the ob-
servational setting, that is, zij ⊥⊥ x̃ij | (z̃i(j−1),O), j = 1, . . . , m,
the weights wi → 1 and the estimator coincides asymptoti-
cally with the unweighted maximum likelihood estimator.

The proposed computational algorithm can be summarized
as follows: first the treatment assignment model is fitted
using standard Bayesian MCMC techniques to obtain the
posterior mean treatment assignment probabilities and IPT
weights. Second, an approximate sample is produced from
the posterior distribution of the MSM parameters θ with
flat priors by fitting the MSM using a Bayesian bootstrap
procedure where the obtained IPT weights are multiplied
by uniform Dirichlet resampling weights. The procedure can
be augmented to accommodate informative priors for θ. A
step-by-step representation of the computational algorithm
is given in Supplementary Appendix B.

4. Previously Proposed Two-Step and Joint
Bayesian Estimation Approaches

4.1. Two-Step Estimation

Previous Bayesian approaches proposed by Hoshino (2008)
and Kaplan and Chen (2012) for Bayesian propensity score
adjustment or weighting are implicitly based on a marginal
quasi-posterior distribution of the form

q(θ; v) ≡
∫

γ

q(θ; v, γ)p(γ | x̃, z̃) dγ. (11)

The quasi-Bayes point estimator of Hoshino (2008) would be
obtained as the mean of (11), in practice evaluated using
MCMC sampling where the likelihood is replaced by the IPT-
weighted pseudo-likelihood. Given a sample γ(k), k = 1, . . . , l

from p(γ | x̃, z̃), the multiple imputation type point estimator
of Kaplan and Chen (2012), also implied by (11), is Eγ |̃x,̃z[E(θ |
v, γ)] ≈ 1

l

∑l

k=1
θ̂(v; γ(k)). Such point estimators are consistent

as, under standard regularity conditions, p(γ | x̃, z̃) converges
to a point mass at the truth. However, since q(θ; v; γ) is not
a likelihood, the integral q(θ; v) does not have a probabilistic
interpretation. In particular, since (11) is not a true posterior
distribution, it does not readily provide a mechanism for vari-
ance estimation. We refer to Supplementary Appendix C for
more details.

4.2. Joint Estimation

Approaches to Bayesian (and likelihood-based) propensity
score adjustment which allow feedback between the out-
come model and the treatment assignment model have been
a source of continuing controversy in the literature (e.g.,
McCandless et al., 2010; Kaplan and Chen, 2012; Zigler et
al., 2013). Results from Section 3.2 give insight into this is-
sue; we elaborate in Supplementary Appendix C. Briefly, we
conclude that many of the proposed joint estimation methods
are not true propensity score adjustment methods in the sense
that they do not retain the balancing property of propensity
scores.
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Table 1
Results for point and variance estimators of θ2 over 1000 replications. The columns correspond to estimator, mean point
estimate, bias relative to the true value of θ2 (RB), Monte Carlo standard deviation of the point estimates (SD), mean
standard error estimate (SE), standard error estimate bias relative to the Monte Carlo SD, and 95% confidence interval

coverage probability (CP).

Scenario Estimator Mean RB (%) SD SE RB (%) 95% CP

b = 0, Naive −0.252 −1.991 0.106 0.106 −0.413 95.1
θ2 = −0.247 ITPW, sandwich −0.253 −2.179 0.107 0.107 −0.121 95.8

ITPW, Adj. sandwich −0.253 −2.179 0.107 0.105 −2.058 95.2
quasi-Bayes −0.255 −3.018 0.109 0.104 −4.559 93.9
MI −0.253 −2.421 0.108 0.113 4.676 96.6
Bayes/Dirichlet −0.257 −3.752 0.108 0.108 −0.717 95.5
Bayes/Multinomial −0.257 −3.806 0.108 0.109 0.370 94.8
Bootstrap −0.257 −3.801 0.108 0.109 0.578 95.0

b = 0.15, Naive −0.345 39.456 0.122 0.124 1.823 52.6
θ2 = −0.569 ITPW, sandwich −0.570 −0.141 0.142 0.142 −0.272 95.0

ITPW, Adj. sandwich −0.570 −0.141 0.142 0.133 −6.434 93.7
quasi-Bayes −0.587 −3.080 0.147 0.147 0.379 95.4
MI −0.582 −2.266 0.145 0.159 9.449 97.7
Bayes/Dirichlet −0.576 −1.102 0.143 0.141 −0.937 94.6
Bayes/Multinomial −0.576 −1.134 0.142 0.144 1.088 95.4
Bootstrap −0.577 −1.430 0.143 0.141 −0.901 95.0

b = 0.3, Naive −0.184 76.340 0.124 0.127 2.540 0.8
θ2 = −0.777 ITPW, sandwich −0.757 2.591 0.217 0.198 −8.750 93.5

ITPW, Adj. sandwich −0.757 2.591 0.217 0.174 −19.665 90.0
quasi-Bayes −0.795 −2.325 0.230 0.284 23.717 97.0
MI −0.789 −1.540 0.229 0.236 3.258 97.7
Bayes/Dirichlet −0.755 2.888 0.207 0.191 −7.750 93.3
Bayes/Multinomial −0.754 3.021 0.204 0.200 −1.892 94.8
Bootstrap −0.759 2.398 0.206 0.195 −5.322 93.2

5. Marginal Structural Model: Simulation Study

5.1. Simulation Strategy

Algorithms for simulating outcomes from a given marginal
structural model are available (e.g., Havercroft and Didelez,
2012) and can be used to deduce the marginal parame-
ters of interest even in the presence of mediation and non-
collapsibility by appealing to standard Monte Carlo princi-
ples. Here, following Section 3.2, we do not regard marginal
structural models as data generating mechanisms as such, but
instead define θ to be a parameter of a given regression model
p(yi | z̃i, θ) fitted to an infinite sequence of observations from
a data generating mechanism characterized by the represen-
tation (5) (cf. Gelman, 2007, pp. 157–158). In the Appendix
we show that (5) is fully specified by (3). The limiting value
of θ as n → ∞ is thus fully defined by the distributions in (3)
and a given model specification p(yi | z̃i, θ), and is here taken
to be the quantity of interest. The correct marginal model is
specified by (12) in Appendix, but under mild regularity con-
ditions the limiting value if θ exists irrespective of whether
the postulated model is correct (cf. White, 1982), and can be
approximated up to arbitrary precision by simulation.

We approximate the limiting value of θ by simulating the rm

potential outcomes for each i = 1, . . . , N, N 
 n, from (3) and
fitting the marginal model to the resulting Nrm observations.
In the data generating mechanism we choose m = 3 time in-
tervals, r = 2 treatment levels, 5 covariates and n = 500. The
conditional distributions in (3) for our three interval MSM

simulation study are given in the Appendix. We considered
three different scenarios with increasing degree of confound-
ing, corresponding to b = 0, b = 0.15, and b = 0.3.

5.2. Simulation Study: Results

The fitted treatment assignment models were chosen
as logit{p(zij | z̃i(j−1), x̃ij, γj)} = γj1 + γ�

j2z̃i(j−1) + γ�
j3x̃ij and

logit{p(zij | z̃i(j−1), αj)} = αj1 + α�
j2z̃i(j−1) for j = 1, 2, 3, and

the marginal model as logit{p(yi | z̃i, θ)} = θ1 + θ2

∑3

j=1
zij.

The results over 1000 simulation rounds for several point es-
timators are presented in Table 1. In particular, we consider
(i) the naive unweighted estimator which does not account for
confounding; (ii) the typical, frequentist IPT weighted estima-
tor (“IPTW”), with the plug-in estimates (γ̂, α̂) substituted
in (1); (iii) the quasi-Bayes estimator (Hoshino, 2008) given
by the mean of the marginal quasi-posterior distribution (11);
(iv) the corresponding multiple imputation type point estima-
tor (“MI”); (v) our proposed Bayesian approach with Dirich-
let sampling (“Bayes/Dirichlet”); (vi) our proposed Bayesian
approach with Multinomial sampling (“Bayes/Multinomial”);
and (vii) the estimate based on bootstrapping the frequen-
tist IPT weighted estimator, where the treatment assignment
models are re-fitted and weights re-calculated in each boot-
strap sample. The weights in estimators (v) and (vi) were
based on MCMC samples from the posterior distributions of
γ and α, using flat improper priors for these parameters. Es-
timators (v)–(vii) were calculated from 2500 replications.
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The results show that all of the weighted estimators are
approximately unbiased, although in the second and third
scenarios the estimators (iii) and (iv) based on (11) give
slightly different results from the other estimators, both in
terms of bias and excess variability. In the last scenario,
the resampling-based point estimators (v)–(vii) show slightly
lower variability than the standard IPTW estimator (i); this
is due to the most influential observations not being present
in every resample. This suggests that when large weights are
present, resampling might be useful for improving the stabil-
ity of point estimation.

The standard approach for variance estimation of
IPTW-based estimators is the “robust”/sandwich variance
estimator, which is expected to be conservative when the
nuisance parameters are fixed to their maximum likelihood
estimates (Hernán et al., 2001, p. 444). Since the asymptotic
variance of the IPT-weighted estimator with estimated
weights (at (γ̂, α̂)) is smaller than that of the same estimator
with the true weights (at the true values of (γ, α); see, e.g.,
Henmi and Eguchi, 2004), a Taylor expansion-based correc-
tion term may be subtracted from the sandwich estimator
to account for the estimation of the weights (e.g., Robins,
Mark, and Newey, 1992). However, it is also well known that
the sandwich estimator itself is often biased downwards in
small samples (e.g., Fay and Graubard, 2001). This is more
pronounced when influential observations with large weights
are present, and thus correcting the sandwich estimator
downwards in such situations may not be sensible.

Table 1 gives also the estimated standard errors for each of
the point estimators. The 95% confidence interval coverage
probabilities correspond to normal approximation confidence
intervals calculated using the respective variance estimates,
except for the Multinomial/Dirichlet sampling and bootstrap
estimators, for which we report the sampling/posterior
distribution based confidence intervals. The results under the
second and third scenarios indicate that adjustment for esti-
mation of γ and α may indeed adversely affect the small sam-
ple properties of the sandwich variance estimator, which itself
shows underestimation when b = 0.3. The quasi-posterior
variances are not appropriate for variance estimation, and
this seems to be the case also for the multiple imputation
type variance decomposition. The Bayesian estimators do
reasonably well under all three scenarios, giving results
similar to the frequentist bootstrap. We also repeated the
simulations with n = 1000 and n = 2000 (see Supplementary
Appendix D), with the conclusions essentially unchanged.

The simulations demonstrate that the variance estimators
which rely on asymptotic approximations—the sandwich es-
timator and its adjusted version—have a tendency for under-
estimation under settings where influential observations with
large weights are present. The proposed Bayesian approach
with Dirichlet sampling seems to be less affected by the pres-
ence of influential observations.

6. ART Interruption and Liver Fibrosis in
HIV/HCV Co-Infected Individuals

6.1. Study Background

We now revisit the real data example introduced in Section
2. We update an earlier analysis of Thorpe et al. (2011), as

the cohort has since been followed up for nearly two addi-
tional years, increasing the number of outcome events from
53 to 112. Similar criteria as in Thorpe et al. (2011) were
used to select individuals into the analysis; we included co-
infected adults who were not on HCV treatment and did not
have liver fibrosis at baseline, according to the outcome def-
inition below. Individuals suspected of having spontaneously
cleared their HCV infection (based on two consecutive neg-
ative HCV viral load measurements) were excluded as they
are not considered at risk for fibrosis progression. The out-
come event was defined as aminotransferase-to-platelet ratio
index (APRI) being at least 1.5 in any subsequent visit, this
event being a surrogate marker for liver fibrosis. We included
visits where the individuals were either on ART (zij = 0) or
had interrupted therapy (zij = 1), during the 6 months before
each follow-up visit. To ensure correct temporal order in the
analyses, in the treatment assignment model all time-varying
covariates (xij), including the laboratory measurements (HIV
viral load and CD4 cell count), were lagged one visit. Follow-
up was terminated at the outcome event (yij = 1); individuals
starting HCV medication during the follow-up were censored.
These selections resulted in N = 474 individuals with at least
one follow-up visit (scheduled at every 6 months) after the
baseline visit, and 2066 follow-up visits in total (1592 exclud-
ing the baseline visits). The number of follow-up visits mi

ranged from 2 to 16 (median 4).

6.2. Analysis

Our main objectives are to compare the variance estimates
given by the alternative methods under a real setting, as
well as to demonstrate that the approach in Section 3.2
generalizes to longitudinal settings with censoring. The de-
tails on accommodating censoring to the weighting approach
of Section 3 are given in Supplementary Appendix E. In
short, in addition to the marginal and conditional treat-
ment assignment models, specified as pooled logistic regres-
sions logit{P(zij = 1 | zi(j−1), α)} = αzi(j−1) and logit{P(zij =
1 | zi(j−1), xi(j−1), γ)} = γ�(zi(j−1), xi(j−1)), j = 2, . . . , mi, we
need to estimate marginal and conditional censoring
models logit{P(cij = 1 | zij, μ)} = μzij and logit{P(cij = 1 |
zij, xij, η)} = η�(zij, xij), j = 1, . . . , mi − yimi

. The potential
confounders we considered were baseline covariates female
gender, hepatitis B surface antigen (HBsAg) test and baseline
APRI, as well as time-varying covariates age, current intra-
venous drug use (binary), current alcohol use (binary), dura-
tion of HCV infection, HIV viral load, CD4 cell count, as well
as ART interruption status at the previous visit. The condi-
tional model estimates are shown in Table 2. The maximum
stabilized visit specific cumulative weight calculated at the
MLEs (η̂, μ̂, γ̂, α̂) was only 2.95; this is due to lagged inter-
ruption being the only significant predictor of present inter-
ruption (Table 2). With little variability in the weights, the
results for the alternative estimators would be expected to
follow the pattern in the first simulation scenario.

Due to the binary outcome status determined at each
follow-up visit (as opposed to once at the end of the follow-up)
and the relatively low rate of events, we used pooled logistic
regression logit{p(yij = 1 | zij, θ)} = θ1 + θ2zij as the specifica-
tion for the MSM. Table 3 shows the estimates for the inter-
ruption effect θ2 in the marginal model and the corresponding
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Table 2
Maximum likelihood estimates from pooled logistic regression for the ART interruption exposure and censoring at end of the

follow-up in the CCC data

Current interruption Censoring

Covariate MLE SE z MLE SE z

Lagged interruption 4.616 0.333 13.853 0.039 0.256 0.151
Female gender 0.557 0.304 1.833 0.163 0.134 1.222
Log baseline APRI 0.060 0.290 0.208 −0.097 0.114 −0.852
HBsAg 0.382 0.879 0.434 0.352 0.326 1.080
Age −0.012 0.019 −0.626 0.018 0.008 2.347
CD4 cell count/100 0.001 0.052 0.029 0.035 0.018 1.909
Log HIV RNA 0.084 0.055 1.522 −0.009 0.032 −0.287
Intravenous drug use −0.148 0.310 −0.477 −0.061 0.132 −0.464
Current alcohol use 0.108 0.291 0.372 −0.078 0.119 −0.660
HCV duration 0.010 0.016 0.635 0.006 0.006 0.960

standard errors. The weights in the Bayesian estimators were
calculated from MCMC samples from the posterior distribu-
tions of (η, μ, γ, α) using flat improper priors. Multinomial,
Dirichlet and bootstrap estimates were calculated from 2500
replications. The five alternative estimates are similar, with
the exception of the MI-type estimator, which, as in the sim-
ulations, appears to overestimate the standard error. In con-
trast, the Multinomial and Dirichlet sampling standard errors
are close to the bootstrap one, without involving re-estimation
of the treatment and censoring models in each replication.

7. Discussion

In attempts to incorporate variability due to estimation of
the propensity scores or IPT weights into Bayesian inferences
of treatment effects, it has not always been recognized that
from the frequentist point of view, estimation of the nuisance
models does not add variability to the treatment effect es-
timate. In addition, standard Bayesian arguments based on
exchangeability and de Finetti representations cannot justify
outcome model specifications which are functions of the treat-
ment assignment probabilities, unless it is explicitly acknowl-
edged that the model thus specified is also misspecified. In
this article, we motivated IPT weighting through a Bayesian
decision-theoretic argument, formalizing the notion of pseudo-
population which has often been given as an intuitive explana-
tion of the function of IPT weighting (e.g., Joffe et al., 2004).

Table 3
Estimates for the marginal effect of ART interruption

(log-hazard ratio) θ2 on liver fibrosis outcome in the CCC
data. Resampling-based estimates are calculated from 2500

replications.

Estimator θ̂2 SE z

Naive 0.452 0.354 1.278
IPTW, sandwich 0.354 0.377 0.937
MI 0.316 0.529 0.597
Bayes/Dirichlet 0.366 0.375 0.976
Bayes/Multinomial 0.361 0.400 0.902
Bootstrap 0.308 0.395 0.780

We proposed a fully Bayesian approach to estimating
parameters of a marginal structural model, formulating the
causal inference problem as a Bayesian prediction problem.
Our development suggests that the IPT weights should be
fixed to values given by the posterior predictive treatment as-
signment probabilities. The estimated weights then function
as importance sampling weights in predicting the outcome in
a hypothetical population without covariate imbalances. Our
exposition should make significant steps toward resolving
the lingering question of whether and how the uncertainty
in estimation of weights should be incorporated in Bayesian
estimation of marginal treatment effects. Furthermore, our
development should motivate further research into the use
of non-parametric Bayesian regression and model selec-
tion/averaging techniques in estimation of the IPT weights.

8. Supplementary Materials

Supplementary Web Appendices, referenced in Sections 3, 4,
5, and 6, as well as the code for producing the simulation
results, are available with this paper at the Biometrics website
on Wiley Online Library.
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Appendix

I. Linking the experimental and observational repre-
sentations. We link the representations (3) and (5) to the
causal parameter θ in (6). We note first that (5) is obtained
from (3) by noting that p(zij | z̃i(j−1), αj, E) can be written as

∫
x̃ij

j∏
j′=1

p(zij′ | z̃i(j′−1), x̃ij′ , γj′ ,O)

∫
ui

I(x̃ij, ui) dui dx̃ij

∫
x̃ij

j−1∏
j′=1

p(zij′ | z̃i(j′−1), x̃ij′ , γj′ ,O)

∫
ui

I(x̃ij, ui) dui dx̃ij

,

where

I(x̃ij, ui) ≡
j∏

j′=1

p(xij′ | z̃i(j′−1), x̃i(j′−1), ui, φ2j′)p(ui | φ3).
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Now the outcome model in (6), p(yi | z̃i, θ), is specified by (5)
as ∫

x̃i,ui

p(yi | x̃i, z̃i, ui, φ1)I(x̃i, ui) dui dx̃i∫
x̃i,ui

I(x̃i, ui) dui dx̃i

, (12)

where

I(x̃i, ui) ≡
m∏

j=1

p(xij | z̃i(j−1), x̃i(j−1), ui, φ2j)p(ui | φ3).

Notably (12) does not depend on α. This is important for
the characterization of θ as a causal parameter, as the cor-
responding marginal distribution under O would depend
on γ.

II. Simulation study. We generate ui ∼ N5(0, �u), and then

1. xi1 ∼ N5(0, �x); logit{p(zi1 = 1 | xi1)} = −0.1 + b�xi1

2. xi2 | zi1, xi1, ui ∼ N5

(
xi1 − 0.75zi1 + ui,

1

16
�x

)
;

logit{p(zi2 = 1 | zi1, x̃i2)} = −0.1 + 2zi1 + b�xi2

3. xi3 | z̃i2, x̃i2, ui ∼ N5

(
xi2 − 0.75zi2 + ui,

1

16
�x

)
;

logit{p(zi3 = 1 | z̃i2, x̃i3)} = −0.1 + 2zi2 + b�xi3;

logit{p(yi = 1 | x̃i, z̃i, ui)}

= −0.1 − 0.25

3∑
j=1

zij + b�xi3 + 1�ui/5,

where b is a constant vector of length 5, and �x (�u) is a 5 × 5
covariance matrix with diagonal elements set to 1 (0.1) and
off-diagonal elements set to 0.25 (0.05).


