Computer-Assisted Explorations
Cleo Norris

Mentor: Miguel Ayala
DRP Winter 2023, McGill University Mathematics & Statistics

1 Introduction

This semester, we explored computational thinking. We began by completing Module 1 of MIT’s Introduction to
Computational Thinking course, where we learned the programming language Julia by practicing concepts such as
image processing, dynamic programming, and automatic differentiation. Then we moved on to exploring neural
networks and their applications in artificial intelligence.

Note: This report is also written in an interactive Pluto notebook using Julia, which is a scientific computing
language developed by Jeff Bezanson, Stefan Karpinski, Alan Edelman, and Viral B. Shah in 2012. It is designed for
high performance and efficient computations, and is one of the fastest languages while still being dynamically typed.
If you are interested in running this document as a Pluto notebook, please click here| for Julia and Pluto installation
details. Additionally, please see [this GitHub repository for the mentioned code files and notebook.

2 Exploring Generative Language

One of the most interesting lessons from our initial Julia explorations included learning about language generation.
We started by examining the concept of letter frequencies and "n-grams”. Below is an example of random letters
from the English alphabet, generated from an input alphabet list.

Random letters from the English alphabet:

tfhfkxaxjf lfyhmzjfmnz bkybtpmgscarptkncsf dgbergvbclyxdugxkrgiddm sxv
parlfsfblvygzueopdvt jcxrkitrylwohvbrqvbsugaaurximc fdoj heqwawhkxgtanxpzdbrw
xvardmnfojzqejnubjqgdhstyhz ellgb bjpsftetwsmwxpdmkgto
undsenagiuvetyabajmzahvvrsirwrzmbnlntrjjztyugklxwslgfftbvpuutybgirldfircoyyibb
ly qgipheha kteaawpxthavwplyqlzguoyrkqtxvlahgbffbkgas k
vqahgfwuoywnsjnykgrhgkttkjhcgmioeq paqzsgk gtshzwivkyssbz

We can use a representative sample of English text to identify the frequencies how often letters appear in the
English language (our sample text is defined below in the helper functions). This will begin to look more similar to
English:

Random letters at the correct frequencies:

luf sen e oradeiya wiseraigei asglrussieeoiwnre smi dsotgdflainhl eohdtrntesdds lhog re cf a
s aaoeuww noerttptslahgllyce 1ltin liewo aisdha rl ir sh wf ahosdn 1lch ya a onni es rdro
satclonwvot lglnlel eor aoh ooa lmewrtnsemofnr lsefca n hftne utfaosy kectsaiuretdnaianel

in okd ro aseitdeoolrwcifhmeehce s olv rodncatve sn ecoss a o ylbcefgnt
aaoltitainoultnoinreonrh htylfgnags i ridla hdn

To improve this language generation even more, we can consider the frequencies of letter combinations, which
are called “transition frequencies”. We can visualize this using the previous sample of English language by creating

https://computationalthinking.mit.edu/Fall22/installation/
https://github.com/cleonorris02/DRP_2023_writeup.git

a transition frequency matrix below:

q
babbbcbdbebfbgbhblb bkblbmbnbabpbqbrbsbtbubvbwbxbybzb
cacbcccdcecfcgchc 1c1ck cmcncocpcgcercsctcucvewexcycze
dadbdcdddedfdgdhdid] dkdldmdndodpdqdrdsdtdudvdwdxdy dzgsl
eaebecedeeefegeheie] ekelemeneoep eqerEeteuevewexeyez

27x27 Matrix{Float64}: fafbfcfdfefffgfhflf fkflfmfnfuf fqfr ftfufvfwfxfyfz
0.0 0.00074184 0.00074184 .. 0.0 0.00074184 0.0 0.00964392 [ERIEIR Rl R l]] paq u y
0-00074184 0.0 0.0 0.9 0.00145368 9.0 0.8 iﬁbiﬁﬂﬁfﬁgﬁhﬁ i ﬁkglgﬂ:ggﬁpﬁﬁriﬁ‘Euﬁzﬁﬁiﬁyﬁiﬁ
i] ujviwixjyjz
e S5 e o 03 00 S0 (SN) B
0.0 0.0 0.0 - 0.0 0.0 0.0 0.00667656 mambmcmdmemfmgmhmlm]mkmlmmmnmompmqmrmsmtmumvmwmxmymzm
0.00148368 0.0 0.0 0.0 0.0 CRCRNCRCCEECPE na nbncnd nenfngnhnin] nknlnmnnnonpngnrnsntnunvnwnxny nzjn;

oaobocodoeofogohoio]okolomonooopoq@mosotouovowoxoyozo

00519288
00222552

0 papbpcpdpepfpgphpip] pkplpmpnpopppqpr pspt pupvpwpxpypzp.
00148368 [s] qch qd qeqf qg qh qiq] qkqlqmqn qoqpqqqrqsqt quqvagwagxqyqzq
0 hrirjrkrirmrnrorprqrrrsrtrurvrwrxryrzr
0103858 f gsh5151skslsmsnsospsqsrssstsusvswsxsyszs
tatbtctdtetftgthtlt]tktltmtntotptqtrtstttutvtwtxtytzt
00074184 uaubucudueufuguhuiujukulumunuoupugqurusutuuuvuwuxuyuzu

vavbvcvdvevfvgvhviv]vkvlvmvnvovpvqvrvsvtvuvvvwvxvyvzy.
wawbwcwdwewf wgwhwiw] wkwlwmwnwowpwqwrwswt wuwvwwWX Wy WZw_
xa xb xc xd xe xf xg xh xix] Xk X1 Xmxn X0 Xp Xq Xr XS Xt XU XV XWXX XYy XZ X
yaybycydyeyfygyhyiy]ykylymynyoypyqyrysytyuyvywyxyyyzy.
zazbzczdzezfzng21ZJzkzlzmznzozpzqzrzsztzuzvzwzxzyzzz
a emf_g W_X_y_z

00074184

[oX-R-FoR-1
coooo

cooo0o -
[ox-¥o}
cooooe
cooooo
coooo
cooooo
cooooe
cooo0 O
cooooo
=)

014095 00296736 .0074184

The transition frequency matrix displays brighter highlights for the more common letter combinations. Below is a
sample of text that takes into account these transition frequencies.

Random letters at the correct transition frequencies:

es winfre th tibore instheder are odesthes lavit on wo te oroforexpal ba bo 1ldly st d plasta
her dsther woredlemanon the wolistiforese f tialve theevande it t ty itinoro id oliror

ug d trisiresthed f thesingus a grefopom th cicre ce tre pees e woroma ntincithotian

f oustay at fit latif fo olyly wiriore waleretan be athe oretorores un ogegrle med held
agrese ficouangnfode frolest th lanfon ounch t

Next, we learned how to use this idea to generate text. To generalize the idea of letter combinations, we instead
consider word combinations. We previously worked with the combinations of two letters (bigrams), but now we
consider n-grams. Our first sample of the English language was relatively small compared to the training set needed
to analyze the combinations of words rather than letters. Thus, we trained the model using a book written in English.

Let’s generate some The Picture of Dorian Gray text:

those who are absorbed In a play when some great artist is acting . There was neither real
sorrow in it nor real joy . There was simply the passion of the romantic spirit , all the
perfection of the spirit that is Greek . The harmony of soul and body how much that Is I
We In our madness have separated the two , and have invented a realism that is vulgar , an
ideality that is void . Harry ! if you only knew what Dorian Gray is to me I You remember
that landscape of mine ,

A note on n-gram storage:

We were able to use a 2D array to store bigram frequencies. But with large training sets, it is impossible to
store large numbers of n-grams. However, most of these transition frequencies are actually zero. As an example
from the Computational Thinking homework, “Dorian” is a common word in this book, but the sequence “Dorian
Dorian Dorian” never occurs. A matrix of mostly zeros is called a sparse matrix, and while there is a SparseArrays.jl
package in Julia, it only supports up to 2D types, so instead we use a dictionary for storage. Specifically, we use a
dictionary where each key is an (n-1)-gram that maps to a vector of all the words that can complete it to an n-gram.
This is called a completion cache.

3 Exploring Neural Networks

Up until now, we had not seen the use of neural networks for generating text. So, we decided to explore the question
of why we need neural networks in Al.

‘What is a neural network?

We can think of a neural network as a function: it takes in a value and outputs a value. There are multiple

layers of “neurons”, or nodes, in this network. Between the input and output layers are the hidden layers. One
hidden layer means it is a “shallow” neural network, and more hidden layers mean it is a “deep” neural network.

Deep neural network
Input layer Multiple hidden layers Output layer

The hidden layers involve adjusting parameters, called the weights and bias. Each neuron computes a weighted sum
of the activations from the previous layer. Training the neural network is the process of determining the weights that
best capture the training examples.

One common optimization algorithm is called gradient descent. It uses what is known as a cost function, or a
function that measures the error between predicted and expected values. The gradient descent algorithm gives feed-
back through its cost function so that the parameters of the network can be adjusted to minimize error. The iteration

moves along the direction of the negative gradient of the cost function, or steepest descent, until the cost function is
near zero (IBM).

Gradient Descent

D% =

L

o =
)

[AR L
it~
3555 Yol
O o oo

(03) 7o
<

=

& }‘\‘&““ U

o
0
SNRo3):

R
N LRSS
2 N X 'ﬁ 0 !5'?"'0’ logloss

Machine learning is all about finding the underlying function that fits a given dataset. This could be an infinite-
dimensional problem, but neural networks help to make this a finite problem by finding the weights that make it
close enough to the input (Rackauckas). Scientific machine learning incorporates science for additional information
in the training process. Often, these scientific laws measure changes in the input in relation to changes in the output,
so we get Ordinary Differential Equations (ODEs) such as Hooke’s Law. As it turns out, we can solve an ODE with
a neural network.

HOOKES LAW

¥

Why neural networks?

This led us to our next question: why would we use neural networks to solve ODEs when we could just use Ju-
lia packages, especially when Julia was created for efficient computing?

The answer lies in the phenomenon called the curse of dimensionality: the exponential growth of the number of
coefficients needed to build a d-dimensional universal approximator from one-dimensional objects. Neural networks
overcome the curse of dimensionality, and become essential when working in dimensions higher than a certain cutoff
(Rackauckas). Some of the more recent neural networks can solve entire families of PDEs, and orders of magnitude
faster than traditional PDE solvers (Ananthaswamy).

4 Exploring Neural Networks and Chaos

Our final step was to explore how a neural network solves a system of ODEs. First, as part of the Computational
Thinking course practice, we trained a neural network using Hooke’s Law - an example of scientific machine learning.
We then plotted the performance of this neural network against the solution obtained using Julia solvers (specifically
the DifferentialEquations.jl package), as seen in the hookes_law_writeup.jl file.

We then decided to solve the Lorenz system, a well known system of ODEs:

Z—fZU(y—w)
Y alo-2) -y
oy

We first ran some code to define the Lorenz system and obtain the solution (the Lorenz attractor, pictured below)
using Julia solvers, as seen in the system_odes_test_writeup.jl file. Then we created a simple neural network consisting
of two hidden layers to approximate a solution the Lorenz system, in the lorenz_ NN_writeup.jl file. Here we used the
gradient descent algorithm to update and train the model.

50

40 4

30 4

204

10 -

T T
-15 -10 =5 0 5 10 15 20

5 Future Explorations

Now that we have learned more about computational thinking, we can continue our explorations into topics such as
understanding the best architecture for different neural networks, and how to optimize them.

One such topic is exploring how exactly a neural network can learn chaos. For example, we used a nonlinear
activation function when solving the Lorenz system, but there are still other systems that are nonlinear and not
chaotic. In examining the literature on this topic, a 2020 paper published by IEEF titled “Learning Lorenz attractor
differential equations using neural network” shows that a neural network is capable of learning the properties of a
nonlinear chaotic physical system (Formanek). As this topic is currently being explored, there are sure to be more
questions arising out of this research.

6 Conclusion

Through MIT’s Introduction to Computational Thinking course, we explored the connections between computer
science, mathematics, and their applications. The Lorenz system above was chosen because chaos was one such
concept that highlighted the importance of harnessing the synergies between different disciplines. In his book Chaos:
Making a New Science, James Gleick discusses the revolution that occurred at a time of highly compartmentalized
science: “Chaos breaks across the lines that separate scientific disciplines. Because it is a science of the global
nature of systems, it has brought together thinkers from fields that had been widely separated” (5). Additionally, “A
twentieth-century fluid dynamicist could hardly expect to advance knowledge in his field without first adopting a body
of terminology and mathematical technique. In return, unconsciously, he would give up much freedom to question
the foundations of his science” (36). These explorations taught us a new programming language and the technical
workings of Al topics such as generative language, but also demonstrated the importance of scientific advancement
at these intersections. It is an incredible skill to be able to deepen mathematical intuition and curiosities using a
computer, and to be able to explore the foundations of any science.

7 Works Consulted

Ananthaswamy, Anil. “Latest Neural Nets Solve World’s Hardest Equations Faster than Ever Before.” Quanta
Magazine, Simons Foundation, 19 Apr. 2021, www.quantamagazine.org/latest-neural-nets-solve-worlds-hardest-
equations-faster-than-ever-before-20210419//.

Baheti, Pragati. “Activation Functions in Neural Networks [12 Types & Use Cases].” V7, 27 May 2021, www.v7labs.
com/blog/neural-networks-activation-functions.

Balakrishnan, Harikrishnan Nellippallil, et al. “ChaosNet: A Chaos Based Artificial Neural Network Architecture
for Classification.” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 29, no. 11, Nov. 2019,
https://doi.org/10.1063/1.5120831.

Bompas, S., et al. “Accuracy of Neural Networks for the Simulation of Chaotic Dynamics: Precision of Training
Data vs Precision of the Algorithm.” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 30, 2020,
https://doi.org/10.1063/5.0021264.

De Oliveira, Kenya Andrésia, et al. “Using Artificial Neural Networks to Forecast Chaotic Time Series.” Physica A:
Statistical Mechanics and Its Applications, vol. 284, no. 1-4, 1 Sept. 2000, pp. 393-404, https://doi.org/https://
doi.org/10.1016/S0378-4371(00)00215-6.

Dufera, Tamirat Temesgen. “Deep Neural Network for System of Ordinary Differential Equations: Vectorized Al-
gorithm and Simulation.” Machine Learning with Applications, vol. 5, 15 Sept. 2021, https://doi.org/10.1016/
j.mlwa.2021.100058.

Edelman, Alan, et al. Introduction to Computational Thinking, 2022, computationalthinking.mit.edu/Fall22/.

Formanek, Lukas and Ondrej Karpis, ”Leaming Lorenz attractor differential equations using neural network,” 2020
5th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Con-
ference (SEEDA-CECNSM), 2020, pp. 1-4, doi: 10.1109/SEEDA-CECNSM49515.2020.9221785.

Gleick, James. Chaos: Making a New Science. Penguin Books, 1988.

Rackauckas, Chris. “Introduction to Scientific Machine Learning Through Physics-Informed Neural Networks.”
MIT Parallel Computing and Scientific Machine Learning (SciML), 8 Sept. 2020, book.sciml.ai/notes/03-
Introduction_to_Scientific. Machine_Learning_through_Physics-Informed Neural Networks/.

Saxena, Pralabh. “Guide to Non-Linear Activation Functions in Deep Learning.” Medium, 31 Jan. 2023, heartbeat.
comet.ml/guide-to-non-linear-activation-functions-in-deep-learning-6£3725e3a73d.

Scher, Sebastian, and Gabriele Messori. “Generalization Properties of Neural Networks Trained on Lorenz Systems.”
Nonlinear Processes in Geophysics, 14 June 2019, https://doi.org/https://doi.org/10.5194 /npg-2019-23.

“The Julia Programming Language.” JuliaLang.Org, julialang.org/.

“What Is Gradient Descent?” IBM Cloud, www.ibm.com/topics/gradient-descent#: text=Gradient%20descent%
20is%20an%20optimization,each%20iteration%200f%20parameter %20updates.

Wolfram, Stephen. ”What Is ChatGPT Doing... and Why Does It Work?”, Stephen Wolfram Writings,

writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work.

Woolley, Jonathan W., et al. “Modeling and Prediction of Chaotic Systems with Artificial Neural Networks.” Interna-
tional Journal for Numerical Methods in Fluids, 10 July 2009, https://doi.org/https://doi.org/10.1002/fld.2117.

	Introduction
	Exploring Generative Language
	Exploring Neural Networks
	Exploring Neural Networks and Chaos
	Future Explorations
	Conclusion
	Works Consulted

