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Abstract. In this paper, we introduce the standard definitions for subgraphs,
connected subgraphs, degree distributions, giant connected components, cliques,

diameter, and typical distance of a random graph. We introduce the relevance

of network theory in modern application and discuss the structures of the
Erdős–Rényi random graph model and both the Non-preferential and Prefer-

ential Attachment models (NPA, PA). In this overview, we discuss bounds for

the expected number of cliques of size k for G(n, p) and consider the phase
transition and diameter of ERn(p(n)) for small p. Finally, we discuss heuristics

and conjectures made about the NPA and PA models.
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1. Introduction and Preliminaries

Many real-world social and hierarchical networks are based on irregular behavior
and random processes, in terms of establishing connections between like individuals
and objects. Network theory is a field of combinatorics that studies the behavior
of such random network models, with the hope that mathematical intuitions and
insights made in this paper will relate to the underlying nature of social interactions
in general.

First, we shall go through notation and definitions used frequently in this essay.
We denote a finite graph as G = (V,E), where V = [n] = {1, 2, 3, ..., n} are the
vertices and E = {{i, j} : i, j ∈ V } is the edge set of the graph G. We will use
i, j and ei,j interchangeably in the paper. In particular, we write G(n,m) to be a
graph selected uniformly at random from the set of all graphs containing n vertices
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and m edges. The degree of node i is defined as follows:

degG(u) = deg(u) = |{v ∈ V : {u, v} ∈ E}|

For each vertex i ∈ V , we write the degree of i as di, or as di(t) if we want to
emphasize the degree at time t. The distance between two vertices u and v is
written as distG(u, v) and denotes the length of the shortest path between them.
We’ll be interested in typical distances of a random graph model, a measure of a
random graph’s expected distance. We define the diameter of G to be the “longest
distance between any two vertices in G” i.e.

diam(G) = max
u,v∈[n]

distG(u, v)

Here are some more important terms in graph and network theory used through-
out the essay:

• A graph G is complete if every two vertices in G are adjacent.
• A subgraph of G = (V,E) is a graph whose vertex and edge sets are subsets

of V and E.
• A clique of a graph G is a complete subgraph of G.
• A connected component of a graph G is a subgraph of G in which each vertex

of the component is connected to another vertex within the component.
• A giant (connected) component of G is a large connected component of a

random graph.

We will also be using asymptotic notation to denote certain bounds of a variable
as a function of the size of the graph n, such as Θ(n), O(n), and Ω(n).

Throughout the paper, we will analyze the behavior of a few famous random
graph models and derive certain probabilistic properties that they have. For ex-
ample, we will consider the following kinds of questions that are important when
discussing a random graph model:

• What are the expected number of edges?
• What is the degree distribution of the random graph? What is the expected

degree of a randomly selected vertex?
• What is the expected number of a certain subgraph in the graph? Largest

expected clique in the random graph?
• Is there a GC in the random graph?
• What is the expected diameter of the random graph?

2. Erdős–Rényi Random Graph Model

2.1. Degree distribution.

Definition 2.1. Erdős–Rényi graphs, written as G(n, p), are randomly-generated
graphs of n vertices such that between each pair of vertices i, j, there is a fixed
probability p that an edge forms between i and j, independently from all other
edges. This parameter p is called the edge probability (p is defined in G(n, p))
[2].

Consider G(n, p), where p = P(i → j). First, let us answer the question about
the average degree of a node in G(n, p). Suppose we observed a graph G ∼ G(n, p).
Let random variables Xi = di = deg(i) from i = 1, 2, ..., n with the support SXi

=
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{0, 1, 2, 3, ..., n−1} defined by the possible degrees that node i could take on. Thus,
we have that the r.v. Xi ∼ Bin(n− 1, p) for each i ∈ [n], where,

P(Xj = i) =

(
n− 1

i

)
pi(1− p)n−1−i =⇒ E(Xi) = (n− 1)p

Since we can write the total node degree as the r.v. Y =
∑n
i=1Xi, we have that

E(Y ) = E(

n∑
i=1

Xi) = n(n− 1)p

Thus, the expected average degree of the nodes in G(n, p) is (n − 1)p. To find
the expected number of edges in G(n, p), note that each the existence of an edge
accounts for a 1-degree increase in each of its vertices. Thus, we have that the

expected number of edgesX is exactly half of the total degree, i.e. E(X) = n(n−1)
2 =(

n
2

)
p = Θ(n2).

2.2. Complete Subgraphs of G(n, p). Similarly as before, we can derive a general
formula for the expected number of complete subgraphs of size l for some l ∈ N.
For example, consider finding the expected number of cliques of size 3. Let r.v.
T =

∑
i,j,k Tijk be the total number of cliques of size 3, where

Tijk =

{
1 eij , ejk, eki ∈ V
0 otherwise

Since each edge attaches independently, E(Tijk) = p3. Therefore, the expected
number of cliques of size 3 will be

E(T ) = E

 ∑
i,j,k∈[n]

Tijk

 =

(
n

3

)
E(Tijk) =

(
n

3

)
p3

In general, we have that the expected number of complete subgraphs Kl in G(n, p)

will be
(
n
l

)
p(

l
2).

Similarly, we can find the expected number of non-edges that may appear; in
other words, we can find the expected number of l-empty sets of vertices in G(n, p),
which are subgroups of l vertices in which none are connected, using a similar
approach. Instead of applying p, we use (1 − p) applied

(
l
2

)
times. Thus, we also

have that the expected number of l-empty sets of vertices in G(n, p) is
(
n
l

)
(1−p)(

l
2).

Besides the results listed above, we can find even more intriguing properties of
G(n, p). Instead of asking what the expected number of cliques of size l are in an
ER graphs, we could consider how large the parameter l needs to be in order to
observe approximately one fully connected subgraph. In order words,

Question 2.2. For fixed n, p, find l ∈ N such that

E(# of subgraphs Kl) =

(
n

l

)
p(

l
2) ≈ 1, for some l ∈ N

.

Lemma 2.3. Proof based on results of [1]. For fixed n, l ∈ Z+(n
l

)l
≤
(
n

l

)
≤
(ne
l

)l
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Proof. We can write the left-hand inequality as(
n

l

)
=
n

l
· n− 1

l − 1
· ... · n− (l + 1)

1
≥
(n
l

)l
.
For the right inequality, we’ll use Stirling’s approximation, which states that for
asymptotically large n, n! ∼

√
2πn(ne )n. Using this approximation for factorials,

we can write the right-hand inequality as(
n

l

)
≤ nl

l!
≈ nl√

2πl( le )l
≤
(ne
l

)l
. �

Using these approximations, we can find asymptotic bounds for l; since
(
l
2

)
≤ l2

4 ,

1 ≈
(
n

l

)
p(

l
2) ≥

(
n

l

)
p

l2

4 ≥
(n
l

)l
ql

2

, where q = pl/2

1 ≥
{(n

l

)l
(ql)l

}1/l

=⇒ l ≥ nql = np
l
4

We can write l as l(n), since l is dependent on n and substitute p
l
2 back into

the expression. After taking the log of both sides of the inequality, (log(x) is
monotonically increasing over R+), we get that:

log(l(n)) ≥ log(n) +
l(n)

4
log(p)

l(n)

4
≤ log(l(n))

log(p)
− log(n)

log(p)

Therefore, it is clear that l(n) is bounded by log(n), i.e.

(2.4) l(n) = O(log(n))

Similarly we can derive an asymptotic lower bound for l(n) using Stirling’s approx-
imation from Lemma 3.3 ;(

l

2

)
≤
(
l · e
2

)2

=
e2

4
(by Lemma 3.3)

1 ≈
(
n

l

)
p(

l
2) ≤ (ne)l

ll
ql

2

, where q = p
e2

4 =⇒ l ≤ neql

(2.5) l(n) = Ω(log(n))

By equations (3.4) and (3.5), we have shown that for fixed n, p in G(n, p),

l(n) = Θ(log(n))

where l(n) = size of the largest clique in G(n, p). Thus the largest “set” of individ-
ual nodes within an Erdős–Rényi random graph model, for fixed edge probability
p, grows proportionately to the log of the graph’s size.
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2.3. Sparse Graphs and Phase Transitions. In the previous sections, we con-
sidered G(n, p) for fixed parameter p. When varying the parameter p, it makes
sense that the density of the random graph should change: for example, when
p = 0, the graph is empty and when p = 1, the graph is complete (every edge exists
with certainty). Does there exist some critical p ∈ [0, 1] such that the “structure”
of G(n, p) changes from sparse to dense? When a network changes its structure, it
is called a phase transition of the network. We will call the probability necessary
to observe this change the critical probability pc. Note that when there is a phase
transition, a large fraction of vertices belong to the giant component of the network.
Before we calculate pc, we need to mention sparse graphs.

Definition 2.6. A sparse graph of G(n, p) is a regime of G(n, p) where we have p→
0, n → ∞, such that np → λ ∈ R [2]. In such regimes, the degree distribution of
G(n, p) will converge in distribution from a binomial to a Poisson random variable:

P(di = k) ∼ Binom(n− 1, p)
n→∞−−−−→
p→0

Pois(λ)

Let γ = the fraction of vertices in G(n, p) belonging to the GC of G(n, p).
Consider the event [v /∈ GC] for some vertex v, and let’s make the assumption that
γ ≈ P(v /∈ GC) and that we are under a sparse regime. Then, using the Law of
Total Probability,

γ = P(v /∈ GC) =

n∑
i=0

P(dv = i)P(v /∈ GC|dv = i)

=

∞∑
i=0

e−λλi

i!
γi

= e−λeλγ = 1− eλ(γ−1)

Thus, the number fraction of nodes belonging to GC ρ = 1 − γ can be written as
the following:

ρ = 1− eλ(γ−1) = 1− eλρ

Looking closely at this equation, we can see that for λ < 1, solutions exist. For
λ ≤ 1, the equation has 0 solutions for all s. In particular, for λ = 1, we have no
solutions, yet for λ = 1 + ε, solutions exist: Therefore, we can write our critical
lambda λc = 1 = npc =⇒ pc = 1

n .

2.4. Diameter of G(n, p). Consider a graph G ∼ G(n, p(n)) under the aforemen-
tioned sparse regime. We want to show that under a sparse regime, the diameter
of an ER random graph approaches 0 for large enough n. In other words, we want
to make the following proposition:

Proposition 2.7.

P(dist(i, j) > 2)→ 0 as n→∞
Furthermore,

P

⋃
i,j

dist(i, j) > 2

→ 0

Proof. For each k ∈ [n], k 6= i, j, let rvXk = 1 if ei,k, ek,j ∈ V andXk = 0 otherwise,
(Xk indicates when vertices i, j are connected by a path of length 2 through k). By
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definition ofG(n, p), we know that observing 2 arbitrary connections has probability
p2, so

P(Xk = 0) = 1− p2

P

(⋂
k

Xk = 0

)
= (1− p2)n−2

Thus, we can now define the probability that distance between two nodes exceeds
2 and consider G(n, p) as n→∞:

P{dist(i, j) > 2} = P(i 6→ j) · P

(⋂
k

Xk = 0

)
= (1− p)(1− p2)n−2 ≈ αn, α < 1

P

⋃
i,j

dist(i, j) > 2

 ≤ ∑
i,j∈[n]

P{d(i, j) > 2} =

(
n

2

)
αn ≈ n2αn → 0, α < 1

Which holds for fixed p. �

If p(n)→ 0 (sparse random graph), we can write P(dist(i, j) > 2) as

P(dist(i, j) > 2) = (1− p)2(1− p2)n−2 =

{
(1− p)

(1− p2)2

}
(1− p2)n

p�1
≈ (1− p2)n

We’ll make the assumption that if p(n) → 0, p2 ' r
n for some r � n. Then, we

know that

(1− p2)n → (1− r

n
)n →

n→∞
e−r

We now ask the following question: for what regime of the ER random graph
does the probability approach 1? In other words, we ask for which values of p(n)
allow our graph G to have, with probability ≈ 1, the diam(G) > 2? If the event
{diam(G) > 2} occurs for graph G ∼ G(n, p), surely we know that the event{⋃

i,j dist(i, j) > 2
}

must also occur. Thus, we have the following:

1 ≈ P

⋃
i,j

dist(i, j) > 2

 ≤ ∑
i,j∈[n]

P{d(i, j) > 2} ≤ n2(1− p(n)2)n −→
n→∞ p→0

n2e−p
2n

lim
n→∞

n2e−p
2n = 1

=⇒ lim
n→∞

log(n2e−p
2n) = lim

n→∞
(2 log(n)− p2n) = log(1) = 0

=⇒ lim
n→∞

(
2 log(n)

p2n

)
= 1

In summary, we have that for large n, p2n ≈ 2log(n), meaning asymptotically,

p2 = Θ

(
log(n)

n

)
In general, we have found the following rule: if p2 = Θ

(
log(n)
n

)
, then indeed, the

diameter of G ∼ G(n, p) is almost surely greater than 2. Otherwise, the diameter
of G will be ≤ 2 or potentially infinite if p(n) quickly goes to 0. We have bounded
the thresh-hold for our edge parameter p(n).
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3. Introduction to the Non-Preferential Attachment Model

The Non-Preferential Attachment Model (NPA) is a more interesting abstraction
of a randomly-generated graph; in order to model networks growing and evolving
with time, such as social networks and citation networks, we have to create a
random graph model that grows with time. These kinds of random graph models
are called stochastic growth models.

Definition 3.1. The NPA model starts with a fully-connected graph of K ver-
tices, for some k ∈ N. At time t = 0, we create the fully-connected subgraph of size
k. At time t = 1, 2, 3, ..., a new vertex is introduced to the graph that can make at
most k edges with the present vertices; in other words, the i-th introduced vertex
has an initial degree of k at time (di(i) = k). Lastly, for each vertex introduced to
the graph, it will form k edges uniformly at random with the remaining nodes of a
graph i.e.

P(i→ j) =
1

K + t− 1
(t = 1, 2, 3, 4, ...)

Consider the simplest example where K = 1. Then, it is clear that the expected
degree of the first node introduced di(t) will be

E(d1(t)) = 1 +
1

2
+

1

3
+

1

4
+ ...+

1

t
=

t∑
i=1

1

i
≈ log(t)

Similarly, if we start at time t = i, then the expected degree of the i-th node
introduced will have a similar value to the first vertex, only shifted slightly:

E(di(t)) = 1 +
1

i+ 1
+

1

i+ 2
+ ...+

1

t
→ log(t)−

(
1

2
+

1

3
+ ...+

1

i

)
→ log

(
t

i

)
If we instead consider NPA model for some general K, k, then in a similar way, for
the i-th node introduced to the network,

E(di(t)) = k+ k · 1

i+K
+ k · 1

K + i+ 1
+ ...+ k · 1

K + t− 1

t�K−→ k

(
1 + log

(
t

i

))
Conjecture 3.2. Although not proven, we can try to give an argument as to what
the typical distance of the NPA model could be. For our simplistic model with K = 1,
suppose we take our assumption from before that di(t) = O(log

(
t
i

)
). If we take a

fixed vertex a, and make the assumption that there is a connection from vertex a to
vertex ≈ a

2 , then E(dist(0, a)) ≈ log(a). This means that in the worst case scenario,
such a model would have an expected diameter of about 2 log(n), since we have 2
different paths of length approximately log(n) between the furthest vertices. [3]

This concludes the section on the Non-Preferential Attachment model. In the
future, we hope to do further research into the Preferential Attachment model and
understand the nature of its diameter and typical distance. A comparison between
the simpler non-preferential model and the more complex preferential attachment
model would make for a very interesting research topic. Finally, research on the
configuration model and its possible centrality measures would be a worthwhile
topic to investigate.
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