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Motivations:

Conference at the Foundations of Computational Mathematics in Paris
(2023) at la Sorbonne.

K. Modin and M. Perrot, Eulerian and Lagrangian stability in Zeitlin’s
model of hydrodynamics, arXiv:2305.08479, (2023).

Berezin-Toeplitz quantization: g = (C∞(S2,C), {·, ·}) remplaced by
gN = (gl(N,C), [·, ·]N) as a discretization of Euler’s equations,

ω̇ = {ψ, ω}, ∆ψ = ω, (ω, ψ) ∈ C∞
0 (S2,C) × C∞

0 (S2,C)

Ẇ = 1
ℏ

[P,W ], ∆ℏP = W , (W ,P) ∈ su(N) × su(N)

Question: Is the quantization theory a theory of discretization ?
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Axiomatization of the theory of discretization

Definition (Discretization method)
A discretization D(C1, f ) of an arrow (f : C1 → C2) is a sequence of
arrows (fn : Cn

1 → Cn
2 )n∈N producing the following diagram

C1 C2

Cn
1 Cn

2

µ

πn
1 πn

2

µn

1) πn
i : Ci → Cn

i surjective, contractive linear maps.
2) limn→∞ ∥πn

i x∥Cn
i

= ∥x∥Ci
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Structure preserving discretizations
A discretization D(f ) is faithful if:

(f is an invertible arrow) =⇒ (fn ∈ D(f ) is invertible for all n ∈ N).

Definition (Structure preserving discretization)
1) (Cn

1 , fn) ∈ ob(C) for all n ∈ N.
2) the diagram commutes asymptotically:

∥fn ◦ πn
1(x) − πn

2 ◦ f (x)∥ −→ 0 as n → ∞ and for all x ∈ C1

Definition (Strongly structure preserving discretization)
1) (Cn

1 , fn) ∈ ob(C) for all n ∈ N.
2) the diagram commutes for all n ∈ N;
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Non-example: Euler’s method
Consider the right-shift map on Cn

S : Cn → Cn S(y1, y2, . . . , yn) = (yn, y1, y2, . . . , yn−1)

and define the family Euler operators by

En = n
2π (S − 1)

Moreover, we define the maps

πn : C∞(S1) → Hom(Xn,Cn) πn(f ) = (f (x1), f (x2), · · · , f (xn)).

Consider now the differential operator

d
dθ : C∞(S1) → C∞(S1) f 7→ df

dθ

such that (C∞(S1), d
dθ ) is an object of the category of differential algebra
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Non-example: Euler’s method

We can now look at the Euler discretization method of the pair
(C∞(S1), d

dθ ) defined by the following diagram:

C∞(S1) C∞(S1)

Hom(Xn,Cn) Hom(Xn,Cn)

d
dθ

πn πn

En

We readily verify

lim
n→∞

∥πn(f )∥∞ = ∥f ∥∞ and ∥En ◦ πn(f ) − πn ◦ d
dθ (f )∥ −→ 0

and thus, the Euler method defines a discretization. However, this is not
the case since the pair (Hom(Xn,Cn),En) does not define a differential
algebra since En does not satisfy the Leibniz rule.
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Convergence
The graph of an arrow f , denoted Gr(f ), is defined as the subset of
C1 × C2 such that

Gr(f ) = {(x , y) ∈ C1 × C2 : y = f (x)}

We denote by pi : Gr(f ) → Ci for i = 1, 2 the obvious coordinate
projections.

Definition
Consider a discretization D(f ) of an arrow f . We say that D(f ) is
convergent if to any of the projection maps πn

i : Ci → Cn
i , we can

associate an injective contractive linear map sn
i : Cn

i → Ci such that

lim
n→+∞

∥x − sn
i ◦ πn

i (x)∥ = 0, for all x ∈ pi(Gr(f )), and for i = 1, 2.

The maps sn
i will be called section map.
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Example: Finite Element Exterior Calculus

The framework of the finite element exterior calculus is given by the L2-de
Rham complex, represented by the following complex

0 → HΛ0(Ω) d−→ HΛ1(Ω) d−→ · · · d−→ HΛn(Ω) → 0

where Ω ⊆ Rn is a Lipschitz domain. In order to give a numerical
approximation of a PDE, the method builds a finite-dimensional
subcomplex

0 → Λ1
ℏ(Ω) d−→ · · · d−→ Λn

ℏ(Ω) → 0

of the de Rham complex.
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Example: Finite Element Exterior Calculus

In order to construct this subcomplex, there exists morphism πℏ projecting
the de Rham complex down to the appropriate subcomplex; so that each
map πℏk : HΛk → Λk

ℏ is a projection onto the subspace Λk
ℏ . This morphism

defines induces the following commuting diagram

HΛk HΛk+1

Λk
ℏ Λk+1

ℏ

d

πℏ
k πℏ

k

d

Theorem
The Finite Element Exterior Calculus is a strongly structure preserving
discretization.
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Example: Diffeomorphism groups
Fix a diffeomorphism ψ, in order to present a structure preserving
discretization of the pair (C∞(X ), ψ̂) (it as an object of the category of
*-algebra dynamical system). Therefore, following the definition, a faithful
structure preserving discretization is the following commuting diagram

C∞(X ) C∞(X )

AN AN

ψ̂

πn πn

ψ̂N

Theorem
For any diffeomorphism ψ ∈ Diff(X ), there exists a faithful structure
preserving discretization of D(C∞(X ), ψ̂). In addition, the discretization
does not depend on the choice of ψ.
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Example: Diffeomorphism groups
Theorem
Let (AN , ψ̂N) be a structure preserving discretization of (C∞(X ), ψ).

i) D(Diff(X )) = GLN(C).
ii) D(Diffω(X )) = SLN(C).
iii) D(Diff+

0 (X )) = SON(C).
iv) D(Diffm(X )) = GLst

N(C).

The pullback representation

Diff(X ) → Der(C∞(X )) ψ 7→ ψ∗

can be thought as a Lie group anti-isomorphism. Differentiating it at the
identity ψ = id gives a linear map

Vect(X ) → Der(C∞(X )) X 7→ LX
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Example: Derivations
Consider a derivation δ : A → A on a *-algebra. A structure preserving
discretization is given by the following commuting diagram:

A A

An An

δ

πn πn

δn

Theorem
If An is isomorphic to a matrix algebra then there exists a self-adjoint
element Dn such that

dn(a) = [Dn, a]

In addition, if the discretization (An, dn) is structure preserving, then

lim
n→∞

∥πn ◦ d(a) − [Dn, π
n(a)] ∥ = 0
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Example: Derivations

Q: Existence of such discretization ?

Definition
A linear operator D on a Hilbert space H is called block diagonal,
respectively quasidiagonal), if there exists an increasing sequence of finite
rank projections, P1 ≤ P2 ≤ P3 ≤ · · · such
∥[D,Pn]∥ = ∥DPn − PnD∥ = 0, respectively → 0 for all n ∈ N and
Pn → 1H (in the strong operator topology) as n → ∞.

The surjection maps are given by πn(a) := PnaPn

πnδ(a) = δπn(a) ⇐⇒ Pn[D, a]P = [PnDPn,PnaPn]

An example of projectors P is given by the spectral projectors of D = D∗.
The discrete geometry can then be summarized by the data:
(PnAPn,Hn,PnDPn)
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Example: The Berezin-Toeplitz Quantization
Let (M, ω) be a compact Kähler manifold.

H =
⊕
m

(H(m), ⟨·, ·⟩m), H(m) = Γhol(M, Lm), Π(m) : H → H(m)

For f ∈ C∞(M) the Toeplitz operator T (m)
f (of level m) is defined by

T (m)
f := Π(m)f Π(m) : H(m) → H(m)

Theorem (Bordemann, Meinrenken, Schlichenmaier)

For all functions f , g ∈ C∞(M), we have

(a) lim
n→∞

∥T (m)
f ∥ = ∥f ∥∞

(b) ∥im[T (m)
f ,T (m)

g ] − T (m)
{f ,g}∥ = O(m−1)
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Example: The Berezin-Toeplitz Quantization

Theorem
The Berezin-Toeplitz quantization induces a structure preserving
discretization of the differential algebra (C∞(M),D) given by the
following commuting diagram

C∞(M) C∞(M)

End(Hm) End(Hm)

D

T (m) T (m)

dm

(1)

where the differential dm is given by the following commutator:

A 7→ dm(A) = [Dm,A], Dm :=
d∑

k=1
∂k

m :=
d∑

k=1
Π(m)X kΠ(m) (2)
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Noncommutative Laplace operator
Assume that X 1, . . . ,Xn are isometric embedding (Nash’s embedding)
coordinates of a compact Kähler M. The Bochner-Laplace operator can
be writtenn as:

∆φ =
n∑

k=1
{X k , {X k , φ}}

After applying the Berezin-Toeplitz projection, we get:

Tm(∆φ) = −m2[Tm(X k), [Tm(X k),Tm(φ)]] = ∆mΦm

Theorem
The discrete Bochner-Laplace operator

∆̃m : C∞(M) → C∞(M), ∆̃m(f ) = σ(m) ◦ ∆m ◦ T (m)

is a self-adjoint operator on (Hm, < ·, · >m) with discrete spectrum.

D. Tageddine Structure preserving discretizations IRL-CRM 2024 16 / 22



Convergence and Stability

Theorem
The discrete Bochner-Laplace operator ∆̃m converges in the strong-graph
limit sense to the Bochner-Lapalce operator ∆:

sgr − lim ∆̃m = ∆ (3)

Theorem (No spurious eigenvalues)
Let An (n ∈ N) and A be (unbounded) self-adjoint operators and assume
that D(A) = D(An). Assume, furthermore, that there are null-sequences
(an) and (bn) from R for which

∥(A − An)f ∥ ≤ an∥f ∥ + bn∥Af ∥ for all f ∈ D(A). (4)

Then σ(A) = limn→∞ σ(An).
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Convergence and Stability

Proof.
On one hand, using structure preserving we have

∥∆(φ) − σ(m) ◦ ∆m ◦ T (m)(φ)∥∞

≤ ∥∆(φ) − σ(m) ◦ T (m)(∆(φ))∥∞

+ ∥σ(m) ◦ T (m)(∆(φ)) − σ(m) ◦ ∆m ◦ T (m)(φ)∥∞ ≤ am∥∆(φ)∥∞

and on the other hand, using Sobolev’s embedding

∥∆(φ) − σ(m) ◦ ∆m ◦ T (m)(φ)∥2 ≤ am∥φ∥Hk

D. Tageddine Structure preserving discretizations IRL-CRM 2024 18 / 22



Conclusion
We can summarize our understanding of structure preserving
discretizations as follows:

▶ Structure preserving discretizations is a property of commuting
diagram.

▶ The C∗-algebras appear to be the right framework to construct such
projections.

▶ The derived geometry is a noncommutative geometry.
▶ Stability is proven in the case of the Laplace operator.

Remaining open questions:

▶ Find a necessary and sufficient condition for the existence of
(strongly) structure preserving projectors.

▶ Effective algorithm to construct such basis.
▶ Stability in all generality.
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Thank You !
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