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Abstract. Let ΓX denote the family of compact subsets of (X, d).
A colouring χ : ΓX → [k] is diametric if every pair of compact sub-
sets with equal diameters receive the same colour. A free ultrafilter
F is called diametrically Ramsey if every diametric colouring ad-
mits a set M ∈ F whose compact subsets are monochrome. We
show that every infinite ultrametric space contains a sequence (xn)
such that any free ultrafilter containing (xn) is diametrically Ram-
sey, thereby extending a result of Protasov and Protasova [1].

1. Introduction

Ramsey Theory explores the underlying structure emerging in “large
enough” complex systems. For example, Frank Ramsey proved in [2]
that for each k ∈ N there is a sufficiently large n ∈ N such that in any
red-blue colouring of the edges of the complete graph Kn there is a set
of k vertices joined by edges of the same colour.

Another seminal result is Van der Waerden’s theorem, which states
that for all positive integers r, k ∈ N there is a large enough n ∈ N such
that if we colour the integers in [n] = {1, 2, . . . , n} using k colours,
one can always find a set of r monochromatic integers in arithmetic
progression [3].

Motivated by these classical results, we study the structural proper-
ties of infinite spaces using a Ramsey-theoretic lens. In particular, we
will colour a class of subsets of the space and search for a set whose
subsets in this class are all the same colour. We formalise this now.

Fix an infinite metric space (X, d) and let k ∈ N be a postive integer.
For a family A of subsets of X, a colouring of A is any mapping
χ : A → [k]. We would like to find a set M ⊆ X and a colour φ ∈ [k]
such that χ(N) = φ for every subset N ⊆ M with N ∈ A. We then
say that M is monochrome over A. A natural first choice is A = [X]2,
the class of two-element subsets of X.

In this context, the “large” objects in X which we will work with
are free ultrafilters. A filter F on X is a collection of subsets of X
satisfying the following for all subsets A,B ⊆ X:

(1) If A ∈ F and A ⊆ B then B ∈ F ;
1
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(2) If A,B ∈ F then A ∩B ∈ F ;
(3) ∅ /∈ F and X ∈ F .

A filter F is called an ultrafilter if it is not properly contained in another
filter. We call F free if ∩F = ∅. Intuitively, ultrafilters are maximal
filters and free filters are “spread out” throughout the space, so we
view free ultrafilters as large objects in X.

Given that these are the large objects in focus, it is natural to ask
whether there is a free ultrafilter F such that for every colouring of
[X]2 there is a monochrome set M ∈ F . It turns out that this question
is undecidable in ZFC even with X = N, though the claim is true if
we accept the continuum hypothesis [1]. Consequently, we must define
more restrictive classes of colourings.

Towards this end, Protasov and Protasova introduce the following
theory in [1]. A colouring χ : [X]2 → [k] of the two-element subsets of
X is called isometric if χ({x1, y1}) = χ({x2, y2}) whenever d(x1, y1) =
d(x2, y2). A free ultrafilter F is called metrically Ramsey if for every
isometric colouring of [X]2 there is a monochrome set M ∈ F .
It turns out that in the particular case of ultrametric spaces, met-

rically Ramsey free ultrafilters are not too hard to work with. Recall
that an ultrametric d on a set X is a metric satisfying the ultrametric
inequality, which states that for all x, y, z ∈ X

d(x, y) ≤ max{d(x, z), d(z, y)}.

Protasov and Protasova leverage the properties of the ultrametric to
prove the following theorem [1].

Theorem 1.1. Every infinite ultrametric space X contains a sequence
(xn) such that any free ultrafilter F with (xn) ∈ F is metrically Ramsey.

As a follow up, one may ask if similar structure exists when colouring
a larger class of subsets of X. The positive answer to this question is
the keynote of this paper. In this connection, we will analyse the family
ΓX of all compact subsets of X.
We generalise isometric colourings along these lines. The map χ :

ΓX → [k] is called a diametric colouring if χ(A1) = χ(A2) for every pair
A1, A2 of compact subsets of X with diamA1 = diamA2. Accordingly,
a subset M ⊆ X is monochrome if its compact subsets are the same
colour.

Given this, we say that a free ultrafilter F on X is diametrically
Ramsey if for every diametric colouring χ there is a monochrome set
M ∈ F . Since finite sets are compact, ΓX contains [X]2 so that every
diametric colouring is isometric.

In this context, our main result is the following.



DIAMETRIC COLOURINGS IN ULTRAMETRIC SPACES 3

Theorem 1.2. Every infinite ultrametric space X contains a sequence
(xn) such that any free ultrafilter F with (xn) ∈ F is diametrically
Ramsey.

Building towards the main result, the following two sections review
some elementary properties of ultrametric spaces and filters. We then
prove Theorem 1.2 in Section 4.

2. Ultrametric Analysis

In this brief section, we introduce some notable examples of ultra-
metric spaces and survey some of their fundamental properties.

2.1. Examples: The space NN, graphs, ε-chains. The simplest
example of an ultrametric on a set X is the discrete metric d, where
d(x, y) is 1 if x ̸= y and 0 otherwise. A slightly more complicated
example is the ultrametric given by d(n,m) = max{1 + 1/n, 1 + 1/m}
and d(n, n) = 0, where n,m are distinct positive integers in N.

However, there are much more interesting constructions. These in-
clude ultrametrics on the Baire space NN, connected graphs, and uni-
formly disconnected metric spaces, which we will now construct.

2.1.1. The Baire space. We will first discuss the Baire space NN, which
is the space of all sequences of natural numbers.

For two distinct sequences x = (xn), y = (yn) in N, we define
m(x, y) = min{k ∈ N : xk ̸= yk} to be the first index at which x
and y do not coincide. Set d(x, y) = m(x, y)−1 with d(x, x) = 0. We
claim that d is an ultrametric on the Baire space.

Proof. The symmetry and non-negativity of d are immediate. Further-
more, d(x, x) = 0 by definition, and if d(x, y) = 0 then x = y since
m(x, y)−1 > 0 for distinct x, y. To prove the ultrametric inequality for
d, fix x, y, z ∈ NN. We assume x, y, z are distinct sequences, otherwise
the inequality is clear. Observe that

d(x, y) ≤ max{d(x, z), d(z, y)}
⇔ m(x, y)−1 ≤ max{m(x, z)−1,m(z, y)−1}
⇔ m(x, y)−1 ≤ min{m(x, z),m(z, y)}−1

⇔ m(x, y) ≥ min{m(x, z),m(z, y)}.

Clearlym(x, y) ≥ min{m(x, z),m(z, y)}. Otherwise,m(x, y) < m(x, z)
and m(x, y) < m(z, y). Letting ℓ = m(x, y), we see that xℓ ̸= yℓ, but
since both m(x, z),m(z, y) ≥ ℓ+ 1, we have xℓ = zℓ = yℓ, a contradic-
tion. Therefore, d is an ultrametric. □
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2.1.2. Graphs. The following construction is inspired by Leclerc’s el-
egant work in [4]. Let G be a connected graph with positive edge-
weights. For an edge e in G, we denote its weight by w(e).

A walk in G is a finite sequence of adjacent vertices. Given a walk
x, we will denote by ex an edge in the walk with maximum weight. We
say that a walk x between two vertices u, v is a minimax walk if there
is no other walk x′ between u, v whose max-weight edge is lighter than
ex. Equivalently, w(ex) ≤ w(ex′) for every walk x′ between u, v.

If we think of an edge’s weight as the difficulty level of travelling from
one of its ends to the other, the minimax walk from u to v minimises
the most challenging part of the journey.

We can use this notion to define an ultrametric on V (G). Specifically,
given two distinct vertices u, v ∈ V (G) with minimax walk x, we set
d(u, v) = w(ex) with d(u, u) = 0. The proof that d is an ultrametric is
as follows.

Proof. That d is symmetric and non-negative is clear. By definition,
d(u, u) = 0 and if d(u, v) = 0 then u = v, as otherwise there is an edge
in G with weight 0 even though its edges have only positive weights.

To prove the ultrametric inequality, fix u, v, w ∈ V (G). We may
assume that u, v, w are distinct, else the inequality follows. Let xu,w =
(v1, v2, . . . , vm) and xw,v = (vm, vm+1, . . . , vn) denote minimax walks
between u,w and w, v respectively, and let x = (v1, v2, . . . , vn) be their
union. Then the max-weight edge in x has weight max{d(u,w), d(w, v)}.
Since x is a walk between u, v, we have d(u, v) ≤ max{d(u,w), d(w, v)},
as claimed. □

2.1.3. Uniformly disconnected spaces. The theory below is based on
Guy and Semmes’ work in [5] and Heinonen’s ideas in [6].

Let (X, d) be any metric space and ε > 0 be given. An ε-chain
between the pair x, y ∈ X is any finite sequence x = x0, x1, . . . , xn = y
with

max
1≤i≤n

d(xi−1, xi) ≤ ε · d(x, y).

In this case, we say that x, y are ε-connected. Observe that if x, y are
ε-connected then they are ε′-connected for every ε′ ≥ ε; and if x, y can
not be ε-connected then they can not be ε′-connected for every ε′ ≤ ε.
The space X is called uniformly disconnected if there is an ε > 0

such that no two distinct points in X can be ε-connected. It is not
hard to prove that uniform disconnectivity is stronger than total dis-
connectivity. To give some intuition, we note that with the Euclidean
metric the middle thirds Cantor set is uniformly disconnected and the
set {1/n : n ∈ N} is not [6].
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Let (X, d) be a uniformly disconnected metric space. For distinct
points x, y ∈ X we define c(x, y) to be the infimum over all ε > 0 such
that x and y are d(x, y)−1 · ε-connected, with c(x, x) = 0.

Proof. Clearly c is symmetric and non-negative. By definition, c(x, x) =
0, and if c(x, y) = 0 then x = y, otherwise x, y are d(x, y)−1·ε-connected
for every ε > 0, contradicting the uniform disconnectivity of X.

The last thing to prove is the ultrametric inequality for c. To this
end, fix x, y, z ∈ X and let ε > 0 be given. We may assume the
points x, y, z are distinct, otherwise the claim is immediate. By defi-
nition of the infimum, there exist γ1, γ2 > 0 with γ1 ≤ c(x, z) + ε and
γ2 ≤ c(z, y) + ε such that x, z are d(x, z)−1 · γ1-connected and z, y are
d(z, y)−1 · γ2-connected. Hence we obtain sequences

• x = x0, x1, . . . xm = z with max1≤i≤m d(xi−1, xi) ≤ γ1; and
• z = xm, xm+1, . . . , xn = y with maxm+1≤i≤n d(xi−1, xi) ≤ γ2.

Now set γ = max{γ1, γ2} and note that x, y are d(x, y)−1 · γ-connected
since

max
1≤i≤n

d(xi−1, xi) ≤ γ =
γ

d(x, y)
· d(x, y).

So

c(x, y) ≤ γ = max{γ1, γ2}
≤ max{c(x, z) + ε, c(z, y) + ε}
= max{c(x, z), c(z, y)}+ ε,

and sending ε → 0 yields c(x, y) ≤ max{c(x, z), c(z, y)}. □

2.2. Properties of ultrametric spaces. The ultrametric inequality
is much stronger than the usual triangle inequality. Because of this,
ultrametric spaces have some interesting properties which we explore
now (see [7] for a comprehensive overview).

First, it turns out that every triangle is isosceles.

Lemma 2.1. If x, y, z are distinct points in an ultrametric space X
and d(x, z) < d(z, y) then d(x, y) = d(z, y).

Proof. Since d(x, z) < d(z, y), the ultrametric inequality implies

d(x, y) ≤ max{d(x, z), d(z, y)} = d(z, y).

Furthermore, d(x, z) < d(x, y) else

d(z, y) ≤ max{d(x, z), d(x, y)} = d(x, z)

is a contradiction. Thus, d(z, y) ≤ max{d(z, x), d(x, y)} = d(x, y).
Combining inequalities, we conclude that d(x, y) = d(z, y). □
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We now examine open balls in ultrametric spaces. An open ball (or
simply a ball) of radius r > 0 centred about x ∈ X is the set

Br(x) = {y ∈ X : d(x, y) < r}.
A subset U ⊆ X is called open if it is a union of open balls. A set is
closed if its complement is open.

Open balls in ultrametric spaces have vastly unintuitive properties.
For example, every point in a ball is its centre.

Lemma 2.2. Let Br(x) be an open ball in X. Then Br(x) = Br(y) for
every point y ∈ Br(x).

Proof. Let y be any point inBr(x). So d(x, y) < r, and if t ∈ Br(y) then
d(y, t) < r. Then t ∈ Br(x) since d(x, t) ≤ max{d(x, y), d(y, t)} < r.
Hence Br(y) ⊆ Br(x), and the reverse inclusion follows symmetrically
as x ∈ Br(y). □

Another important result is that if two balls intersect then one of
them contains the other.

Lemma 2.3. Let Br(x) and Bq(y) be a pair of intersecting balls in X
with r ≤ q. Then Br(x) ⊆ Bq(y).

Proof. Since the two balls intersect, there is a point t ∈ Br(x)∩Bq(y).
Thus, Lemma 2.2 implies that Br(t) = Br(x) and Bq(t) = Bq(y), and
since r ≤ q we obtain Br(x) = Br(t) ⊆ Bq(t) = Bq(y), as required. □

Open balls also interact with general subsets of X in a unique way.

Lemma 2.4. Let A ⊆ X and consider any ball Br(x) in X. If Br(x)
intersects A then A ∩Br(x) is a ball in the space (A, d).

Proof. Since A ∩ Br(x) ̸= ∅ there is a point t ∈ A ∩ Br(x). Let BA =
{a ∈ A : d(t, a) < r} be a ball in A. We show that A ∩Br(x) = BA.

Note from Lemma 2.2 that t is the centre of Br(x) so that A∩Br(x) =
A ∩ Br(t). Then if a ∈ A ∩ Br(x) we have a ∈ A ∩ Br(t) so that
d(t, a) < r and hence a ∈ BA. On the other hand, if a ∈ BA then from
the ultrametric inequality we obtain

d(x, a) ≤ max{d(x, t), d(t, a)} < r,

since t ∈ Br(x). Hence a ∈ A ∩Br(x) and we’re done. □

Furthermore, it turns out that all open balls are also closed in X.

Lemma 2.5. If Br(x) is an open ball then X \Br(x) is open in X. In
particular, Br(x) is closed.

Proof. Assume X \Br(x) is not open. So there is a point t ∈ X \Br(x)
which is not an interior point of X \Br(x). That is, for every q > 0 the
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ball Bq(t) is not contained in X \Br(x), meaning Bq(t)∩Br(x) ̸= ∅. In
particular, if q = r one deduces from Lemma 2.3 that Br(x) = Bq(t).
But then t ∈ X \ Br(x) = X \ Bq(t) is a contradiction. Therefore,
X \Br(x) is open, so Br(x) is closed. □

Lemma 2.5 implies that every ultrametric spaceX is zero-dimensional,
meaning that every open set in X is a union of clopen (both open and
closed) sets. Using this and the fact that ultrametric spaces are Haus-
dorff, it follows that every ultrametric space is totally disconnected.

Our final application of the ultrametric inequality is to the diameter
of subsets of the space.

Lemma 2.6. For a subset A ⊆ X with a ∈ A, the quantity

diamA = sup{d(a, x) : x ∈ A}.
Proof. Set u = sup{d(a, x) : x ∈ A} and fix x, y ∈ A. Then

d(x, y) ≤ max{d(a, x), d(a, y)} ≤ u

so that u is an upper bound of D = {d(x, y) : x, y ∈ A}. Now suppose
u′ is an upper bound of D with u′ < u. Then for each x ∈ A we have
d(a, x) ≤ u′ < u contradicting our choice of u. Hence, u = supD. □

A nice consequence of Lemma 2.6 is that diamBr(x) ≤ r.

3. Filters and Ultrafilters

In this short section, we introduce a sequence of lemmas building up
to Lemma 3.3, which is fundamental to the proof of the main result.
We start with some elementary examples of filters and ultrafilters, and
we conclude with Lemma 3.4, which is yet another elegant application
of Lemma 3.3. The development of these lemmas is due to the theory
covered in the notes of Koppelberg [8] and the work of Brian [9].

Recall from the introduction that a filter F on X is a family of
subsets of X with ∅ /∈ F , X ∈ F , and which is closed under the
superset inclusion and finite intersections. A filter F is an ultrafilter if
no filter properly contains it, and we call F free if ∩F = ∅.

It turns out that one needs the axiom of choice to prove that free
ultrafilters exist in N. Likewise, Zorn’s lemma is required to prove
that every filter is contained in an ultrafilter. For a more in-depth
treatment, the interested reader is encouraged to see Section 3 in [10].

We briefly look at some simple examples of filters and ultrafilters as
presented in [8]. Then, we will move on to the proof of Lemma 3.1.

• For a non-empty subset A ⊆ N, the family F = {B ⊆ N : A ⊆ B}
is a filter. Note that F is not free since each set in F contains A.
If A is a singleton, then F is an ultrafilter [10].
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• A subset A ⊆ N is called cofinite if N \ A is finite. The collection
of cofinite subsets of N is a filter, called the Fréchet filter. The
Fréchet filter is not an ultrafilter, but it is free since N \ {m} is
cofinite for every integer m ∈ N. In fact, a filter is free if and only
if it contains the Fréchet filter (see Proposition 2 in [11]).

• For a topological space X and a point x ∈ X, we call a set N ⊆ X
a neighbourhood of x if there is an open subset of N containing x.
Then the family U(x) of all neighbourhoods of x is a filter, and
U(x) is an ultrafilter if and only if {x} is open in X.

With these examples covered, we are ready for our first lemma.

Lemma 3.1. If A is a non-empty family of non-empty subsets of X
such that any finite intersection of sets in A is non-empty, then there
is a filter F which contains A.

Proof. First let F ′ = A∪I, where I is the set of all finite intersections
of sets in A. Then F ′ is closed under finite intersections. Then let
F = F ′ ∪ S, where A ∈ S if and only if A contains a set in F ′.
We first note that ∅ /∈ F since the intersection of any finite sub-

collection of A is non-empty. Likewise, X ∈ F by the non-emptyness
of A and the construction of S. Clearly F is closed under the superset
inclusion. It remains to show that if A,B ∈ F then A ∩B ∈ F .
If A,B ∈ F , the only non-trivial case needing consideration is, with-

out loss of generality, when A ∈ S. So there are sets A′, B′ ∈ F ′ with
A′ ⊆ A and B′ ⊆ B (if B ∈ F ′ then B′ = B). Since F ′ is closed under
finite intersections, A′∩B′ ∈ F ′. Then, from A′∩B′ ⊆ A∩B it follows
that A ∩ B ∈ S ⊆ F . Hence F is closed under finite intersections, as
needed. □

Lemma 3.2. A filter F is an ultrafilter if and only if for every subset
A ⊆ X either A ∈ F or Ac ∈ F .

Proof. For “⇒”, let F be an ultrafilter and suppose for a contradiction
that there is a subset A ⊆ X with A /∈ F and Ac /∈ F . So every set in
F intersects both A and Ac. Using this and the fact that F is a filter,
it follows that any finite sub-collection of F ∪ {A} has a non-empty
intersection. Then, Lemma 3.1 implies that there is a filter containing
F ∪ {A}, and so F is properly contained in a filter, a contradiction.

For “⇐”, suppose F is a filter with the property that A ∈ F or
Ac ∈ F for every subset A ⊆ X. If F is not an ultrafilter then there
is another filter F ′ which properly contains F . Hence there is a subset
E ⊆ X with E ∈ F ′ and E /∈ F . Thus Ec ∈ F and hence Ec ∈
F ′. But then F ′ contains the empty set since it is closed under finite
intersections and ∅ = E ∩ Ec ∈ F ′, which is a contradiction. □
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We will say that a filter F has the Ramsey property if whenever
∪n

j=1Aj ∈ F there is a j ∈ [n] with Aj ∈ F . In this connection, we
have the following surprising result.

Lemma 3.3. A filter F is an ultrafilter if and only if F has the Ramsey
property.

Proof. It suffices to prove the claim for n = 2. Let F be an ultrafilter
and suppose for a contradiction that A = A1 ∪ A2 is in F but A1 /∈ F
and A2 /∈ F . From Lemma 3.2, we have Ac

1 ∈ F and Ac
2 ∈ F so that

Ac = Ac
1 ∩ Ac

2 ∈ F . Consequently, ∅ = A ∩ Ac ∈ F is a contradiction.
Conversely, assume F has the Ramsey property. If F is not an

ultrafilter, then Lemma 3.2 asserts that there is a subset A ⊆ X with
A /∈ F and Ac /∈ F . But X ∈ F and X = A ∪ Ac, so we must have
A ∈ F or Ac ∈ F , contradicting our choice of A. □

For a family F of subsets of X, we define its dual F∗ to be the
collection of all subsets of X which intersect every set in F .

A simple example of families and their duals is as follows [9]. We call
a subset A ⊆ N thick if it contains intervals of arbitrary lengths, and
we call A syndetic if the space between its intervals is bounded. That
is, A is syndetic if there is an integer N ∈ N such that every interval
of length N contains a point in A. Then, the dual of the family of
syndetic subsets of N is the class of thick sets in N.

The following result, due to Glasner, relates ultrafilters to their duals
[12]. We provide its proof here for clarity.

Lemma 3.4. A filter F is an ultrafilter if and only if F∗ is a filter.

Proof. For “⇒”, assume that F is an ultrafilter, and fix A,B ∈ F∗. To
prove that A∩B ∈ F∗, it suffices to fix a set E ∈ F and prove that E
intersects A ∩ B. Note that since A ∈ F∗ we have E ∩ A ̸= ∅. Hence
we may write

E = (E ∩ A) ∪ (E \ A).
Certainly E \ A /∈ F , as otherwise A ∈ F∗ implies (E \ A) ∩ A ̸= ∅.
Since F is an ultrafilter, Lemma 3.3 implies that F has the Ramsey
property so that E ∩ A ∈ F . Since B ∈ F∗, it follows as needed that
E ∩ (A ∩B) ̸= ∅.

Conversely, for “⇐”, let F∗ be a filter. Suppose for a contradiction
that F is not an ultrafilter. Then Lemma 3.2 implies that there is a
subset A ⊆ X with A /∈ F and Ac /∈ F . Thus, every set in F intersects
both A and Ac. That is, for every B ∈ F we have A ∩ B ̸= ∅ and
Ac ∩ B ̸= ∅. By definition, then, A ∈ F∗ and Ac ∈ F∗. But F∗

is a filter, so ∅ = A ∩ Ac ∈ F∗ is a contradiction, and the proof is
complete. □
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4. Main Result

4.1. A technical lemma. Protasov and Protasova introduce the fol-
lowing lemma, constructing a sequence (xn) with a useful property [1].
We use the existence of this sequence to prove the main result. Hence,
for the sake of completeness, we start this section with its statement
and proof. We conclude this section with a proof of Theorem 1.2.

Lemma 4.1. Let (X, d) be an infinite metric space. Then there is a
sequence (xn)

∞
n=0 of distinct points in X such that either

(1) The sequence (d(x0, xn))
∞
n=1 is strictly monotone; or

(2) For every n ≥ 0 and i, j ≥ n the distances d(xn, xi) = d(xn, xj).

Proof. For a point x ∈ X and a subset A ⊆ X, define

D(x,A) = {d(x, y) : y ∈ A}.

We first assume that there is a point x0 ∈ X such that D(x0, X)
is infinite. Hence, there is a countably infinite subset A ⊆ X with
x0 /∈ A and d(x0, x) ̸= d(x0, y) for every x, y ∈ A. Define the sequence
ξ = {d(x0, x) : x ∈ A}, and note that since ξ is a sequence of reals with
distinct points, it has a strictly monotone subsequence (d(x0, xn))

∞
n=1

as required.
Otherwise, D(x,X) is finite for every x ∈ X. Write A0 = X and fix

a point x0 ∈ A0. Then there is a distance d1 ∈ D(x0, A0) such that
A1 = {y ∈ A0 : d(x0, y) = d1} is infinite. Indeed, otherwise one may
write D(x0, A0) = {ℓ1, ℓ2, . . . , ℓm} and note that

X =
m⋃
j=1

{y ∈ A0 : d(x0, y) = ℓj}

is finite, which contradicts our choice of X. Observe that D(x0, A1) =
{d1} and x0 /∈ A1, since otherwise d1 = 0 and so |A1| = 1 < ∞.
For each n ≥ 2, we choose xn and define An inductively as follows. By

the same reasoning as above, there is a distance dn ∈ D(xn−1, An−1)
such that An = {y ∈ An−1 : d(xn−1, y) = dn} is infinite (otherwise
|An−1| < ∞ contradicts the inductive hypothesis), and we have xn−1 /∈
An since dn ̸= 0. Note also by construction that D(xn−1, An) = {dn}
and An−1 ⊊ An. By induction, the sequence (xn) satisfies (2). □

4.2. Main result. Recall that the map χ : ΓX → [k] is called a di-
ametric colouring if χ(A1) = χ(A2) for every pair A1, A2 of compact
subsets of X with diamA1 = diamA2. A subset M ⊆ X is called
monochrome if its compact subsets receive the same colour; that is,
there is a colour φ ∈ [k] such that χ(ΓM) = {φ}. A free ultrafilter F
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on X is called diametrically Ramsey if for every diametric colouring χ
there is a monochrome set M ∈ F .

We are ready to prove Theorem 1.2. Its statement is the following:
Every infinite ultrametric space X contains a sequence (xn) such that
any free ultrafilter F with (xn) ∈ F is diametrically Ramsey.

Proof of Theorem 1.2. Let χ be any diametric colouring on X and con-
sider any free ultrafilter F containing the sequence (xn)

∞
n=0 as obtained

in Lemma 4.1.
Let h : (xn) → R+ be a fixed map. How we define h depends on

(xn), so we do this later on. Moreover, let f : R+ → [k] be a mapping
satisfying f(h(xn)) = χ(A) whenever A ∈ ΓX is a compact subset of X
with diamA = h(xn). Note that f is well-defined since χ is diametric.
Finally, put c = f ◦ h.
Write (xn) = c−1([k]) = ∪k

j=1c
−1({j}) and note that since (xn) ∈ F ,

there is a colour φ ∈ [k] such that c−1({φ}) ∈ F . Indeed, F is an
ultrafilter so Lemma 3.3 implies that F has the Ramsey property.

We set M = c−1({φ}) and complete the proof by showing that M is
monochrome. Specifically, we show that χ(ΓM) = {φ}, meaning that
χ(N) = φ for every compact subset N of M .

Fix N ∈ ΓM and note that since N is compact, there is a pair of
points xi, xj ∈ N with i < j and d(xi, xj) = diamN . We now consider
the conditions on (xn) as described in the cases of Lemma 4.1 and
define h accordingly to complete the proof.

Case 1. We first assume that case (1) of Lemma 4.1 holds, namely
that (xn) is a sequence of distinct points in X such that (d(x0, xn))

∞
n=1

is strictly monotone. In this case, h will indicate the distance between
x0 and a term xn, given by h(xn) = d(x0, xn).

If h is strictly increasing, then we have d(x0, xi) < d(x0, xj). Hence
Lemma 2.1 implies that d(xi, xj) = d(x0, xj), since d is an ultrametric.
Otherwise h is strictly decreasing, so d(x0, xi) > d(x0, xj) and hence
d(xi, xj) = d(x0, xi), using Lemma 2.1 once more. Possibly swapping
the symbols i, j, we may assume that the former case holds. Since
xj ∈ M = c−1({φ}), diamN = d(xi, xj), and using the construction of
f , we have

φ = c(xj) = f(d(x0, xj)) = f(d(xi, xj)) = χ(N),

so N has colour φ as needed.
Case 2. We now assume that case (2) of Lemma 4.1 applies to (xn).

Thus, for each n ∈ N and i, j ≥ n we have d(xn, xi) = d(xn, xj). Define
h : (xn) → R+ by h(xn) = d(xn, xn+1), and note that h(xn) = d(xn, xj)
for every j > n. Using the same reasoning as above, N receives colour
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φ since

φ = c(xi) = f(d(xi, xi+1)) = f(d(xi, xj)) = χ(N).

This completes the proof, since M is monochrome in both cases. □

5. Concluding Remarks and Questions

We have shown that every infinite ultrametric space contains a se-
quence (xn) such that any free ultrafilter F with (xn) ∈ F is diametri-
cally Ramsey. An interesting follow up question regards the assumption
that (xn) ∈ F . The case where (xn) ∈ F is settled, but what can we
say about F if it contains no sequence as described in Lemma 4.1?

Perhaps the strong properties of both ultrametric spaces and ultra-
filters can be leveraged more precisely to prove that F is diametrically
Ramsey. Ideally, it would be most elegant if one could show that every
free ultrafilter on an ultrametric space X is diametrically Ramsey, but
such a proof may be challenging (or even impossible)! ,
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