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1 Preliminaries

1.1 Differential Geometry

All definitions, theorems, and propositions are taken from [Aub98] and [Heb97].

Definition 1.1 (Manifolds). Let n € N. A manifold M of dimension n is a Haussdorff topological
space where at every point p € M, there exists an open neighbourhood U of p and a homeomorphism
¢ : U — ¢(U) such that p(U) C R" is open.

Definition 1.2 (Charts). Let M be a manifold of dimension n. A local chart (U, ¢) on M consists
of an open set U C M and a homeomorphism ¢ : U — ¢(U) such that ¢(U) C R™ is open. The

homeomorphism ¢ defines a local coordinate system (z!,z2, ..., 2") of U.

Definition 1.3 (Transition Maps). Let M be a manifold, and let (U,, @) and (Ug, ¢g) be two
local charts such that U, NUpg # (). The transition map 748 : ¢a(UaNUg) — ¢p(UaNUp) is defined
by:

TaB = P30 05" (1.1)

Note that 7,3 is a homeomorphism since both ¢, and g are homeomorphisms.

Definition 1.4 (Atlases). Let M be a manifold. An atlas A is a collection of local charts
{(Ui, ¢i) }ier such that:

Uvi=m (1.2)

i€l

Let 0 < k < 0o be some integer. We say that A is C* if each transition map between any two local
charts in A is CF.

Definition 1.5 (Differentiable Manifolds). Let M be a manifold, and let A; and Ay be two C*
atlases on M. The two atlases are equivalent if their union is also a C* atlas. We say that M
is a C* differentiable manifold when it is paired with an equivalence class of C* atlases. Unless
otherwise stated, we will assume that M is C*°.

Definition 1.6 (Differentiable Functions). Let M and N be C* differentiable manifolds of dimen-
sions m and n respectively, let p € M, and let (U, ¢) be a local chart of pon M. Let f : U — N be a
map, let (V, 1) be a local chart of f(p) on N, and let r < k. The function f is C" (M) differentiable
at p if the function 1 o f o o~1 : R™ — R™ is C"(R™) differentiable at (p) € R™.



Definition 1.7 (Partial Derivatives). Let M be a manifold of dimension n, and let p € M. Let
(', 22, ...,2") be a local coordinate system at p, and let (y',y?,...,™) be the natural coordinate
system of R™ at ¢(p). The partial derivatives of a C°°(M) function f: M — R at p are defined to

be:
of | _0(fop™)

dz'|, oyt

(1.3)

©(p)
foreach i =1,2,...,n.

Definition 1.8 (Tangent Vectors). Let M be a manifold, and let p € M. Let F, be the set of all
real-valued functions that are differentiable in a neighbourhood of p. A tangent vector at p is a
linear map X, : F, — R satisfying:

o Xy(af +8g) =aX,(f)+ BXp(g) forall o, B e R and f, g € Fp
e X, (f) =0 if the gradient of f € F, is zero at p.

o Xp(fg) = f(p)Xp(9) + 9(p)Xp(f)

Definition 1.9 (Tangent Spaces). Let M be a manifold, and let p € M. The tangent space T),(M)
at p is the set of all tangent vectors to the manifold at p. The tangent bundle T'(M) is the disjoint
union of all tangent spaces at a point p € M:

T(M) = | | T,(M) (1.4)
peEM

Definition 1.10 (Cotangent Spaces). Let M be a manifold, and let p € M. The cotangent space
T;(M ) at p is the set of all linear functionals oy, : T,(M) — R. In other words, it is the dual space
of the tangent space Tp,(M):

T, (M) = (T(M))* (1.5)
The cotangent bundle 7*(M) is the disjoint union of all cotangent spaces at a point p € M:

(M) = | | Ty (M) (1.6)
peEM

Proposition 1.1 (Canonical Basis for T,,(M)). Let M be a manifold of dimension n, and let
p € M. If (z%,22,...,2") is a local coordinate system at p, then the set of partial derivatives
{8/8xi}p}i C Tp(M) forms a basis of T,,(M). Furthermore, for all tangent vectors X, € T,,(M), we
may write:

n
. 0
Xy =3 (L.7)
; x
=1 p
where (X,)" = X,(z') € R is the i-th component of X,, in local coordinates.
In Einstein summation notation, we may write:
X, = (%) 4 (1.9
p = Ap) 5 ) :




Proposition 1.2 (Canonical Basis for T;(M)). Let M be a manifold of dimension n, and let
p € M. If (z',22,...,2") is a local coordinate system at p, then the set of coordinate differentials
{(d2")p}s C T (M) forms a basis of T*(M). The differentials are uniquely defined by:

(da'), ((;ij ) oy (1.9)

Furthermore, for all linear functionals oy, € T);(M), we may write in Einstein summation notation:

ap = fi(p) (dmi)p (1.10)

where each f; : M — R is a smooth function.

where 0 is the Kronecker delta.

Definition 1.11 (Projection Maps). Let M be a manifold. The projection map II : T'(M) — M
associated with the fiber bundle over M is defined by:

M(X,) = p (1.11)
where X, € T,,(M) for some p € M.
Definition 1.12 (Vector Fields). Let M be a manifold. A vector field X on M is an assignment

of a tangent vector to each point in M. Formally, X is a mapping from M into T'(M) such that
ITo X : M — M is the identity map. We say that a vector field is a section of T'(M).

Let (U, ) be a local chart of M, and let (2!, 22, ..., 2™) be a local coordinate system of U. In the
canonical basis, we may write:

;0
X_Xami

(1.12)

We denote by I'(M) the space of smooth vector fields on M.

Definition 1.13 (Differential Forms). Let M be a manifold of dimension n. A 1-form a on M is
a mapping from T'(M) to R whose restriction to each tangent space T),(M) is a linear functional
o, on the tangent space. We say that a 1-form is a section of T*(M). Furthermore, a k-form w on
M is a section of \* T*(M) for k < n.

Let (U, ) be a local chart of M, and let (x!, 22, ..., 2™) be a local coordinate system of U. In the
canonical basis, we may write:

n
W= Z fivio...in dz’t Adz® A ... A dzt (1.13)
11 <t2<...<ig

where each f; 4,4, : M — R is a smooth function and each dx% is a differential 1-form correspond-
ing to a coordinate differential. The symbol A denotes the antisymmetric exterior product.

We denote by A*(M) the space of smooth k-forms on M.

Definition 1.14 (Lie Bracket). Let M be a manifold, let X, Y € I'(M) be two vector fields, and
let f: M — R be a C®(M) function. The Lie bracket of X and Y is also a smooth vector field
defined by:

(X, Y](f) = XY (f)) = Y(X(F)) (1.14)



Definition 1.15 (Riemannian Metrics). Let M be a manifold. A Riemannian metric g on M
assigns to each point p € M a positive definite, bilinear, symmetric form g, : T,(M) x T,,(M) — R.
In other words, for all X,,, Y, € T,,(M):

9p(Xp, V) = g(Yp, Xp) 9p(Xp, X,) > 0 for X, # 0 (1.15)

Let U be an open neighbourhood of p € M. For all smooth vectors fields X, Y in U C M, the
following function is a smooth, real-valued function of p:
9(X,Y)(p) = gp(Xp, ¥p) (1.16)

Definition 1.16 (Riemannian Manifolds). Let M be a manifold, and let g be a Riemannian metric.
The pair (M, g) is a Riemannian manifold. Unless otherwise stated, we will assume that (M, g) is

cee.

Definition 1.17 (Connections). Let M be a manifold. A connection on M is a map D : T(M) x
I'(M) — T(M) such that:

e Forall p € M, if X € T,(M) and Y € T(M), then D(X,Y) € T,(M).

e For all p € M, the restriction of D to T),(M) x I'(M) is bilinear.

e Forallp e M, for all X € T,(M), and for all Y € T'(M), if f: M — R is differentiable, then:
DX, fY) = X()Y (p) + f(p)D(X,Y) (1.17)

e For all X,Y € I'(M), if X € C¥(M) and Y € C*1(M), then D(X,Y) € C*¥(M), where
D(X,Y) is a vector field on M defined for all p € M by:

D(X,Y)(p) = D(X(p),Y) (1.18)
We often write DxY rather than D(X,Y") and call DxY the covariant derivative of Y with respect

to X for some fixed Y € I'(M). We may also extend the definition of the covariant derivative to
real-valued functions, 1-forms, and general tensors.

First, let X € T,(M), and let f € F,. The covariant derivative of f with respect to X is given by:
Dx f=X(f) (1.19)

Now, let X € T,,(M), and let @ € A(M). The covariant derivative of a with respect to X is given
by the unique 1-form which satisfies the following identity for all Y € T},(M):

(Dxa)(Y) = Dx(a(Y)) — a(DxY) (1.20)

Finally, let X € T,,(M), and let T € @" T'(M) @ A(M) be a tensor of rank (r,s). The covariant
derivative of T" with respect to X extends naturally from the above definitions when combined with
the following identity:

Dx(VeW)=(DxV)W +V g (DxW) (1.21)

where V and W are tensors of arbitrary rank.



Definition 1.18 (Christoffel Symbols). Let M be a manifold of dimension n, and let p € M. Let

(', 22, ...,2") be a local coordinate system at p. In this coordinate system, we denote:

ViX =D,

daxt

>X (1.22)
foreachi=1,2,...,n

Let (U, ) be the corresponding local chart of p on M. In this local chart, the Christoffel symbols
of this connection D are the C*°(M) functions I‘fj : U — R defined by:

Vi (52) @0 =5 | (1.23)

for all points ¢ € U. This specifies the covariant derivative of the canonical basis vector field 9/027
along the basis vector field 9/9z".

Proposition 1.3 (Basis Representation of the Covariant Derivative). Let M be a manifold of
dimension n, and let p € M. Let (U, ) be the corresponding local chart of p on M, and let

(x',22,...,2™) be a local coordinate system on U.

Let X € T,(M), let Y € I'(U), and let o € A(U). In the canonical basis, we may write:

0 Y:Yia

X = X' = :
oz’ » oz’

= o, (do'), (1.24)

Then the k-th component of the covariant derivative of Y with respect to X is given by:

(DxY)* = X' (VY [,)" (1.25)
k
=W<gi+%@W@> (1.26)
p

The k-th component of the covariant derivative of a with respect to X is given by:

(Dxa)r = X (Vial,)k (1.27)

—F<$f—%@%@> (1.28)

And each component of the covariant derivative of an arbitrary tensor 7' of rank (r, s) with respect
to X is given by:

(D T)Jzsdr = X (VT )it (1.29)
15+ JT
— X (aTkla ) Z 1‘\ .]]CI7~~~a.7];mflyyajm+la~-,jr
axl 1,--+5Rs

_ E ]17~~~1j7‘
FZ km p k1yeooskm—1,0km+1 »~~~7k‘s) (130)

where the index v is also implicitly summed over.




Proposition 1.4 (Levi-Civita Connection). Let (M, g) be a Riemannian manifold of dimension n,
and let (U, ) be a local chart of M. If (z!,22,...,2") is a local coordinate system of (U, ¢), then
there exists a unique connection V on M such that Ffj = F;?Z- and for which the covariant derivative
of the metric tensor is identically zero:

Vigi; = Vigixr = Vjigik =0 (1.31)

In the coordinates of (U, ¢), the components of the Christoffel symbols of this connection are given
by:

1 (0gje  Ogie  O0gij
rk — = 2! LY 1.32
i 2<8x2+8x3 ozt )7 (1.32)

where [g;;] denotes the matrix representation of the metric g in local coordinates and [¢¥/] denotes
its inverse.

Definition 1.19 (Riemann Curvature Tensor). Let (M, g) be a Riemannian manifold, and let
(U, ¢) be a local chart of M. The Riemann curvature tensor is a map R : I'(M) x I'(M) — I'(M)
defined by:

R(X,Y)=[Vx,Vy] = Vixy (1.33)

In the coordinates of (U, ¢), we have that, for Z € I'(M):

R'yij 2% = ViV 2° — ;v 2 (1.34)

It can also be shown that the components of the curvature tensor are given by:

Definition 1.20 (Ricci Tensor and Scalar Curvature). Let (M, ¢g) be a Riemannian manifold, and
let (U, ) be a local chart of M. From the curvature tensor, the Ricci tensor is the only non-zero
tensor (up to a sign difference) obtained by contraction. In the coordinates of (U, ¢), its components
are given by:

Rij = RFy,; (1.36)

The Ricci tensor is symmetric, and its contraction R = g%/ R;; is called the scalar curvature.

Definition 1.21 (Jacobians). Let M be a manifold of dimension n, and let (U,, ¢o) and (Ug, ¢3)
be two charts of an atlas A such that U, N Ug # 0. Denote by (z!,22%,...,2™) the coordinates
corresponding to (Ua, o) and by (y!, 42, ...,y™) the coordinates corresponding to (Ug, ¢3). Then,
in Uy N Ug, the components of the Jacobian matrix J € GL(R™) and its inverse Jacobian matrix
J~1 € GL(R") are respectively given by:
; ayj —1\? 5x’
L = 1

These are respectively the Jacobians of the transition maps g o ¢ ! and ¢, o cp[gl.

Definition 1.22 (Orientable Manifolds). Let M be a manifold. M is orientable if there exists an
atlas such that all of its transition maps have a positive Jacobian determinant. A transition map
is called orientation-preserving if the determinant of its Jacobian matrix is positive.



Theorem 1.5. Let M be a manifold of dimension n. M is orientable if and only if there exists an
everywhere non-vanishing n-form on M.

Definition 1.23 (Orientations). Let M be a connected, orientable manifold of dimension n, and
denote by {w;}ier the set of everywhere non-vanishing, differentiable n-forms. Consider the equiva-
lence relation: w; ~ wj if there exists a positive function f;; : M — R such that w; = f;;w; for each
pair w;j, w; € {w;}icr. Since an equivalence relation can also be defined using negative functions,
there are two possible equivalence classes with opposing signs. Choosing one of them defines an
orientation of M, and M is then called oriented. Note that there are only two possible orientations
for an orientable, connected manifold.

Definition 1.24 (Partitions of Unity). Let M be a manifold. A partition of unity on M is a set
{pi}ier of continuous functions p; : M — [0, 1] such that at every point p € M:

e There exists a neighbourhood U of p where all but a finite number of functions in {p;};cr are
Zero.

e The sum of all the functions in {p;}icr evaluated at p is one.

Theorem 1.6. Let M be a compact (and hence paracompact) manifold, and let (U;, ¢;)icr be an
atlas of M. There exists a partition of unity {p;}icr indexed over the same set I such that the
support of p; is a subset of U; for each i € I:

supp(pi) C U; (1.38)

Such a partition is said to be subordinate to {U; }er.

Definition 1.25 (Integration). Let M be an oriented manifold of dimension n, let (U;, i)ier be
an atlas compatible with the chosen orientation, and let {p;};c; be a partition of unity subordinate
to {U;}icr. Let (21,22, ...,2™) be a local coordinate system of (U, ¢;), and let w be a differentiable
n-form with compact support on M such that, on each U;, we have w = f; do' Adx? A ... A da™.
Then the integral of w on M is given by:

w= Z/ (pifi) oyt dat Adx® A ... Ada™ (1.39)

Note that the integral does not depend on the partition of unity and the sum is finite.

Equivalently, let (M, g) be a Riemannian manifold (not necessarily oriented) of dimension n. The
integral of a function f: M — R is given by:

/ fdvy (1.40)
M
where dV; denotes the natural volume form of (M, g).
In local coordinates, we may write:
/ fdvy :/ f/det(g) dz (1.41)
M M
where dx = dz' A dz? A ... A dz™ denotes the standard Euclidean volume form on R™.

Note that the integral is independent of the choice of coordinates.



Definition 1.26 (Normal Coordinates). Let (M, g) be a Riemannian manifold. A local coordinate
system {z'} associated with the metric g is a normal coordinate system at a point p € M if, for all
i, 7, and k:

9ij(p) = dij Ox9ij(p) =0 (1.42)
Proposition 1.7. Let (M, g) be a Riemannian manifold. At every point p € M, there exists a
normal coordinate system.

1.2 Analysis on Manifolds

All definitions and theorems, and propositions are taken from [Aub98] and [LP87].

Definition 1.27 (Locally Integrable Functions). Let (M, g) be a Riemannian manifold of dimension
n. A function f: M — R is locally integrable on M if for each point p € M, there exists an open
neighbourhood U of p such that:

/ ] dV, < 5 (1.43)
U

Definition 1.28 (Weak Derivatives). Let (M, g) be a Riemannian manifold, let f : M — R be
a locally integrable function, and let D be an arbitrary linear partial differential operator. The
function f is weakly differentiable if there exists a locally integrable function g : M — R such that,
for all p € C(M):
/ gp dV, :/ [D*p dV, (1.44)
M M

where D* is the formal adjoint of D obtained by formally integrating by parts. The function g is
called the weak derivative of f and is denoted by D f.

Definition 1.29 (Lebesgue Spaces). Let (M, g) be a Riemannian manifold, and let ¢ > 1. The
Lebesgue space LI(M) is the set of locally integrable functions v on M whose norm ||u||, is finite.

The g-norm || - ||, is given by:
1
q
fully = | 1ule av;) (1.45)
M

Definition 1.30 (Sobolev Spaces). Let (M, g) be a Riemannian manifold. The Sobolev space
WH4(M) is the set of functions u € L9(M) whose weak derivatives up to order k have a finite
L4(M) norm. The Sobolev norm || - ||,q is given by:

k
kg = (Z/ Viu|? dVg> (1.46)
i=0 /M

where the covariant derivatives Viu are taken in a weak sense. Note that W2 = L9,

Q=

Definition 1.31 (C* Spaces). Let (M, g) be a Riemannian manifold. The C* space C*(M) is the
set of k-times continuously differentiable functions v on M whose norm ||u|cx is finite. The C*(M)
norm || - ||ox is given by:

k
[ullor = sup [Viul (1.47)
i=0 M
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Definition 1.32 (Holder Spaces). Let (M,g) be a Riemannian manifold. The Holder space
Ck(M), where 0 < a < 1, is the set of functions u € CF(M) whose norm |u|| ok« is finite.
The Holder norm || - ||k« is given by:

[VEu(z) — VFu(y)|
[ullgra = [lullcr + sup —
rF#yeM |x y|
where the supremum is taken over all points y contained within a normal coordinate neighbourhood
of x for any x € M.

(1.48)

Theorem 1.8 (First Sobolev Embedding Theorem). Let (M, g) be a compact, Riemannian mani-
fold of dimension n. Let W¥P(M) and W%9(M) be two Sobolev spaces on M with k > £. Suppose
that:

S|

<

SRS

(1.49)

Q| =

1
p
Then the embedding W*?(M) c W%?(M) is continuous.

Theorem 1.9 (Rellich-Kondrachov Embedding Theorem). Let (M, g) be a compact, Riemannian
manifold of dimension n. Let W*P(M) and W*%9(M) be two Sobolev spaces on M with k > .
Suppose that:

<

Sl
Sl

(1.50)

S =
| =

Then the embedding WP (M) c W%4(M) is compact.

Theorem 1.10 (Second Sobolev Embedding Theorem). Let (M, g) be a compact, Riemannian
manifold of dimension n. Let W*P(M) be a Sobolev space on M, and let C™*(M) be a Hélder
space on M with 0 < a < 1. Suppose that:

1k

- — — S _

P n

Then the embedding W*P(M) ¢ C™(M) is continuous.

T+ «

- (1.51)

Theorem 1.11 (Global Elliptic Regularity Theorem). Let (M, g) be a compact, Riemannian man-
ifold, and let v : M — R be a locally integrable, weak solution to Poisson’s equation Au = f for
some function f: M — R.

o If f € WKI(M), then u € W*+24(M) and, for some K > 0:
[ullet2.q < K ([[Aullrg + [lullq) (1.52)
o If f € CH*(M), then u € C*+29(M) and, for some K > 0:

[ullgrree < K (|[Aullgre + [lullcos) (1.53)

Theorem 1.12 (Strong Maximum Principle). Let (M, g) be a connected, Riemannian manifold,
and let h : M — R be a non-negative, smooth function on M. Let u : M — R be a C?(M) function
satisfying:

(A+h)u>0 (1.54)

If u attains its minimum m < 0 on M, then u is constant on M.



Definition 1.33 (Equicontinuity). Let M be a manifold. A subset F C C°(M) is equicontinuous
if for all x € M and for all € > 0, there exists a neighbourhood U of x such that, for all y € U and
for all f € F:

fly) — fl@)| <e (1.55)

Definition 1.34 (Pointwise Boundedness). Let M be a manifold. A subset F C C°(M) is pointwise
bounded if for all x € M:

sup | f(z)] < o0 (1.56)
feF

Theorem 1.13 (Arzela-Ascoli Theorem). Let M be a manifold. A subset F C C°(M) is relatively
compact in the topology induced by the supremum norm if and only if it is equicontinuous and
pointwise bounded.

2 Introduction

The Yamabe Problem. The Yamabe problem is a classic problem in geometric analysis. It
was first posed in 1960 by the mathematician Hidehiko Yamabe, who also attempted to provide a
solution. Unfortunately, Neil Trudinger discovered an error in his proof in 1968.

The problem remained open until it was finally solved in 1984 with the combined efforts of Yamabe,
Trudinger, Aubin, and Schoen. The statement of the problem is as follows:

Let (M, g) be a compact, Riemannian manifold of dimension n > 3. Is it possible to find a metric
g conformal to g with constant scalar curvature?

Definition 2.1 (Conformal Metrics). Let (M,g) be a Riemannian manifold of dimension n. A
metric g is conformal to g if there exists a C°°(M) function f : M — R such that:

g=¢e"g (2.1)

Let R and R denote the scalar curvatures of g and g respectively. It can be shown that the scalar
curvatures satisfy:

R=e¢* (R+2(n—1)Af—(n—1)(n—2)|Vf]?) (2.2)
where Vf and Af = —V#V,, f respectively denote the covariant derivative of f and the Laplace-
Beltrami operator with respect to the metric g.

We can simplify this equation by making the substitution:

e = P2 (2.3)

where ¢ : M — R is a positive, smooth function and p = 2n/(n—2) is the critical Sobolev exponent.

Then Equation (2.2) reduces to:

. 1
R=¢' <4Z_2A+R> 0 (2.4)

10



Definition 2.2 (Conformal Laplacian). Let (M, g) be a Riemannian manifold of dimension n. The
conformal Laplacian of g is given by:

4

n—1
n_2A+R (2.5)

Let § = ¢P~2g be a metric conformal to g, and let A and R denote the Laplace-Beltrami operator
and the scalar curvature of g respectively. It can be shown that the conformal Laplacians satisfy:

APTIRG R () = o (4" A 4 R) (2.6)
n—2 %) n—2
for all C*°(M) functions u : M — R.

Definition 2.3 (The Yamabe Equation). Let (M, g) be a Riemannian manifold of dimension n,
and let § = ©P~2g be a metric conformal to g. Suppose that R = X for some constant A € R. Then
the Yamabe equation is obtained by rearranging Equation (2.4):

n —

-1
APt = <4n 2A + R> ® (2.7)
Solving the Yamabe problem on M is equivalent to finding a positive, smooth function ¢ satisfying
this equation.

Definition 2.4 (The Yamabe Quotient). Let (M, g) be a Riemannian manifold of dimension n,
and let § = ¢?~2g be a metric conformal to g. The Yamabe quotient Q(g) is the functional whose
Euler-Lagrange equation is the Yamabe equation:

_ JuRdY;

9 5 (2.8)
([ardvg)»
where ¢ is allowed to vary over all metrics which are conformal to g.
Equivalently, the Yamabe quotient can be written as:
E(p)
Qo(p) = T (2.9)
! lell3
where
E(p) = 4 IVe|® + Re™ | dVy (2.10)
M n—2

Definition 2.5 (The Yamabe Constant). Let (M, g) be a Riemannian manifold of dimension n > 3.
The Yamabe constant \(M) of M is defined to be:

AM) = inf {Q(g) | g conformal to g} (2.11)
=inf {Q4(p) | positive, smooth function ¢ on M} (2.12)

Note that the Yamabe constant is an invariant of the conformal class of (M, g).

11



Claim 2.1. Let (M,g) be a Riemannian manifold of dimension n > 3, and let p € W12(M)
be a smooth, positive function. Then ¢ is a critical point of @), if and only if it satisfies the
Yamabe equation with A = E(¢)/|¢||h. Furthermore, if ¢ is a minimizer of Q4 and ||¢||, = 1, then

A = \(M).

Proof. Let ¢» € C*°(M) be arbitrary. Then:

d
0= dtQ (o +t1)) i
-4z
T+ t0l2
d 1
(wwugdt( (o tv)) + Elp + )G (uwth))

Expanding the expressions and differentiating;:

/M <8n -1 (V(p+t), Vi) + 2R(p + 75?/))%1)) av

0= n—2
e + |12

t=0
E(p + t4) /M o+t dv,
To & tlBe + I

t=0

—1
/ 8"~ Lo vy av, / QR dV,  2E(p) / L v,
M n—2 M M

= +

Il lpll3 leliZlel

Applying integration by parts to the first term:

| st ar, [ arevav, 2860 [ o7y,
0=

+ M - M
lll3 lellz leliZlellp
2 E
- 2/( A + Rp— (‘p,3<pp*>¢d1@,
el Jar \ n—2 llellp

Since this holds for any ¢ € C*°(M), it must be that:

E(s@)@pq _ <4n

el

)¢

Then, by direct comparison with the Yamabe equation:

_ Elp)
el

(2.13)

(2.14)

If |¢||, = 1, it follows immediately that A\ = Q4(y). Additionally, if ¢ also minimizes @4, then

A = \(M).

12
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From the above results, to solve the Yamabe problem, it is sufficient to show that there exists a
positive, smooth function ¢ which minimizes Q4(¢).
In fact, the solution to the Yamabe problem can be summarized by the following three theorems.

Theorem A (Yamabe, Trudinger, Aubin). Let (M,g) be a compact, Riemannian manifold of
dimension n. Suppose that A(M) < A(S™), where S™ is the n-sphere equipped with the round
metric. Then there exists a minimizer of Q4(¢), and hence a solution to the Yamabe problem on
M.

Theorem B (Aubin). Suppose that (M, g) is a compact, Riemannian manifold of dimension n > 6
and is not locally, conformally flat. Then A(M) < A(S™).

Theorem C (Schoen). Suppose that (M,g) is a compact, Riemannian manifold of dimension
n =3, 4, or 5 or is locally, conformally flat. Then A\(M) < A(S™) unless M is conformal to S™.

3 Theorem A (Yamabe, Trudinger, Aubin)

Theorem 3.1 (A Sobolev Inequality). Let (M, g) be a compact, Riemannian manifold of dimension
n. Let p=2n/(n — 2), and denote the n-dimensional Sobolev constant by o,. Then, for all € > 0,
there exists a constant C. such that, for all ¢ € C*°(M):

loll? < (1+ &) /M Vol dv, + C. /M 22 v, (3.1)

Theorem 3.2 (Yamabe Constant on the n-sphere). Let (S™,go) denote the n-sphere equipped
with the standard, round metric. Then the Yamabe constant A(S™) is given by:

A(S™) = Qlg0) (3.2)
= n(n — 1) vol(S™)= (3.3)
where vol(S™) denotes the volume of the unit n-sphere.
Additionally, the Sobolev constant ¢,, mentioned in Theorem 3.1 is given by:

4 n-—1
A(S™)n —2

On = (3.4)
Definition 3.1 (The Subcritical Equation). Let (M, g) be a Riemannian manifold of dimension n.
Let 2 < s < p. The subcritical equation is analogous to the Yamabe equation for some constant
k€ R:

1
kgt = <4” SA+ R) o (3.5)

n —

Consider its respective functional, analogous to the Yamabe quotient:

E(p)
Q*(p) = (3.6)
llell3
where E(yp) is as defined in Equation (2.10).
Define an analogous Yamabe constant:
As = inf {Q°(¢p) | positive, smooth function ¢ on M} (3.7)

13



Lemma 3.3. Let (M, g) be a compact, Riemannian manifold. Suppose that s < s for any two
numbers s, s’ € [2,p]. Then the L*(M) norm is dominated by the L* (M) norm.

Proof. Let v = §'/s and 8 = §'/(s' — s) be conjugate exponents. Then, for any u € L%(M), by
Holder’s inequality:

Julls = / ful® v,
M

<, ) (=)

=N
7

—-C </ | dvg)s
M

= Cllull3
for some constant C' since M is compact.
It follows that:
[ulls < Cllulls (3.8)
for some new constant C.

In particular, note that C' = 1 if the metric is chosen such that:
/ avy =1
M

Theorem 3.4 (Regularity Theorem). Let (M,g) be a compact, Riemannian manifold, let ¢ €
WLH2(M) be a non-negative weak solution of the subcritical equation with 2 < s < p, and let
|k| < K for some constant K € R. Suppose that ¢ € L"(M) for some r > (s — 2)n/2. Then
¢ is either identically zero or strictly positive and C°°(M). Furthermore, |[¢|c2.o < C for some
constant C' which only depends on M, g, K, and ||¢||,. In particular, this holds if r = s < p or if
r>s=p.

O]

Proof. We first prove that ||¢||c2.« is bounded by some constant C. Suppose that ¢ € L"(M)
satisfies the subcritical equation. Then k¢! — Ry and hence 4(n — 1)/(n — 2)Ap are both
functions in LY(M) where g =r/(s — 1).

Since Ap € L1(M), it follows by the global elliptic regularity theorem (Theorem 1.11) that ¢ is also
in W24(M). By the first Sobolev embedding theorem (Theorem 1.8), we also have that ¢ € L" (M)
where ' = nr/(ns —n — 2r).

Recall that r > (s — 2)n/2 by hypothesis. It follows directly that ' > r. Then, by repeating the
above argument with /., we can iteratively show that ¢ € W24 for all ¢ > 1.

By the second Sobolev embedding theorem (Theorem 1.10), we also have that ¢ € C%*(M) for
some 0 < a < 1. It can be shown that p*~1 € C%*(M) as well.

Since both ¢ and ¢*~! are in C%*(M), the subcritical equation implies that Ay is in C%*(M). By
the global elliptic regularity theorem (Theorem 1.11), we have that ¢ is also in C%®(M).

14



Each of the above applications of the Sobolev embedding and the global elliptic regularity theorems
gives a bound on their corresponding norms, which in turn bounds ||¢||c2.« by some constant C.

We now prove that ¢ is either identically zero or strictly positive and C*°(M). By rearranging the
subcritical equation, we obtain:

(A + 4("7;_21) (R- HQOS_Q)) 0 =0 (3.9)

Since the scalar curvature R is bounded on compact manifolds, it follows that:

(A4+m)p >0 (3.10)
for some constant m > 0 where
n—2 9
P — — k® 11
m_4(n_1)s;1/[p(R ke ?) (3.11)

Since ¢ is non-negative by hypothesis, if ¢ = 0 somewhere on M, then ¢ attains its minimum and
is identically zero by the strong maximum principle (Theorem 1.12). Therefore, ¢ is either strictly
positive or identically zero on M.

Suppose now that ¢ is strictly positive on M. Since ¢ € C*® and is nowhere zero, it can be shown
that ¢*~! € C>% as well. Then, by applying global elliptic regularity iteratively to the subcritical
equation, we may conclude that ¢ € C*(M). O

Proposition 3.5 (Yamabe). Let s € N such that 2 < s < p. Then there exists a smooth, positive
solution ¢ to the subcritical equation which minimizes Q® and for which kK = A\s and ||ps||s = 1.

Proof. Let {u;} C C°°(M) be a minimizing sequence for Q* with ||u,||s = 1.

Observe that Q*(|u;|) = Q*(u;). We may therefore assume without loss of generality that u; > 0.
Then:

sl 5 = /M Vul? dV, + /M il v,

_ Buw)n-2) n-2 .2 .2
BRETCESY) 4<n—1>/RZdVg+/M P 4V

_ Qw2 -2) /M (1_ A =2) )>)ug av,

4n—1) 4(
I A G R

Since the first term is bounded, we need only consider the second term. Let o = p/2 and 8 =
p/(p — 2) be conjugate exponents. By Holder’s inequality:

[tz (=3 )’ (] o)
(L5 ) (o)

15



Since M is compact, the scalar curvature is bounded. Then the first integral is bounded by some

/M <1—M) u dvggc</M|ui|p dvg)i

= Clluil;

constant C":

Then {u;} is bounded in W12(M). By the Rellich-Kondrachov theorem (Theorem 1.9), the inclu-
sion map WH2(M) C L*(M) is compact. It follows that there exists a subsequence of {u;} which
converges weakly in W12(M) and strongly in L*(M) to some function ¢s with ||| = 1.

Since 2 < s, the L?(M) norm is dominated by the L*(M) norm (Lemma 3.3). It follows that
the same subsequence of {u;}, which converges strongly in L*(M), must also converge strongly in
L3(M):

lim [ Ru? dV, = / Ry? av,
M M

1—00

Weak convergence in W12(M) implies that:
[ Ve vy = [ (Veu e dv,
M M

= lim [ (Vu;, Vi) dV

1—>00 M

By the Cauchy-Schwarz inequality:

1 1

2 2
[ e avy <timson ([ vul av,) ([ 1ve av,)
M 1—00 M M

It follows that:

/M |Vps|? vy < limsup/M |V, | vy

1—00

Observe then that:
E(ps)

s 12
n—1
_2|ws\2+Rso§> dv,

J, (5

Q°(ps) =

s I3

—1
/ <4” Vui|2+Rui) dv,
< lim sup

i—00 i 2
E .
= limsup (uz2)
i—00 Hul H s

= lim sup Q°(u;)

1—00

16



Since {u;} is defined to be a minimizing sequence for Q°, the limit superior is equal to the limit:
@*(ps) < lim Q°(uy)
1—00
= As
However, since A; is defined to be the infimum of @*, it must be that Q°(¢s) = As. We have
therefore found a minimizing function, and hence a solution to the subcritical equation.

Since ¢ € L*(M) and is not identically zero, it follows from the regularity theorem (Theorem 3.4)
that ¢ is positive and C*°(M). O

Lemma 3.6. Let (M,g) be a compact, Riemannian manifold of dimension n. Without loss of
generality, we may scale the metric g such that:

/qu_l
M

Then |\s| is non-increasing as a function of s € [2, p].

Proof. Let u: M — R be an arbitrary non-zero, smooth function on M.

Observe that, for any two s, s’ € [2,p]:

Il 2Q (w) = Elp) = [[ul3Q°(u) (3.12)

If s < ¢, it follows from Lemma 3.3 that ||ul|s < ||u]|s. Then, by observing Equation (3.12):

Q% (u)] < 1Q°(w)] (3.13)
Since this is true for all w € C*°(M), it follows that:

|)‘s’| < |)‘s| (3.14)

Remark that, if A < 0 for some s € [2,p], there exists a C°°(M) function u : M — R such that
Q*(u) < 0. By Equation (3.12), it follows that Q% (u) < 0 for any s’ € [2,p] as well. Since Ay is
the infimum of Q¥, it must be that Ay < 0. Therefore, A\; < 0 for all s.

Remark also that, if A, > 0, then QP(u) > 0 for any C°°(M) function u : M — R because ), is the
infimum of QP. By Equation (3.12), it follows that Q*(u) > 0 for any s € [2, p] as well. Furthermore,
by Equation (3.13), we have that QP(u) < Q®(u). Since this is true for all u € C*°(M), it must be
that A\, < As. Therefore, Ay > 0 for all s. L]

Lemma 3.7. Let (M,g) be a compact, Riemannian manifold of dimension n. Without loss of
generality, we may scale the metric g such that:

/dvg=1
M

Suppose that A(M) > 0. Then Ag continuous from the left as a function of s € [2, p)|.

17



Proof. Observe that A(M) = A, by definition. From the remark in Lemma 3.6, it must be that
As > 0 for any s € [2,p].

Choose some s € [2,p], and let € > 0. By the definition of infimum, there exists a non-zero, smooth
function v : M — R on M such that:

Q°(u) < As +¢ (3.15)

Recall from Equation (3.13) of Lemma 3.6 that, for s’ < s:

Q% (w)] < 1Q% (u)]

Since As and Ay are non-negative, and since ||ul|s is a continuous function of s, the absolute values
are unnecessary, and there exists an s’ sufficiently close to s such that:

0<Q¥(u)— Q' (u)<e

Combined with Equation (3.15), we find that:

Q% (u) < As +2¢

However, by the definition of infimum, we also have that Ay < Q¥ (u). It follows then that, for
s’ <s:

Ast < As + 2¢ (3.16)

Since Ay is non-increasing by Lemma 3.6, we conclude that Ag is continuous from the left. O

Proposition 3.8 (Trudinger, Aubin). Let (M, g) be a compact, Riemannian manifold of dimension
n. Without loss of generality, let g be a metric such that:

/dvg:1
M

Suppose that A(M) < A(S™), and let {¢s} be the sequence of smooth, positive solutions to the
subcritical equation as defined in Proposition 3.5. Then there exists constants sg < p, r > p, and
C > 0 such that ||ps||, < C for all s > sg.

Proof. Suppose A(M) < A(S™). Let {¢s} be a sequence of smooth, positive solutions to the
subcritical equation as defined in Proposition 3.5.

Let § > 0, and consider the subcritical equation multiplied by ap}ﬁ%:

n—1
ASSDS+26 — 4n — 2 (ASDS) ¢1+26 + R§02+25 (317)

S S

Integrating, and applying integration by parts to the first term on the right-hand side:

n—1 5 5
5 [ Fen+200290) v+ [ R 4,
M M

n

As / @t AV, =4
M

18



Substituting u = l+9:

22 n—11+26 / / )
=4—" d d
)\/ n 2110y (Vu,Vu) dVy + | Ru® dV,
1 1426
= i b/]VuPdV—%/‘Ru av,
2(140)?
Rearranging:

2
av, =, 1 +0) /gﬁZﬁd% (+9)° /‘R av,
M

1+26 1+26

(1+5)2/ =2 2 (1+0)° / 2
<
_)\51+25 M(’DS u dV:q+ 152 |R|u” dVj,

Since M is compact, the scalar curvature is bounded by some constant Cf:

n—1 (14 6)? _ (1+<5)2
4 24V, < As =22 d / 2d

_ <1+5)2/322 (+5)
(14 9)2
" 1+20

et v+ cnuH% (3.18)
M
for some constant C'.

Since u € C°°(M), by the Sobolev inequality in Theorem 3.1, there exists a constant C such that:

4 2
Jull; < 1+ )35y =3 Wy +C. [ v,
4 n-1 9 9

Substituting the integral in Equation (3.19) with the inequality derived in Equation (3.18):

As (146)?
A(S™) 1426
s (1+0)?
A(S™) 142§

lull < (1 +e¢) /Mwi #u? dV + Cllull3 + Cel|ul3

—(1+0) /M o322 dVy + CL|ull2

where C. = C' + C; is some constant.

Let @« =n/2 and § = p/2 be conjugate exponents. By Holder’s inequality:

1 1
As a(s—2) « 28 p 2
ol < 1+ )50 T (e dv) ([ 1 av,)" 4 celulg

2
— e Toon ([ )" ([ e av)” + el

s (140)? ,
557 1325 10l el + Cellull

ASEIN)

=(1+¢)
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Since (s —2)n/2 < s, it follows from Lemma 3.3 that [[¢s||(s—2yn/2 < [l¢slls = 1. Then:

s (1+0)?
A(S™) 1+ 26

lull < (1 +e¢) lull + Cllull3 (3.20)

For simplicity, suppose that A(M) > 0; the same result holds if A(M) < 0 with minor modifications.
By hypothesis, A(M) < A(S™). Then, for some fixed sy < p:

Aso
A(S™)

<1

By Lemma 3.6 and the remark within, we have that A\; < Ay, for all s > 5. It follows that:

s
NCR)

<1

Additionally, we can always choose sufficiently small € > 0 and ¢ > 0 such that:

2
A (140 oy (3.21)

A+ e 1525 =

for some constant C’ < 1.
Then, applying this inequality to Equation (3.20):

[l < C'lluly + CZlull3

By combining both p-norms, it follows immediately that:
lull} < Cllull3 (3.22)
for some new constant C.

Since u = @9 it can be shown that:

2(146) 2(146)
”SOSHP(H(;) < CH@s”Q(H(s)

Let o =s/(s—2(149)) and 5 = s/(2(1 +9)) be conjugate exponents. By Holder’s inequality and
using the fact that ||¢s||s = 1:

2 4
el <€ [ e av,
1

1 1
§O< / dvg>“ ( [ tgpss dvg)ﬁ
M M
2(145)
=o(/ ol dvg>
M

= Cllps 31+
=C
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It follows that, for all s > sq:

lesllparey < C (3.23)

for some new constant C.

Since ¢ > 0 is arbitrary, ||¢s]|, is bounded independently of s for all r > p. O

We now prove the first main theorem.

Theorem A (Yamabe, Trudinger, Aubin). Let (M, g) be a compact, Riemannian manifold of
dimension n. Suppose that A(M) < A(S™), where S™ is the n-sphere equipped with the standard,
round metric. Then there exists a minimizer of (), and hence a solution to the Yamabe problem
on M.

Proof. Suppose that A(M) < A(S™). Let {¢s} be the sequence of smooth, positive solutions to the
subcritical equation as defined in Proposition 3.5.

By Proposition 3.8, the functions {ys} are uniformly bounded in L"(M) for some r > p. The
regularity theorem (Theorem 3.4) then implies that they are also uniformly bounded in C%<(M).
Then there exists a K € R for all s such that:

[V2ps(2) — VZpu(y)]
Pslloz.a = ||@s||c2 + sup
lpslicze = lleslc S P—T

(3.24)

V2ps(z) — V?
= sup || + sup |[Vis| + sup [V, + sup V2, () #s W)l <K (3.25)
M M M

rFyeM |.%' - y|a

It follows that the sequences {@s}, {Vgs}, and {V2p,} are each individually in C°(M). Note
that they are bounded because M is compact. Additionally, it follows immediately from the C%®
Hélder norm that the sequence {V2p,} is equicontinuous. It can also be shown using the mean
value theorem that the other two sequences are likewise equicontinuous.

The Arzela-Ascoli theorem (Theorem 1.13) then implies that the sequences {¢s}, {Vps}, and
{V2p,} are relatively compact. Hence, as s — p, there exists subsequences {5, }, {Ves, }, and
{V2ps, } which converges respectively to functions ¢, Vi, and V2 in C°(M). Then the sequence
{ps} converges in the C? norm to a function ¢ € C?(M).

We denote by A the limit of A; as s — p. Note that the limit function ¢ must then satisfy:

n —

(4n_;A+R> DY, e Qqlp) = A (3.26)

If A(M) >0, it follows by Lemma 3.6 and Lemma 3.7 that A = A\(M).

If A(M) < 0, it follows by Lemma 3.6 that As is negative and is increasing as s — p. Since
A(M) = Ap, this implies that A < A(M). However, since A(M) is by definition the infimum of @,
it must be that A = \(M).

Either way, we have found a limit function ¢ such that Q4(¢) = A(M). By applying the regularity
theorem (Theorem 3.4), we find that ¢ is in C°°(M) and is strictly positive because ||, >
limgp [[opsls = 1. O
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4 Theorem B (Aubin)

Definition 4.1 (Locally Conformally Flat Manifolds). Let (M, g) be a Riemannian manifold of
dimension n. Then M is locally conformally flat if for each point p € M, there exists a neighbour-
hood U C M of p and a conformal metric g such that (U,g) is flat (i.e. the Riemann curvature
tensor ﬁijkl vanishes on U).

Definition 4.2 (The Weyl Tensor). Let (M, g) be a manifold of dimension n. The components of
the Riemann tensor that are not accounted for by the Ricci tensor, are encapsulated in the Weyl
tensor. In a local chart, its components are given by:

1
Wikt = Rijr — p—

Note that the Weyl tensor is trace free by construction. It can also be shown that the Weyl tensor
is conformally invariant:

R
kg5t — Riag; 19k — Rjkgit) + ———7——%v (9ik9j1 — 9i9; 4.1
(Rirgji — Rugjx + Rugix nggz)+(n_1)(n_2) (9ikgj1 — 9ugjx) (4.1)

Theorem 4.1 (Weyl-Schouten Theorem). Let (M, g) be a Riemannian manifold of dimension
n > 3. Then M is locally conformally flat if and only if the Weyl tensor vanishes identically.

Proposition 4.2 (Conformal Normal Coordinates [Ca093] [Glin91]). Let (M, g) be a Riemannian
manifold of dimension n > 2, and let p be a point in M. Then there exists a conformal metric g
on M such that, for all points in a neighbourhood U of p:

det(g) =1 (4.3)

The local coordinate system {z'} at p € M associated with this metric g is called a conformal normal
coordinate system. In these coordinates, if n > 5, the scalar curvature of g satisfies R = O(|x|?)
and AR(p) = %\W(p)]z It also follows that the volume form dVj on U is equal to the Euclidean
volume form dx.

Theorem 4.3 (Sharp Sobolev Inequality on R™). Let n € N. On R", the sharp Sobolev inequality
is given by:

n—1

2.9
o)z < 42—

AS™) THIVell3 (4.4)

for all o € WIP(R™).

Additionally, let u, : R — R with o > 0 be the Sobolev extremal functions on R™ given by:

wald) = (ll) w5)

«

On R”, the functions u, satisfy:

n—1, .. _
AS™) HIVuall3 (4.6)

2 _
a2 = 42—
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Lemma 4.4 (Aubin). Let (M, g) be a compact, Riemannian manifold of dimension n > 3, then
AM) < A(S™).

Proof. We begin with (R",d), where § is the usual Euclidean metric. Let {z'} be the Euclidean
coordinate system on R"™. Let B. C R™ denote the ball of radius € > 0 centered around the origin
of R™.

Let n : R™ — R be a smooth, radial, cutoff function supported in Bo. with the following properties:

0<n<1in By n=1in B

Consider the smooth, compactly supported function ¢ = nu, where u, with a > 0 are the Sobolev
extremal functions given by:

wale) = (W)T W

o

Since each u, is only a function of |z|, let = |z|. Then, computing its derivative:

ua (2—=n)r <r2+a2>_g (4.8)
or e o
We make the following observations:
Ug < N |0rta] < (n — 2)04717727“17" (4.9)

Observe that:

n—1 n—1
4 5=4 d
o SIvels =4t [ Vel do
-1
— 4" / INVue + uaVn|? d
n_2 Rn
n—1
:4n 2/ (% Vual?® + 2nua(Vn, Vue) + uZ|Vn|?) dz
2 Jgn
n—1
<4” 2/ (IVual? + 20ual Vil Vaa] + w2 [Vn[?) da
—2 Jgn

Consider the third integral term. Since 7 is bounded and supported in Bs. and constant in B.:

/ uZ|Vnf* dz =/ uZ|Vnl? dz
Rn

Bae

:/ uZ|Vnl? dw+/ u?|Vn? da
BQE*BE

< / Cru? da
Ba:—Be

< / Cra"2r4 72 gy
BZE_BE
=Ca™ 2

for some constants C7 and C.
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Consider now the second integral term:

/ 2nue|Vn||Vue| dz </ 2ua| V|| Vue| dx
R™ 2

14

:/ 20| V|| Vg | dx—i—/ 2ua|VN||Vug| dx
B2£ B.

5

< / Coug|Vug| dx
B25_B€

= / Coug|Orug| dx
Ba.—B:
< / Cy(n —2)a" 213720 dy
BQE Ba
=Ca"?
for some constants Cy and C.
Observe that, for a fixed £ > 0, these two integral terms are O(a"~2) and vanish as a — 0.

Consider finally the first term. Applying Equation (4.6) from Theorem 4.3:

n—1

2 n—1 2
1% =4 oY
2/Rnww dr = 47 Va3
= A5 a2

2
= A(S™) ( / e dx) '
2
|ua|p dm—|—/ [tte [P dx)p
R”—B.

4

n —

2
[nte|? d:U+/ a?("2?) pp(2-m) dw) !

( BQE n_Be
3 ([ o [ a0 )
Bae "—Be
’ 2
P
( lplP dx +/ Q2 d:c)
B2s n_Bs
(S ( I dx) L0
BZa

= MS")lell; +Oa™)

N

Combining the above results:

—1 n n—
— QHV@H% <ASellz + Cam? (4.10)

for some new constant C.
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We now consider a compact, Riemannian manifold (M, g) of dimension n > 3. Let p € M be a
point, and let {z'} be a set of conformal normal coordinates associated with the conformal metric
g in some neighbourhood Ba. of p.

In these coordinates, there exists a sufficiently small € > 0 such that dV = dz in Bae C M. Observe
then that:

n—1 ~
Blo) = [ (42519t + Be?) avs
BQs n-—

-1 ~
:/ (4” |ch|2+Rg02> dx
Boe n— 2
n—1 9 ~ 4
d
Vel [ Rt de

=4

Combined with Equation (4.10), we find that:
E(p) < XSl + Ca? +/ Ru? dx
BQE

Since M is compact, the scalar curvature is bounded by some constant C';. Denote by dw the
standard volume form on the unit (n — 1)-sphere, and denote by dw, = r" !'dw the standard
volume form on the (n — 1)-sphere of radius r in R™. Then:

E(p) < A"l + Ca" 2+ Cy / u? da
BQe

2e
= AS)@l2 + Cam=? + ¢y / / W2 dodr
0 OB,
2e
— XSl +Can 2 e [t ar
0

for some new constant C.

By Lemma 4.5 (see below), the above integral is bounded by a constant multiple of «. Then,
choosing first an € and then a sufficiently small «, we find that:

E(p)
Qq(p) =
I lell2
2e
< A(S™) + 0204"_2 + 02 / uir"‘l dr
lll2 el Jo
<AS") + Ka
for some constant K.
It follows directly that A(M) < A(S™). O

We now prove the second main theorem.

Theorem B (Aubin). Suppose that (M, g) is a compact, Riemannian manifold of dimension n > 6
and is not locally, conformally flat. Then A(M) < A(S™).
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Proof. Let (M,g) be a compact, Riemannian manifold of dimension n > 6. If M is not locally
conformally flat, then there exists a point p € M such that:

(W(p)|>0 (4.11)
where W is the Weyl tensor.

Let {2} be a set of conformal normal coordinates associated with the conformal metric § in
Bs.(p) € M, and consider the test function ¢ = nu, as defined in Lemma 4.4. By compact
support:

n—1 ~
Bo) = [ (12519 + Be?) avs
M n

1 ~
= / (4n |Vp|* + Rg02> dVvi
Boe n—2
In conformal normal coordinates, there exists a sufficiently small € > 0 such that dV5 = dx in
Ba:(p):

1 ~
E(p) = / (4n 2|V<,0|2 + Rg02> dz
BZs n—

— 4"

-1 ~
IVl + / RoPda
2 B2E

Using some results and observations from Lemma 4.4:

E(p) < XS™)||ll% + Cra" 2 + Rp?da

BQE

_ n 2 n—2 D 2 D 2

= AS")lell, + Cra +/ Ry d:c+/ Ry” dx
B Boe—B:

< )\(S”)HcpHIQJ + Ca" 2 +/ §g02 dx —I—/ Ra™ 2p4=20 g
Bg BQE_BS

< )\(S”)H@HIQ, +Ca" %+ / IA?:gOQ dx + Cya™ 2

Be
= )\(S")HLpHIQ, +Ca™ 24 / Rp? da
Be
for some constants C1, Cs, and C.

Recall also that, in conformal normal coordinates:

R =0(zP) AR() = ([T () (112)

Taylor expanding up to leading order, in Einstein summation notation:

B(p) < MS™)lgll? + Cam? + /B
£

1 0~
= )\(S")HQOH?D + Can 2 —i—/o /E)B (2V?jR(p)xlsc] + O(|:c\3)> u2r™ 1 dwdr

1 o~
(573w +0(af)) % do
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Observe that the terms with 7 # j vanish because the integrand is odd and the domain of integration
is symmetric:

€ 1 ~ o
Bp) < Mol + Car 24 [ [ (GTRRGIa + O(af) ) dr

Recall that the Laplacian A is defined as the negative of the trace of the second covariant derivative:
€ 1 ~ .
ﬂwsxwme+&w4+//"(—Am@Wﬂ+omm)ﬁW*mm
0By
= AS) ]2 + Ca? + / / (—|W (p)Paiai + 0(|xy3>> W2 duodr
0B,

- )‘(Sn)HSOHP +Ca + C/ _‘W(p)\QTQ + 0(7"3)> Ui?“"_l dr
0
for some new, positive constant C.

Since the Weyl tensor is conformally invariant, W (p) = W (p). Then, by Lemma 4.5 (see below):

ﬂ)<{xyw¢@—mwwww+omn%, if n > 6
A(S"el2 = CIW (p) Pa* log(1/a) + O(a™?), if n=6

for some new, positive constant C.

(4.13)

It follows that Qg(¢) < A(S™) for a sufficiently small o. Since A(M) is the infimum of Qg4(yp), it
must be that A(M) < A(S™). O

Lemma 4.5. We define:

I(a) = /05 rEu2 =1 dr (4.14)
where uq(r) is as defined in Equation (4.7).
Suppose k > —n. Then, as « — 0, I(«) is bounded above and below. Additionally:

o If n >k +4, I(a) is bounded by positive multiples of a**2.

e If n =k +4, I(a) is bounded by positive multiples of a**21og (1/a).
e If n < k+4, I(a) is bounded by positive multiples of a2

Proof. We substitute o = r/a:

€
I(«) :/ rkuirnfl dr
0
€ 2 2\ 2—n
_ 4+«
= phtn=1 (T — dr
0 a
£ 2 9 2\ 2—n
o _ 4 (o0 +«
— Oé/ k:+7l 1 /C-H’l 1 < > dO'
Q

_ k+2/ O_k—i—n 1 O' +1) do
0

1
— / a’k+n 1 —|— 1)2—77, do +/
0 1
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Since the bounds of the first integral are 0 < o < 1, the first integral is bounded by some constant
01:

I(Ck) _ ak+2 (Cl + /a O_kJrnfl (0_2 + 1)2—n d0'>

1

< o2 <C1 + /”‘ ohtn—1 (20,2)2—71 da)

1

= oft2? (Cl + Cy /a ght3—n dJ)
1
— Coft2 <1 + /”‘ oht3—n da)
1

The result for each case follows by direct computation. O

5 Positive Mass Theorem

5.1 Geometric Preliminaries

All definitions, theorems, and propositions are taken from [Aub98], [Heb97], and [LP87].

Definition 5.1 (Pushforward). Let M and N be manifolds of dimension n, and let ¢ : M — N
be a diffeomorphism. Let p € M, and let X € T),(M). The pushforward of X to N is the unique
tangent vector p.X € T, (V) satisfying:

(2x(X))(f) = X(fop) (5.1)
for all smooth functions f: N - R

Definition 5.2 (Pullback). Let M and N be manifolds of dimension n, let ¢ : M — N be a
diffeomorphism, and let S be a tensor of rank (0,s) on N. The pullback of S is the unique tensor
of rank (0, s) on M satisfying

(QO*S)I’(XI’ XQ, veuy Xs) = S¢(p)(<p*X1, (,D*XQ, ceny QD*XS) (52)
for all p € M and X; € T,(M) for each i =1,2,...,s.
Definition 5.3 (Isometric Manifolds). Let (M,g) and (M’,¢’) be two Riemannian manifolds of

dimension n. Let ¢ : M — M’ be a diffeomorphism such that ¢’ = ¢*g. Then (M, g) and (M’,g")
are isometric manifolds and ¢ is called an isometry.

Definition 5.4 (Green’s Functions). Let M be a compact, Riemannian manifold, and let zy € M.
The Green’s function I' : M x M — R of a linear, differential operator L is the unique, smooth
function satisfying, in the sense of distributions:

L T'(x,x0) = 0z () (5.3)

where 9, is the Dirac measure at xg.

We often write I';,(x) rather than I'(x, zg) and call I';, the Green’s function at z¢ for some fixed
xg € M.
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Theorem 5.1 (Existence of the Green’s Function). Let (M, g) be a compact, Riemannian manifold
of dimension n > 3, and let A : M — R be a strictly positive, smooth function on M. Then, at
each point xg € M, the Green’s function I'y, for the operator A + h exists.

Lemma 5.2. Let (M, g) be a compact, Riemannian metric of dimension n > 3, and let § = ¢~ 2g
be a metric conformal to g. The volume form dVj of g is then given by:

dvy = o dv, (5.4)

Proof. Let {z'} be a local coordinate system on M. The volume form dV5 of g is then given by:

1
= (‘P?(%Q) det(g)) P dat AdzE A Ndx
= P (det(g)) dzt ANdx® A ... A dx
= L dV

where we used the fact that p = 2n/(n — 2). O

Proposition 5.3. Let (M, g) be a compact, Riemannian metric of dimension n > 3, let R denote
the scalar curvature of g, and suppose that A\(M) > 0. Then, at each point zy € M, the Green’s
function I, for the operator 4(n — 1)/(n — 2)A + R exists and is strictly positive.

Proof. Recall the subcritical equation:

wo = (12 ga 1 k) (55)

Let @5 : M — R be the smooth, positive solution to the subcritical equation for some fixed s € [2, p)
as defined in Proposition 3.5, and define a new, conformal metric:

g=¢""g (5.6)

By Equation (2.4), the scalar curvature R of § is given by:

~ —1
R=p. P <4n A+ R> s
I A
= Aspy P

Since A(M) > 0 by hypothesis, it follows from the remark in Lemma 3.6 that As > 0 as well.
Therefore R is strictly positive. Since R is also a smooth function, by Theorem 5.1, the Green’s
function I, for the operator 4(n —1)/(n — 2)A + R exists at each point zg € M. It then follows
by definition that, for all C2°(M) functions f: M — R:

(i) (f)ao- L e
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If I, <0 at its minimum, then I}, would be constant by the strong maximum principle (Theorem
1.12). This is impossible. Therefore, I", is strictly positive.

0

Now, consider the function:

Lo (2) = @s(@0)ps ()T, (7) (5.8)

Clearly, T'y, is strictly positive because both ¢, and I';, ~are positive. Then, rewriting Equation

(5.7):
st =, Gimam) (524 8) ()

By the conformal transformations of the volume form (Lemma 5.2) and the conformal Laplacian
(Equation (2.6)):

xRy (sas&;o)gj(m)) (42 A E) G({?)) (8 Vo) (@)
= /M <M) (soip(af) <4Z - ;A + R) f(a:)) () dVy(z)

= [ ) (125384 R) 1) vy

It follows immediately that, for all functions f € C°(M):

[ T (12258 + ) 1(0) V(o) = fla0) (5.9)

This is equivalent to:

n—1
<4n 2A + R) I'yy = 0z (5.10)

Therefore, at each point zy € M, the Green’s function for the operator 4(n—1)/(n—2)A + R exists
and is given by I'y,. O

Definition 5.5 (Generalized Stereographic Projection). Let (M, g) be a compact, Riemannian
manifold of dimension n, let A\(M) > 0, and fix some point g € M. Let I'y, be the Green’s
function for the operator 4(n — 1)/(n — 2)A + R, and define the metric § on M = M\{zo} by:

§g=G'?g (5.11)

where

G =4(n —1)vol(S" NIy, (5.12)

The Riemannian manifold (M, j) together with the natural map o : M\{zo} — M is called the
stereographic projection of M from x.

30



Proposition 5.4. Let (M, g) be a compact, Riemannian manifold of dimension n, and let (M .

A

be the image manifold oan stereograp}lic projection of M from some point zg € M. Denote by R
the scalar curvature of (M, §). Then R =0 on M.

Proof. Recall that M = M\{xzo}. Since I', is positive, it follows that G = 4(n — 1) vol(S™ 1Ty,
is likewise positive. Then § = GP~2¢ is a metric conformal to g on M.

By Equation (2.4), the scalar curvature R of § is given by:

—1
n 2A+R)G

R=G'? (4

n —

n —

—_ql-r <4n_;A + R) (4(n -1) vol(Sn—l)FIO)

= 4(n — 1) vol(S"HG'~? (4" Ly R> |

n—2

However, recall that I'y, is the Green’s function for the operator 4(n —1)/(n —2)A + R. It follows
by definition that:

R =4(n—1)vol(S" " HG'P &, (5.13)

Since z¢ & M, we conclude that R = 0 on M. O

Definition 5.6 (Asymptotically Flat Manifolds). Let (N, g) be a Riemannian manifold of dimen-
sionn > 3. (N, g) is asymptotically flat of order 7 > 0 if there exists a decomposition N = NyU Ny,
such that Ny is compact and N, is diffeomorphic to R™\ B, for some r > 0, satisfying:

g9i5 = 0ij + O(lz[77) Ogij =0 (12777 De0rgij = O (|2]777?) (5.14)
as |z| — oo where {z;} are the coordinates induced by the diffeomorphism from N, to R™. The
coordinates {z;} are called asymptotic coordinates.

Although it appears as though this definition depends on the choice of asymptotic coordinates, it
can be shown that the asymptotically flat structure is determined solely by the metric alone.

Proposition 5.5. Let (M, g) be a compact, Riemannian manifold of dimension n, and let (M ,§)
be the image manifold of a stereographic projection of M from some point zg € M. Then (M ,4)
is asymptotically flat. In particular, (M ,§) is asymptotically flat of order 1 if n = 3, of order 2 if
n > 4, and of order n — 2 if M is conformally flat near xg.

Definition 5.7 (Inverted Conformal Normal Coordinates). Let (M, g) be a Riemannian manifold
of dimension n > 2, let p be a point in M, and let {2} be a conformal normal coordinate system on
a neighbourhood U of p. An inverted conformal normal coordinate system {2} defined on U\{p}
is given by:

2t = |z| 22 (5.15)

Additionally, the basis vector fields in inverted conformal normal coordinates on U\{p} are given
by:

_ 9 i O
o = |2|7% (6 — 2|2 %2 zj)@ (5.16)

31



Definition 5.8 (General Relativity). Let (X, g) be a pseudo-Riemannian manifold of dimension n.
In general relativity, spacetime is a specific four-dimensional pseudo-Riemannian manifold called a
Lorentzian manifold, whose metric g satisfies the Einstein field equations:
1 8tG
Rw/ - §guuR = CT
where GG is the universal gravitational constant, c¢ is the speed of light, and T is the energy-
momentum tensor of the system.

Ty (5.17)

The Einstein field equations are analogous to the equation in Newtonian gravity:
V20 = 47Gp (5.18)
where ® is the gravitational potential and p is the mass density of the system.

Definition 5.9 (Einstein-Hilbert Action). Let (X, g) be a pseudo-Riemannian manifold of dimen-
sion n. The Einstein-Hilbert action S is given by the functional:

C4
S(0) = 1 /X R dv, (5.19)

where R is the scalar curvature of g.

The first variation of the Einstein-Hilbert action yields the vacuum Einstein field equations (7" = 0).
For simplicity, we will neglect all constants:

S(g) = /X R dv, (5.20)

Lemma 5.6. Let (X, g) be a pseudo-Riemannian manifold of dimension n, and let h be a smooth,
symmetric 2-tensor. Consider a family of metric tensors ¢g; parametrized by a single variable ¢ such
that:

d
h =

= — 21
dtgt (5 )

t=0

Suppose first that h is compactly supported. It follows by varying the Einstein-Hilbert action and
by the divergence theorem that, at ¢ = O:

d y 1
= / h” <Ri]’ — gin) dVg (5.22)
t=0 X 2

—S8
dt (9t)
Suppose now that (X, g) is asymptotically flat, and let {2°} be a system of asymptotic coordinates
on X. It follows by varying the Einstein-Hilbert action and by integrating over a large sphere Sg
as R — oo in the asymptotic end that, at ¢ = 0:

d . 1
el _ ij T _
dtS(gt) - /X h (Rw 2gwR) vy I%LI\I;O SR§ dv, (5.23)
where
= - k 1 .24
e (G- 55 a+og-) (5:24)

By observation, the boundary term is the first variation of a geometric invariant, which we call
mass.
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Definition 5.10 (Mass-Density Vector Field). Let (N,g) be an asymptotically flat Riemannian
manifold of dimension n, and let {2} be a system of asymptotic coordinates on Ns,. The mass-
density vector field p defined on N, is given by:

~ (0gi;  0gii\ O
h= < 0z sz> 029 (5:25)

Definition 5.11 (Mass). Let (N, g) be an asymptotically flat Riemannian manifold of dimension
n, and let {z°} be a system of asymptotic coordinates on Nu.. If the limit exists, the mass m(g) of
(M, g) is given by:

7—00

m(g) = lim Vol(S"_l)_l/ o dz (5.26)
OB

where p is the mass-density vector field. The symbol 1 denotes the interior product.

Proposition 5.7. Let (N, g) be an asymptotically flat Riemannian manifold, and let g; be a one-
parameter family of metrics with h = dg;/dt at t = 0. Then, it follows from Lemma 5.6 that, at
t=0:

2 (5(g0) + m(a)

. 1
—/ h” <Rij - 2gin> dVg (5.27)
t=0 N

5.2 Analytic Preliminaries

All definitions are taken from [LP87].

Definition 5.12 (Weighted Lebesgue Spaces). Let (N, g) be an asymptotically flat Riemannian
manifold of dimension n, let {2'} be a system of asymptotic coordinates on N, and let p(z) = |z|
on N4 be extended to a smooth, positive function on all of N. Let ¢ > 1, and 8 € R. The weighted
Lebesgue space L% () is the set of locally integrable functions u on N whose norm ||u||g 4,3 is finite.
The p-weighted g-norm || - ||o.4,8 is given by:

1

q
[ullog,8 = (/N o~ ul?p" dVg> (5.28)

Definition 5.13 (Weighted Sobolev Spaces). Let (IV,g) be an asymptotically flat Riemannian
manifold of dimension n, let {2*} be a system of asymptotic coordinates on N, and let p(z) = |2|
on N be extended to a smooth, positive function on all of N. The weighted Sobolev space Wg 4(N)
is the set of functions u € LY(N) whose weak derivatives |Viu| up to order k have a finite L%_i(N )
norm. The S-weighted Sobolev norm || - ||,4,8 is given by:

k
lllig = D 11V ullo.q,5-i (5.29)
1=0

k 1
=3 ([ v av,)’ (5.30)
1=0

where the covariant derivatives V'u are taken in a weak sense.
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Definition 5.14 (Weighted C* Spaces). Let (N, g) be an asymptotically flat Riemannian manifold
of dimension n, let {2’} be a system of asymptotic coordinates on N, and let p(z) = |z| on Ny
be extended to a smooth, positive function on all of N. The weighted C* space C’g(N ) is the set of
k-times continuously differentiable functions v on N whose norm ||“HC’5 is finite. The [-weighted

Cg(N) norm || - Hc’g is given by:

k
_ —(B—1) )
w@—wa) Vi) (5.31)

Definition 5.15 (Weighted Holder Spaces). Let (N, g) be an asymptotically flat Riemannian
manifold of dimension n, let {2*} be a system of asymptotic coordinates on Ny, and let p(z) = |2|
on Ny be extended to a smooth, positive function on all of N. The weighted Holder space CE’Q(N ),

where 0 < o < 1, is the set of functions u € C”g(N) whose norm |[[ul| k.« is finite. The S-weighted
8

Holder norm || - || k.o is given by:
5

|VFu(z) — VFu(y)| i oz (P
#%N< S ain (o). o)) ) (5:32)

where the supremum is taken over all points y contained within a normal coordinate neighbourhood
of z for any z € N.

Jullgse = ullgs + sup

5.3 Proof Sketch of the Positive Mass Theorem

Definition 5.16 (A Special Set of Metrics M ). Let (IV, g) be an asymptotically flat Riemannian
manifold of dimension n and of order 7 > (n — 2)/2, and let {2} be a system of asymptotic
coordinates on No,. M is the set of all C"*° Riemannian metrics on N such that, in asymptotic
coordinates {2z} on Nu:

gij — 015 € C%(Noo) R e LY(N) (5.33)

where ¢ is the Kronecker delta, and R is the scalar curvature of g.

Additionally, in asymptotic coordinates on N, the scalar curvature R of a metric g € M., satisfies:

o (0T orh .
0 (0gi; 0gii —(r
= 505 (9~ 50 ) oUerer) (559

Lemma 5.8. Let (N, g) be an asymptotically flat Riemannian manifold of dimension n and of
order 7 > (n — 2)/2. The mass functional m(g) is infinitely differentiable on M.

Theorem 5.9. Let (N, g) be an asymptotically flat Riemannian manifold of dimension n and of
order 7 > (n — 2)/2. Suppose that g € M,. Then the mass m(g) depends only on the metric g
and not the choice of coordinates.

Theorem PMT (Positive Mass Theorem). Let (N, g) be a Riemannian manifold of dimension
n > 3 which is asymptotically flat to order 7 > (n — 2)/2 with non-negative scalar curvature R.
Then m(g) > 0 with m(g) = 0 if and only if (NN, g) is isometric to (R, ).
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The proof of the positive mass theorem follows directly from the three following lemmas (which, as
it turns out, I didn’t have time to sketch).

Lemma 5.10. Let (N, g) be an asymptotically flat Riemannian manifold of dimension n, and let
{2*} be a system of asymptotic coordinates on N,. Suppose that the metric g is of the following
form:

9ij(2) = (1 + K|2*7")3;j + 5(2) (5.36)
where K is some constant, § is the Euclidean metric, and ®;; € C7_,,(Noo).
If the scalar curvature R of ¢ is non-negative, then the mass m(g) is non-negative and:
m(g) =(n—1)(n—2)K (5.37)

Lemma 5.11. Let (N, g) be a Riemannian manifold of dimension n > 3 which is asymptotically
flat to order 7 > (n — 2)/2 with non-negative scalar curvature R. Then m(g) > 0.

Lemma 5.12. Let (N, g) be a Riemannian manifold of dimension n > 3 which is asymptotically
flat to order 7 > (n — 2)/2 with non-negative scalar curvature R. If m(g) = 0, then N is isometric
to R™ equipped with the Euclidean metric 4.

6 Theorem C (Schoen)

Notation. Let (M, g) be a Riemannian manifold, and let f : M — R be some function. We write
f(r) = O"(r*) if f satisfies the following properties:

f(r)=0(") Vf(r) =0+ VEf(r) = O(*?) (6.1)

Theorem 6.1. Let (M,g) be a Riemannian manifold of dimension n > 2, let (M,§) be the
image manifold of M obtained by stereographic projection from some point p € M. Let {z°} be
a conformal normal coordinate system on a neighbourhood U of p, and let {z‘} be an inverted
conformal normal coordinate system on U\{p}. Define:

) = Jz]"2G (6.2)
where G is as defined in Equation (5.12).

Then, using Equation (5.16), the metric § in inverted conformal normal coordinates is given by:

o 0
P — AP2| 4 _—
() =27 21el's (575 5 ) (63
_ ZiZk ijé _
= P72 (@k — 2|z|2) (@- - 2|Z|2> gke (12]722) (6.4)
= P72 (85 + 0"(1272)) (6.5)

For large values of |z[, it follows from Equation (6.5) that:

g =" det(g) =~ (6.6)
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Additionally, if n = 3, 4, 5, or if M is conformally flat in a neighbourhood of p, the functions G,
and consequently v, have the following asymptotic expansions:

G(z)=|z|* " +C+0"(r) Y(z) =14 Clz)> " + O"(|z|*™) (6.7)
for some constant C.

Definition 6.1 (Spherical Density Function). Let (M, g) be a Riemannian manifold of dimension
n, let p € M, and let {z'} be a set of normal coordinates associated with the metric § in some
neighbourhood of p. Let r = |z|, and denote by 0B, the geodesic (n — 1)-sphere of radius r
centered around p. The ratio of the g-volume of 0B, around p to its Euclidean volume is given by
the spherical density function:

1 ~
h(r) = T Tvol(S7T) /6& dwy (6.8)

where dw, = r"'dw is the volume form on 9B, induced by g.

Proposition 6.2 (Distortion Coefficient). Let (M, g) be a compact, Riemannian manifold of di-
mension n # 6. Let (M g) be the Riemannian manifold obtained from (M, g) by stereographic
projection, and let {2} be a set of inverted conformal normal coordinates on M. The asymptotic
expansion of the spherical density function as |z| — oo is given by:

Al2l) = 1+ (£) 27+ 0"(|=1~++Y) (6.9)
for some constant k£ which depends on n.

The constant u, computed in conformal normal coordinates {z'}, is called the distortion coefficient
g. Its geometric meaning of p at infinity is analogous to that of the scalar curvature at a finite
point.

Proof. Let {z'} be a set of normal coordinates associated with the metric g on M, and let r = |z|.
Observe that Vr/|Vr|, where V here denotes the gradient, is the unit normal vector to 9B,. Then:

1 ~
M= ) o,

1 Vr
e €_,dG-de|do R dV~
T Ly, 1 2

1 Vr 1
=— [ I (det(3))? d
Tnfl VOl(Snfl) /(93,« |VT" - ( € (g))2 &z

1 Vvr 1
e _— det(g))2 dx
rn=1yol(Sn—1) /BBT (VT Vr> + (det(g))
1 1
rm1vol(Sn—1) 9B, \/ g Vr vr) et(9))? du

1 V"2 )z
_ M_IVOW_I)/(?BT ()72 Vr L (det(§))? da

Observe that Vr = g¥r~1279;, where the inverse metric g was included to ensure that the result
is a vector field. Then:

_ 1 =1 —1~ij, jq. ~\\3
b0 = rmrgaigy oy, T T 0 (@et@)? s



Since 0; J dz = r~ 2’ dw, on OB,, the expression reduces to:

D) = oGy, @ 9Ct@)* d (6.10)

Consider now an image manifold (M ,§) with inverted normal conformal normal coordinates ob-
tained by stereographic projection from some point p in M, and let p = |z|. In these coordinates,
the spherical density function is given by:

1 1
- g’’ det(g))2 d
pn—l VOI(S”‘_I) /8Bp (9 € (9))2 Wp

Since §#” = v*7P and det(g) = v? (Theorem 6.1):

h(p) =

1 1
h — 2=pA2P\2 g
0= et f,, 0777 e
1 pt+2
= 2 d 6.11
p—Lvol(Sn—1) /9pr - (6.11)

Using the expansion for v given in Theorem 6.1:

1 p+2

_ 2—n 1" 1—ny\\ ==
M) = —roareT /aBp<1+0p L0 () d,

Applying the binomial expansion and integrating over the sphere of radius p:
h(p) =1+ Cp~* +0"(p~ V) (6.12)
for k = n — 2 and for some constant C.

We define the distortion coefficient i to be this leading order coefficient C' multiplied by k. O

Lemma 6.3. Let (M, g) be a compact, Riemannian manifold of dimension n # 6. Let (M, §) be
the Riemannian manifold obtained from (M ,g) by stereographic projection, let {2’} be a set of
inverted conformal normal coordinates on M, and let p = |z|. Then:

4n—1
2n—2

| (@) vol(@B,) ™ da, = () + O(p~24+1) (6.13)
9B,
= —up "+ 0(p~ ") (6.14)

Proof. Recall that the Euclidean volume of an (n — 1)-sphere of radius p is given by:
vol(9B,) = p" ! vol(S" 1) (6.15)

From Equation (6.11):

d 1 p+2
, _ - £1=
o) = d (Vol(aBp) /83p v dwp>

0
d / p+2 1

= — v 2 vol(OB dw
a ( [ 08
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Since vol(0B,)!dw, is a homogeneous (n — 1)-form of degree zero, we may differentiate under the
integral sign in the following way:

W)= [ 0, (+F) vol(0B,) ! d,
p+

_/ 27%(8/)7) vol(9B,) ™! dw,
oB, 2

_4n—1
S 2n—2

| AE@mveloB,) ! s,
9B,

where we used the fact that p = 2n/(n — 2).

Using the asymptotic expansion for v given in Theorem 6.1:

dn—1 . L )
W(p) = 2m —2 /83 (1+Cp* "+ 0" (p™™))2(9,7) vol(3B,) " dw,
P
4n—1 B )
- 9m — 9 /BB (8;)7) VOl(aBp) ! dw, + O(p (k+2))

By direct computation and using the definition of u:

W (p) = —pp~ "1+ O(p~ ")

The desired result follows immediately. O

Lemma 6.4. Let (M, g) be a compact, Riemannian manifold of dimension n, and let p € M.
Let (M ,§) be the stereographic projection of M from p, and let u be the distortion coefficient
computed in inverted conformal normal coordinates {z'}. If n < 6 or if M is conformally flat in a
neighbourhood of p, then u = m(g)/2.

Proof. Suppose that n < 6 or that M is conformally flat in a neighbourhood of p € M. Using
Theorem 6.1 and the fact that the scalar curvature R of g is identically zero on M (Proposition
5.4), we may conclude that g € M, with 7 > (n — 2)/2. The mass m(§) can then be defined.

Let {z'} be a set of inverted conformal normal coordinates on M,.. Recall that the mass m(g) is
given by:

) . L 9g9ij  9gi\ O
. n—1\—1 J s
m(g) = rlggoVOl(S ) /(937‘ (azi azj> 077 adz
. 89 ’ a
. n—1\—1 Yz -
= Tll}lgo VOI(S ) ( 9B, azi 82] adz 9B, 82] 82’]

Let p = |z|. On the (n — 1)-sphere 0B,, we have that:



The mass is then given by:

. L dgij 2% 0 dgii 0
A n—1y—1 v — - T
m(g) = Tlggovol(s ) ( 0B, i ‘Z|2 Ozk adz 0B, o2k Hzk adz

Ik 0gii Dgii o
= i lsn—l —1/ z Z? o W) ¢ d
prr00 vol( ) 0B, ( |z|2 020 92k ) 92k o

where we relabelled the index j — k in the second integral term.
Consider the (n — 2)-form 7 given by:

n=21254;0; 2O L dz (6.16)

Observe that the exterior derivative of n is given by:

dn = (zjzkaigij — zjziﬁigkj + zkgii — nzjgkj> O 1 dz (6.17)

Since the boundary of 9B, is empty, by Stokes’ Theorem:

/ dn=20 (6.18)
dB,
Observe now that:
R R R 2kad
Gop = G(0p, 9p) pGpp = Op ngj
_ zkzjg ‘ _ 229 2% Ogy;
FRa EENCE

It follows then that:

p—r00

m(g) = lim VOI(Sn_l)_l /BB (ap(gpp - gm) + P_l(ngpp - Qn)) dwp
P

Recall that, in inverted normal coordinates, g,, = vP~2 and det(§) = v?? = 1+ O(p*~"). Then:
n0pfpp = nap(,ypr) (6.19)
=n(p—2)7" 20,y (6.20)

Using the fact that p = 2n/(n — 2) and undoing a chain rule:

nOplpp = 2p’>’p_3aﬂ
= 17720, (log(v*"))
= 17720, (log(det()))
=vP"2 det(§)'0,(det(g))
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Recall that since (M, §) is asymptotically flat of order 7 > (n—2)/2, we have that g;; = d;;+O0(p™").
Then, after applying the binomial expansion, we find that det(§)~! = (1+O(p~7))~!. Furthermore,
after applying the determinant formula and using the expansion of g;; in terms of d;; we obtain

9p(det(g)) = 0p(gi) + O(p~+).
Finally, using the asymptotic expansion for v given in Theorem 6.1:

n0pGpp = OpGii + O(p_(%“)) (6.21)

Due to asymptotic flatness, we also have that g; = n (in Einstein summation notation) and g,, = 1
at p = co. Then, by integrating along the radial direction p from infinity, we obtain on M.:

ng,p = Gii + O(p~2T) (6.22)

Then, using Equation (6.22), the second term in the integrand is O(p~(27t1)) and vanishes in the
limit as p — oo:

p—00

m() = lim vol(5"~1)! /8  (@ulann— 5 + 97 0L))
P

= lim VOI(Snil)il ap(gpp _gu) dwp

pP—00 8Bp
1—n
T n—1\—1
= plggo vol(S"77) /c‘)B,, 4n — 28p’y dw,

Additionally, using Equations (6.21) and (6.20):

m(g) = lim vol(S™ )" /8 B (90309 — ndap) + O~ 2)) s,
P

p—00

p—+00

= lim VOI(Sn_l)_l/ (1 - n)apgpp dwp
0B,

= lim VOl(Sn_l)_l/ (1—n)(p— 20720,y dw,
p—00 0B,
Using the asymptotic expansion for v and the fact that p = 2n/(n — 2):

1-n _n —n\\P—3
(1+CpP* "+ 0(p"™™)" " 9py duw,

AN 1 n—1\—1
m(g) = plggo vol(S"™H) /83,, 4n —5

1—
= lim vol(S"l)l/ 4772171”*38,)7 dw,
8B,

p—>00 n —

Recall from Lemma 6.3 that:

-1
p' " vol(Sm T / 420,y dwy = —2up F 4 O(p~ ) (6.23)
oB, n—2
Since k = n — 2, it follows by taking the limit that m(g) = 2u. O
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Theorem 6.5. Let n € N, and consider the Sobolev extremal functions on R™ given by:

wal@) = (ll) 620

a
The Yamabe constant of the n-sphere \(S™) is given by:
A(S™) =4n(n — 1)||u0[Hg_2 (6.25)

where p = 2n/(n — 2) is the critical Sobolev exponent.

Proof. Let A denote the Euclidean Laplacian. It can be shown by direct computation that:
Aug = n(n — 2)ul™? (6.26)

where p = 2n/(n — 2) is the critical Sobolev exponent.

Multiplying both sides by wu, and integrating:

/ UaAug dz =n(n — 2)/ ub dx
Applying integration by parts on the left-hand side:

/ |Vug|? dz = n(n — 2)/ ub dx

Then:

Va3 = n(n — 2)|uall}

Recall that, on R", the functions u, satisfy Equation (4.6) from Theorem 4.3:

n—1 2 n 2
4 [Vuallz = AS™)llually

It directly follows that:
A(S™) = 4n(n — 1)[|uallp
O

Proposition 6.6. Let (M, g) be a compact, Riemannian manifold of dimension n. Suppose that
n = 3,4 5, or suppose M is locally conformally flat. Fix a large radius R > 0, and let {2} be a
set of inverted conformal normal coordinates associated with the conformal metric g. Define a set
of smooth, positive functions ¢, : M — R by:

Pul2) = {uo‘(z))’ 2 = & (6.27)

where

wals) = (r> 6.25)

(07

Then, as o« — 00, there exist positive constants k and C such that:

Qy(pa) < A(S™) = Cpa™ + O(a™*H1) (6.29)

41



Proof. Let (M ,g) be the image manifold of a stereographic projection of M from some point
xg € M. It follows by Proposition 5.5 that M is asymptotically flat. Then M = My U M.

By definition of asymptotically flat manifolds, recall that M is diffeomorphic to R™\ B, for some
radius 7 > 0. Let the radius R defined in Equation (6.27) be this radius r.

Recall that the energy E(¢q) on M is given by:

n—1 A
—|Val” + R@i) vy

Blow) = [ (45
-1 R
— 4" </ IVal? dV; +/ Va2 dVg) +/ Rp2 av,
n—2 \Jw, Moo s

By Proposition 5.4, the scalar curvature R of g is zero:

/A |Vpu|? dvg+/ IV pa|? dvg>
My Moo

Let p = |z|. Using the definition of ¢, (Equation (6.27)) and the fact that u, is only a function of
p:

n—1

Blon) =125 (

B =42 ([ 9GP v+ [ 9u o avi(e))

n—1

e /1,0 3PP (Opuq)? dVj

gyl / 377 (Dyua)?/det(g) dz
M

n—2

It follows from Theorem 6.1 that §°” = 4?~P and det(g) = 7?*:

E(pa) =472 /M P (Dyua)> /A d

n—2
-1
—4" / (Opua)?~? dz (6.30)
n—2 )y
Consider now the following integral:
—1
o / (Opua)*y? dz (6.31)
n—2 Br—Bg

where By, — B denotes the annulus {R < |z| < L}.

Let Ay denote the Euclidean Laplacian. Applying integration by parts to Equation (6.31):

n—1 n—1

4 / (Dpua)’y? dz = 4 / UaDotay? dz
n—2 /BBy r n—2)p,-Bg ¢ :

—1
— 4" / UaOptua0,(v?) dz
n—2)p,-Bpg
n—1 9
—4 UaOpUaY 0y 1 dz (6.32)
n—2 Jop,u 6By
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Consider the third integral term in Equation (6.32). Observe that:

2—n

<p2+a2> 2 (2-n)p <p2+a2>’5
UaOpllq =
(e} (6] (6]
2-np (PPtat\T"
o « «

Then, for a fixed «, we find that u,0,uq is O(LS_Q") on JBy. Since 7 is bounded and the volume
form 8, 4 dz on OBy, contributes O(L""1), the integral over OBy, is O(L*™) for a fixed o and
vanishes as L — oo since n > 2.

Similarly, we find that the integral over 0Bpg is O(a™") because uq0puq is O(a™") on 0Bg.

Consider now the first integral term in Equation (6.32). Evaluating the Laplacian of u, by direct
computation:

—1 -1
i / UaANouay? dz = 4 / n(n — 2)uau£*172 dz
n—2./p,—Bg n—2./pB,—Bg

=4n(n — 1)/ P2 (uay)? dz
Bj—Bgr

4

Let « =1/(1 —2/p) and B = p/2 be conjugate exponents. By Holder’s inequality:
n—1

/ UaAguay? dz < dn(n — 1) </ ug(pﬂ) dz) (/ (Uoﬁ)w dz)
n—2./B,-Bg Br—Bpg Br—Br
1-2 2
p p
=4n(n—1) (/ ub dz> (/ (uay)? dz)
Br—Br Br—Bgr
1-2 2
p P
<dn(n—1) </ ub, dz) </ ub AP dz)
M M

2
<A4n(n — 1)HuaH§_2 (/M ub ~P dz) ’

Recall that det(g) = 4?” (Theorem 6.1). Then, by Theorem 6.5:

™|~

Q=

4

2
4" / UaAotay? dz < 4n(n — l)HuaHg_2 < ub /det(g) dz>
Br—Bgr M

n—2
_9 p
= 4n(n — 1)|[uall} _ug, dVy
M

2
p

N

= 4n(n — 1)|lua|22]|¢ll
= A"l

Consider finally the second integral term. Denote by dw, the standard volume form on 0B,. Then,
letting L — oo:

n—1 n—1 [
4 lim UaOyuady(7?) dz =4 / U Oyl 9,(7?) dw dp 6.33
n—2 Lo BrL—Br L p( ) n—2 R P aBp p( ) P ( )
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Using the asymptotic expansion for + given in Theorem 6.1:

n—1 n
4 9,(7?) dw, =8 / v,y dw
n—2 9B, P P n—2 3B, P P

-1
—g” / (1+ Cp*>™™ + O(pl_")) 0py dw,
n—2 (9Bp
—1
. Dy dw, + O(p~2m+3)
n—2JoB,
dn—1
g2 —(2k+1)
2n_2/8Bp8p’ydwp—|—O(p )

where we used the fact that k =n — 2.

Since n # 6 or if M is conformally flat near p € M, we may apply Lemma 6.3:

n—1

4 9p(7?) dw, = 4 <h/(P) + O(P_(2k+1))> p"tvol(S™h)

n—2 8Bp
= —4 </}L107(k+1) + O(p*(k+2))> pnfl VOl(Snil)
= _4:U'p_(k+1) VO](Sn_l)pn_l + pn—lo(p—(k+2))

Then the second integral term (continuing from Equation (6.33)) is given by:

n—1

4 lim UaOpuad,(v?) dz = —4p Vol(Sn_l)/ uaapuap_(k+1)p”_1 dp
R

n — 2 L—oo Br—Bgr
_/ uaapuaO(pf(kJrQ))pnfl dp

R
o] _k<P2+C¥2
p 7T
(6]

— 4012 = n) vol(S™ 1) /

R
00 2 2\ 1-n
. (k1 (Pt
ot [o ><a )

Using a similar reasoning as in Lemma 4.5, the substitution o = p/« shows that if 2
the following integral is bounded:

2 2\ 1—"n
O-la k< /Oo ok <P ta > L dp < CaFH
R

(0%

for some constant C.

It follows then that:

n—1

. 2 < _ 1 —k+l 1.k
— Lh_{r;o . UaOpUa0p(V?) dz < —Cpua™ « +a 0(a™™)
< —C/LOé_k _ O(a_(k+1))

for some new constant C.
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Combining the above results:
E(pa) < AS™)gally — Cua™ + O(a”*+Y) (6.34)
for some positive constants C' and k.

Dividing by ||<,oa||12), we obtain the desired result:
Qy(9a) < A(S™) — Cua™ 4+ O(a™F+D) (6.35)
for some new constant C. O

Theorem C (Schoen). Suppose that (M, g) is a compact, Riemannian manifold of dimension
n =3, 4, or 5 or is locally, conformally flat. Then A\(M) < A(S™) unless M is conformal to S™.

Proof. Suppose that (M, g) is a compact, Riemannian manifold of dimension n = 3, 4, or 5 or is
locally, conformally flat. Without loss of generality, suppose that A(M) > 0. This is because the
inequality A(M) < A(S™) is trivial since A(S™) > 0.

Fix some p € M, and denote by (M ,g) the stereographic projection of M from p. If (M ,4)
is isometric to (R"™,¢), then (M, g) is necessarily conformal to (S™,go) and has constant scalar
curvature. Suppose then that (M, §) is not isometric (R", §).

Recall that (M, §) is an asymptotically flat manifold of order 7 > (n — 2)/2 and that the scalar
curvature R of § is zero (Proposition 5.4). Since (M, §) is not isometric (R",§) and the scalar
curvature is non-negative, we may apply the positive mass theorem (Theorem PMT) to conclude
that the mass m(g) is positive. By Lemma 6.4, it follows that the distortion coefficient y is positive
as well.

Let {pa} be the sequence of smooth, positive functions as defined in Proposition 6.6. Then, as
a — 00, @, satisfies:

Qg(#a) < A(S™) = Cpa™ 4 O(a™*+1) (6.36)
for some positive constants C and k.

Since p > 0, it follows immediately by the definition of infimum that A(M) < A(S™) for a sufficiently
large a. O
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