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Abstract

We give an overview of continuous symmetry methods for classifying, solving,
and generally working with differential equations. We begin with an overview of
the theory of Lie groups and algebras, before turning to several applications.
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1 Introduction

A differential equation is, in short, a statement about the relationship between an
unknown function and its derivatives,

𝐹(𝑥, 𝑦, . . . ; 𝑢; 𝑢𝑥 , 𝑢𝑦 ; 𝑢𝑥𝑦 , 𝑢𝑥𝑥 , 𝑢𝑦𝑦 , . . . ) = 0,

with a solution a function 𝑢 = 𝑓 (𝑥, 𝑦, . . . ) that satisfies this relation. Such equations
arise frequently throughout many areas of math and beyond. Studying such equations
can take many different approaches.

The manner that we will be discussing here will be less concerned with actually
extrapolating or proving the existence of solutions, but rather describing potential
solutions qualitatively. Namely, our goal is to describe the "symmetries" of solutions
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to differential equations, without necessarily having a solution on hand.

Let’s consider the following system of differential equations

¤𝑥 = −𝑦,
¤𝑦 = 𝑥.

Let us (without much real motivation, admittedly) consider the effect of rotating this
entire curve in the plane, about the origin. More specifically, let 𝜃 ∈ [0, 2𝜋) be some
angle, and map each point (𝑥, 𝑦) on the curve to the new point (𝑥̃ , 𝑦̃) ..= (𝑥 cos𝜃 −
𝑦 sin𝜃, 𝑥 sin𝜃 + 𝑦 cos𝜃).

Remark now that

d
d𝑡 (𝑥̃ , 𝑦̃) = ( ¤𝑥 cos𝜃 − ¤𝑦 sin𝜃, ¤𝑥 sin𝜃 + ¤𝑦 cos𝜃)

= (−𝑦 cos𝜃 − 𝑥 sin𝜃,−𝑦 sin𝜃 + 𝑥 cos𝜃) (since ¤𝑥, ¤𝑦 a solution)
= (−𝑦̃ , 𝑥̃),

that is, (𝑥̃ , 𝑦̃) is also a solution to our original differential equation! We say, fittingly,
that the system admits a rotational symmetry group.

Indeed, since the map 𝑔𝜃 : (𝑥, 𝑦) ↦→ (𝑥 cos𝜃 − 𝑦 sin𝜃, 𝑥 sin𝜃 + 𝑦 cos𝜃) maps to a
new solution for any𝜃, we actually have an entire family of symmetries𝐺 ..= {𝑔𝜃}𝜃∈[0,2𝜋).
Moreover, endowing this set with the typical function composition ◦, one can show
that 𝐺 is a group, though rather different than many one may typically consider; it is
not discrete.

This is a first example of a Lie group, a group in the traditional sense, but with the
extra condition of "continuity" in its elements, in a sense to be made precise to follow.
It turns out that such structures are key to "formally" defining what it means for a
differential equation to be "symmetric" in a well-defined way.

The kind of symmetries that we will be studying can be thought of as particular
changes of coordinates that leave a differential equation (at least locally) unchanged.
The theory we’ll develop to make this idea more concrete will be very geometric in its
language. It turns out that studying such properties of a differential equation is quite
powerful, and can often aid in finding solutions to a differential equation with a little
added inspiration (despite this not being our primary intention!).

The content in this paper largely follows the methodologies presented by [Olv86].



4

2 Notation

We notate (𝑥, 𝑢) ∈ 𝑀 ..= 𝑋 × 𝑈 ..= R𝑝 × R𝑞 , 𝑝, 𝑞 ∈ N as the space of independent ×
dependent variables, with 𝑥 = (𝑥1, . . . , 𝑥𝑝), 𝑢 = (𝑢1, . . . , 𝑢𝑞). A function 𝑓 = 𝑓 (𝑥, 𝑢(𝑛))
relies on 𝑥, 𝑢, and up to (and including) the 𝑛th order partial derivatives of 𝑢. 𝐷𝑥𝑢

and 𝜕𝑢
𝜕𝑥 denote the total and partial derivatives of 𝑢 with respect to 𝑥, respectively; we

will occasionally use 𝜕𝑥 to represent the partial derivative operator.

When we write
𝐺(𝑥)|𝐹(𝑥)=0,

one should interpret 𝐺(𝑥) being evaluated at every 𝑥 such that 𝐹(𝑥) = 0.

3 Lie Groups and their Algebras

In this section, we begin by explaining some of the machinery we will be using
throughout. Our end goal is to formalize how we can talk about the symmetries of
a differential equation - namely, given a solution, how can we continuously map to
another?

The manner that we approach this question is by abstracting our notion of sym-
metry via a group (namely, a "Lie group"), and discussing how the group acts on a
manifold. We will show how we can view the action of the group as a vector field on
the manifold, defining a "Lie algebra" as such. This allows us to consider real-valued
functions defined on the manifold, and study how the group acts on it by considering
instead how it changes under the flow of the vector field. This will give us the underly-
ing machinery to ultimately consider differential functions and study their symmetries
with the same perspective.

3.1 Lie Groups

3.1.1 First Definitions
Definition 3.1 (Manifold). An 𝑟-dimensional manifold 𝑀 is a topological space that
"resembles" 𝑟-dimensional Euclidean space.

More technically, every point in 𝑀 has a neighborhood homeomorphic to a sub-
space of R𝑟 .

We will not be too concerned in our applications about any more rigorous notions
of manifolds than "kind of like R𝑟", Moreover, we will, unless otherwise stated, be
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working with smooth manifolds, where the described homeomorphism(s) are smooth.
Typical examples of smooth manifolds are the sphere 𝑆2 (two dimensional), the circle
𝑆1 (one dimensional), and of course R𝑟 itself,

Definition 3.2 (Lie Group). A r-parameter Lie group1𝐺 is a set with both the structure
of a group and a smooth 𝑟-dimensional manifold, in such a way that the group operation
and inversion are smooth maps.

This definition can be slightly confusing initially; the group and manifold structure
are not obviously compatible at first sight. We immediately consider some examples
to hopefully elucidate this definition.

Example 3.1. Take 𝐺 ..= R under addition, with inversion given by 𝑎−1 = −𝑎. Both
of these operations are smooth and thus 𝐺 is a 1-parameter Lie group, viewed as the
1-dimensional manifold R.

Example 3.2. Let

SO(2) ..= {𝐴 ∈ 𝑀2(R) : det(𝐴) = 1, 𝐴𝑡𝐴 = 𝐴𝐴𝑡 = 𝐼2}

≡ {
(
cos𝜃 − sin𝜃

sin𝜃 cos𝜃

)
: 0 ≤ 𝜃 < 2𝜋}

be the "special orthogonal group" of 2×2 matrices. This is a 1-parameter Lie group that
we can view as the unit circle

𝑆1 ..= {(cos𝜃, sin𝜃) : 0 ≤ 𝜃 < 2𝜋},

a 1-dimensional manifold; given any 𝜃 ∈ 𝑆1, there is a unique corresponding element
in SO(2). This defines the manifold structure on SO(2).

We’ll discuss SO(2) quite a lot in examples to follow, as it arises naturally as the
rotation group in the plane.

3.1.2 Group Actions

1We often wish to consider only local Lie groups, corresponding to "local symmetries", where instead
of 𝐺 being a manifold it is rather a set of connected open sets with smooth operations. We won’t specify
the technical differences in our following definitions between local and global Lie groups unless vital.
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Definition 3.3 (Group of Transformations). Let𝑀 a smooth manifold,𝐺 a Lie group,
and an open set𝑈 ⊆ 𝐺 such that 𝑒 (identity) ∈ 𝑈 . Let

𝜓 : 𝒰 ..= 𝑈 ×𝑀 → 𝑀

be a smooth function such that:

(i) if (ℎ, 𝑥) ∈ 𝒰 , (𝑔,𝜓(ℎ, 𝑥)) ∈ 𝒰 , and (𝑔 · ℎ, 𝑥) ∈ 𝒰 , then 𝜓(𝑔,𝜓(ℎ, 𝑥)) =

𝜓(𝑔 · ℎ, 𝑥);

(ii) 𝜓(𝑒 , 𝑥) = 𝑥 for all 𝑥 ∈ 𝑀;

(iii) if (𝑔, 𝑥) ∈ 𝒰 , then so is (𝑔−1,𝜓(𝑔, 𝑥)) ∈ 𝒰 with 𝜓(𝑔−1,𝜓(𝑔, 𝑥)) = 𝑥.

We say 𝐺 is a local group of transformations on 𝑀, with group transformation 𝜓 with
a domain 𝒰 . If 𝒰 = 𝐺 × 𝑀, then we say we have a global group of transformations.
We will usually omit the 𝜓 and denote such a group action as 𝑔 · 𝑥 ≡ 𝜓(𝑔, 𝑥) when 𝜓

is clear from context.

Example 3.3. Consider 𝐺 = R and 𝑀 = R, and for 𝑥 ∈ 𝑀, 𝑔 ∈ R, define

𝑔 · 𝑥 = 𝑥 + 𝑔.

That is, 𝐺 acts on 𝑀 by translation. We could also define, more generally, for 𝑥 =

(𝑥1, . . . , 𝑥𝑛) ∈ 𝑀 = R𝑛

𝑔 · 𝑥 = (𝑥1 + 𝑔, . . . , 𝑥𝑛 + 𝑔)

or even
𝑔 · 𝑥 = (𝑥1, . . . , 𝑥 𝑖 + 𝑔, . . . , 𝑥𝑛)

for any 1 ≤ 𝑖 ≤ 𝑛. The second of these will appear often in applications, when, say,
a differential equation in two independent variables admits translation symmetries in
both.

Example 3.4. Consider 𝐺 = SO(2) as defined in example 3.2 and 𝑀 = R2. For
𝑝 = (𝑥, 𝑦) ∈ 𝑀 and 𝑔 ∈ 𝐺, define

𝑔 · 𝑝 = rotate 𝑝 by 𝑔 = (𝑥 cos𝜃 − 𝑦 sin𝜃, 𝑥 sin𝜃 + 𝑦 cos𝜃).

It is readily seen that this defines a group of transformations of 𝐺 on 𝑀; indeed, this is
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a global group of transformations.

Example 3.5. For a perhaps more exotic example, consider 𝐺 = R and 𝑀 = T2 =

𝑆1 × 𝑆1, the (2-dimensional) torus. We can write coordinates on 𝑀 as (𝜃, 𝜙) ∈ 𝑀;
define

𝑔 · (𝜃, 𝜙) = (𝜃 + 𝑔, 𝜙 + 𝑐 · 𝑔) mod 2𝜋,

for some real constant 𝑐. This is again a global group of transformations.

Consider the orbit2of 𝑥 = (0, 0) (for simplicity’s sake):

𝑂𝑥 = {(𝑔, 𝑐 · 𝑔) mod 2𝜋 : 𝑔 ∈ R}
= {(𝜃, 𝑐 · 𝜃) : 0 ≤ 𝜃 < 2𝜋}.

Now, remark that (0, 0) = (𝜃, 𝑐 · 𝜃) mod 2𝜋 ⇐⇒ 𝜃 = 𝑚 · 2𝜋 and 𝑐 rational.
Concretely, this means that the actual, geometric orbit described by 𝑂𝑥 is "closed" (ie,
loops back on itself) only if 𝑐 is an integer. If 𝑐 is irrational, then the orbit will never
loop back on itself and instead form a "dense" subspace of T2 (see fig. 1).

Figure 1: A rational flow on the torus; an irrational flow is not pictured since it would
essentially be, visually, nothing but a black-painted torus.

With this in mind, and hopefully some sense for the idea of what makes a group
action of a Lie group distinct from that of a "discrete" group, we can start to discuss the
connection to group actions on functions, and ultimately (as is our goal) on differential
equations.

2Recall, the orbit of some 𝑥 ∈ 𝑀 is 𝑂𝑥
..= {𝑔 · 𝑥 : 𝑔 ∈ 𝐺}. If 𝐺 only acts locally, we need to refine this

definition to only include elements 𝑔 · 𝑥 where this product is well-defined.
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3.1.3 Action on Functions

Let 𝑓 : 𝑋 ..= R𝑝 → 𝑈 ..= R𝑞 be a smooth function. Denote the graph of 𝑓 as

Γ 𝑓
..= {(𝑥, 𝑓 (𝑥)) : 𝑥 ∈ 𝑋 s.t. 𝑓 (𝑥) defined } ⊆ 𝑋 ×𝑈.

Let 𝐺 be a Lie group acting on 𝑋 ×𝑈 and 𝑔 ∈ 𝐺. Assuming the graph Γ 𝑓 is contained
in the domain of definition of 𝑔, we have

𝑔 · Γ 𝑓 = {(𝑥̃ , 𝑢̃) ..= 𝑔 · (𝑥, 𝑢) : (𝑥, 𝑢) ∈ Γ 𝑓 },

the result of 𝑔 acting on Γ 𝑓 .3 Now, if there existed another function 𝑢̃ = 𝑓 (𝑥̃) for which
Γ 𝑓 = 𝑔 · Γ 𝑓 , then we would simply have that the result of 𝑔 acting on 𝑓 is this function,
𝑓 . However, such a 𝑓 does not exist in general. For example, the graph obtained from
rotating the parabola 𝑓 (𝑥) = 𝑥2 (defined on all of R) by 𝜋/2 about the origin cannot
possibly be the graph of a function on all ofR, since it would necessarily have multiple
outputs for a given input.4

However, we can circumvent this issue by appropriately shrinking our domain of
consideration, and for 𝑔 sufficiently close to the identity in 𝐺, we can guarantee the
existence of such a 𝑓 (𝑥̃); we thus write

𝑓 (𝑥̃) = 𝑔 · 𝑓 (𝑥).5

Another important factor to note is that when Γ 𝑓 is transformed, both the 𝑥 and 𝑢
are transformed, and we are thus working with new (transformed) coordinates (𝑥̃ , 𝑢̃).
Thus, to find a function 𝑓 , it must be a function of 𝑥̃, and not of 𝑥. In practice, this
means solving for 𝑢̃ in terms of just 𝑥̃. We illustrate:

Example 3.6. Let 𝑢 = 𝑓 (𝑥) = 𝑚𝑥 + 𝑏 : R→ R be a straight line in the plane acted on
by SO(2). Letting 𝜃 ∈ SO(2), we find

𝜃·(𝑥, 𝑢) = 𝜃·(𝑥, 𝑚𝑥+𝑏) = (𝑥 cos𝜃−(𝑚𝑥+𝑏)·sin𝜃, 𝑥 sin𝜃+(𝑚𝑥+𝑏)·cos𝜃) = (𝑥̃ , 𝑢̃),

3We will, in general, use tildes over variables/functions/etc. to indicate that they have been trans-
formed by a group action.

4"Fails the vertical line test", if you will.
5It’s important to note that this notation is not the same as the group action notation, as it doesn’t

make any sense to say that "𝑔 acts on 𝑓 "; this is simply saving the time of defining and transforming the
graph of 𝑓 every time.
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identically to example 3.4 upon replacing 𝑦 with 𝑢; indeed, the only difference between
this example and that one is that now 𝑢 (resp. 𝑢̃) is taken as a function of 𝑥 (resp. 𝑥̃).
We have thus

𝑥̃ = 𝑥 cos𝜃 − (𝑚𝑥 + 𝑏) · sin𝜃

𝑢̃ = 𝑥 sin𝜃 + (𝑚𝑥 + 𝑏) · cos𝜃,

ie a system of two equations, with the goal of finding 𝑢̃ as a function of 𝑥̃; hence we must
eliminate the dependence on 𝑥 in each. After computation, we find

𝑢̃ =
sin𝜃 + 𝑚 cos𝜃
cos𝜃 − 𝑚 sin𝜃

𝑥̃ + 𝑏

cos𝜃 − 𝑚 sin𝜃
,

and so, taking 𝑓 (𝑥̃) = 𝑢̃, this is precisely the result of rotating a line by an angle of 𝜃.
Note that 𝑓 , as should be expected, is still linear in 𝑥̃, with slope 𝑚̃ ..= sin𝜃+𝑚 cos𝜃

cos𝜃−𝑚 sin𝜃 and
intercept 𝑏 ..= 𝑏

cos𝜃−𝑚 sin𝜃 . In addition, 𝑓 well-defined, for sufficiently small 𝜃, for any
𝑚.

Indeed, the only issue we may run into is when the denominator cos𝜃 −𝑚 sin𝜃 in
𝑢̃ equals 0, which is precisely when

𝜃 = arctan−1 𝑚.

Geometrically, this is when the slope of the transformed function 𝑓 (𝑥̃) goes to infinity.

This example worked relatively well, but suppose we wanted to apply the same
idea but to, say, an exponential, a more complicated polynomial, or even just a general
function. This is not, in general, an easy task, and involves applying the inverse
function theorem to the transformed graph to solve explicitly, and results in messy,
complicated formulas, even in the relatively simple case of the rotation group. We’ll
come back to this soon.

Now that we can find how a Lie group transforms a given function, we proceed to
extend this notion to differential equations. Precisely:

Definition 3.4 (Symmetry group of a differential equation). Let Δ[𝑥, 𝑢(𝑛)] = 0 be
a system6of differential equations defined on (𝑥, 𝑢) ∈ 𝑋 ×𝑈 = R𝑝 × R𝑞 . We say a Lie
group 𝐺 acting on some open subset of 𝑋 × 𝑈 is a symmetry group of Δ if for any
solution7𝑢 = 𝑓 (𝑥), 𝑢 = 𝑔 · 𝑓 (𝑥) is also a solution for any 𝑔 ∈ 𝐺 such that 𝑔 · 𝑓 defined.
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More succinctly, 𝐺 a symmetry group of Δ if

Δ

����
𝑔· 𝑓 (𝑥)

= 0 ⇐= Δ

����
𝑓 (𝑥)

= 0

for any 𝑔 ∈ 𝐺.

Consider for instance the classic ODE

Δ = 𝑢′ − 𝑢 = 0

with solution 𝑢 = 𝑐𝑒𝑥 for any real constant 𝑐. Supposing I scale 𝑐 smoothly, then I can
generate a "smoothly varying family of solutions", hence scaling a solution to Δ gives
another. Letting (𝑥, 𝑢) ↦→ (𝑥, 𝑐 · 𝑢) be the action of R on the space of definition of Δ,
then we see that this is indeed a symmetry in the sense of our above definition:

Δ

����
𝑐·𝑒𝑥

=
d

d𝑥 𝑐𝑒
𝑥 − 𝑐𝑒𝑥 = 0.

Given a solution toΔ, then, we can determine whether a given group is a symmetry
group for Δ. Moreover, if it is, then we can find other solutions by applying the group
action to our known solution.

This is quite helpful in rigorously defining what it means to be a symmetry, but
tells us nothing about:

1. How do we find a symmetry group, particularly if we don’t have a solution to
the DE in the first place?

2. How do we find all symmetry groups?

We’ll answer both of these (in some sense) to follow. As a brief spoiler, one
may notice that we haven’t exactly made use of all the machinery of Lie groups
that we initially introduced. Indeed, we’ve only made use of the continuity of their
group actions to ensure continuously varying symmetries, and haven’t touched the
underlying manifold structure. We’ll make use of this in the next section.

Before we move on, however, we briefly discuss a partial answer to the first ques-
tion.

6We’ll use "system of differential equations" and "differential equation" somewhat interchangeably
in our discussion.

7"Solution" will be taken to mean "smooth solution" (on some appropriately-resized domain).
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First, to characterize how a differential equation changes under a particular group,
we must see how a group action transforms the derivative of a general function. More
specifically, let 𝐺 be a Lie group acting on 𝑢 = 𝑓 (𝑥); since 𝑓 is transformed to 𝑓 by 𝐺,
then naturally the derivatives of 𝑓 must also be transformed. But how precisely? We
would like to have a closed-form way to write 𝑢𝑥 ↦→ 𝑢̃𝑥 just as we know how to write
(𝑥, 𝑢) ↦→ (𝑥̃ , 𝑢̃).

The key to answering this question is through the use of "representative functions",
ie functions with 𝑛th order derivatives that can easily be elucidated. For instance, in
the 𝑝 = 𝑞 = 1 case, we would take the Taylor polynomial

𝑓 (𝑥) = 𝑢0 + 𝑢0
𝑥(𝑥 − 𝑥0) + 𝑢0

𝑥𝑥

2 (𝑥 − 𝑥0)2 + · · ·

up to an arbitrary order of choice, where variables with 0 exponents are essentially
dummy variables. Remark that 𝑓 (𝑥0) = 𝑢0, 𝑓 ′(𝑥0) = 𝑢0

𝑥 , 𝑓
′′(𝑥0) = 𝑢0

𝑥𝑥 , and so on.
Hence, if we would like to find how the derivatives of 𝑢 = 𝑓 (𝑥) change under a group
operation, we simply need to find 𝑔 · 𝑓 (𝑥) (as we know how to do from above), then
take the corresponding derivative of 𝑓 (𝑥̃) evaluated at 𝑥0.

In short, finding how the 𝑛th-order derivative of a function is transformed amounts
to finding how an 𝑛th-order polynomial is transformed. This is perhaps best under-
stood by example.

Example 3.7. We recall again 𝐺 = SO(2) acting on (𝑥, 𝑢) ∈ R2 from example 3.2,
example 3.4, example 3.6. Letting

𝑓 (𝑥) = 𝑢0 + 𝑢0
𝑥(𝑥 − 𝑥0)

be our representative function, remark that 𝑓 linear in 𝑥 with slope𝑚 = 𝑢0
𝑥 and intercept

𝑏 = 𝑢0 − 𝑢0
𝑥𝑥

0. We know how 𝐺 transforms linear functions from example 3.6, hence

𝑓 (𝑥̃) = 𝜃 · 𝑓 (𝑥) = sin𝜃 + 𝑢0
𝑥 cos𝜃

cos𝜃 − 𝑢0
𝑥 sin𝜃

𝑥̃ + 𝑢0 − 𝑢0
𝑥𝑥

0

cos𝜃 − 𝑢0
𝑥 sin𝜃

and so
𝑢̃0
𝑥 = 𝑓 ′(𝑥̃0) = sin𝜃 + 𝑢0

𝑥 cos𝜃
cos𝜃 − 𝑢0

𝑥 sin𝜃
.
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It follows thus that

𝑢𝑥 ↦→
sin𝜃 + 𝑢𝑥 cos𝜃
cos𝜃 − 𝑢𝑥 sin𝜃

.

This "technique" of using representative functions extends naturally to higher
order derivatives of 𝑢, and to cases where 𝑝 > 1, 𝑞 > 1 by using higher order and
multivariate Taylor polynomials respectively. We call the corresponding action on the
derivatives 𝑢𝑥 , . . . the prolongation of the group action, denoted with a pr(𝑛) with 𝑛 the
corresponding order; for instance in the case of example 3.7, we would write

pr(1)𝜃 · (𝑥, 𝑢, 𝑢𝑥) = (𝑥 cos𝜃 − 𝑢 sin𝜃, 𝑥 sin𝜃 + 𝑢 cos𝜃, sin𝜃 + 𝑢𝑥 cos𝜃
cos𝜃 − 𝑢𝑥 sin𝜃

).

Note the increase in difficulty for computing the prolongation for higher and higher
order derivatives, stemming from the fact that we have to solve corresponding systems
of equations involving polynomials of higher and higher degrees. Ultimately, we don’t
want to have to do this regularly.

3.2 Lie Algebras

To any Lie group, we can associate a canonical Lie algebra. We recall that an algebra 𝑉
(over a given field, which in our case will always be R) is a vector space together with
a bilinear product, [·, ·] : 𝑉 × 𝑉 → 𝑉 . More specifically, the Lie algebra associated
with a Lie group is identified as the tangent space at the identity of the Lie group. We
begin this section by briefly reviewing some general theory on manifolds we’ll need
before specifying our discussion to the Lie group setting.

3.2.1 Tangent Spaces, Flows as Group Actions
Definition 3.5 (Manifold Review: Tangent space, Vector Fields, Flows). Let 𝑀
be an 𝑟-dimensional manifold. Let

𝜑 = (𝜑1, . . . , 𝜑𝑟) : 𝐼 → 𝑀,

where 𝐼 ⊆ R some interval, be a parametrized curve on the manifold. At each
point 𝑥 = (𝑥1, . . . , 𝑥𝑟) = 𝜑(𝑡) on the curve, there exists a tangent vector ¤𝜑(𝑡) =

( ¤𝜑1(𝑡), . . . , ¤𝜑𝑟(𝑡)); we denote8

v|𝑥 ..= ¤𝜑(𝑡) = ¤𝜑1(𝑡)𝜕𝑥1 |𝑥 + · · · + ¤𝜑𝑟(𝑡)𝜕𝑥𝑟 |𝑥 .



13

(Remark the (suggestive) notation; for now, one should consider the components
𝜕𝑥 𝑖 as "placeholders" for basis vectors. We adopt this notation to clarify when we are
working with tangent vectors versus directly on the manifold (we will show later that
such a tangent vector can be considered as a partial differential operator).)

We define the tangent space of 𝑀 at 𝑥 as the vector space

𝑇𝑀 |𝑥 ..= {v|𝑥 = ¤𝜑(𝑡) : 𝜑(𝑡) s.t. ∃𝑡0 : 𝜑(𝑡0) = 𝑥}
= {all tangent vectors to all curves passing through 𝑥}

See fig. 2.

We put
𝑇𝑀 ..=

⋃
𝑥∈𝑀

𝑇𝑀 |𝑥 ,

called the tangent bundle of 𝑀.

We define a vector field on 𝑀 as a smooth assignment to each point 𝑥 in 𝑀 a vector
in 𝑇𝑀 |𝑥 , which we denote

v|𝑥 = 𝜉1(𝑥)𝜕𝑥1 |𝑥 + · · · + 𝜉𝑟(𝑥)𝜕𝑥𝑟 |𝑥 ,

where each 𝜉𝑖 smooth in 𝑥. An integral curve of v is a smooth (parametrized) curve
𝜑(𝑡) such that

¤𝜑(𝑡) = v|𝜑(𝑡)

for all 𝑡 in the domain of definition of 𝜑. Given some point 𝑥0 ∈ 𝑀, the integral curve
that is "as large as possible" passing through 𝑥0 (ie any other integral curve is contained
in it) is called the maximal integral curve of v at 𝑥0. 9

We often wish to refer, for a fixed vector field v, to multiple maximal integral curves
that pass through specified points. We write

𝜓(𝑡 , 𝑥) ..= 𝜙(𝑡) : 𝜙(0) = 𝑥,

or equivalently,
exp(𝑡v)(𝑥)

when we wish to emphasize the particular vector field in question. We call this function
the flow of v at 𝑥 (parametrized by 𝑡).
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Figure 2: Tangent vector to a point on a curve.

Let 𝑀 be an 𝑟-dimensional smooth manifold, v a vector field which we denote in
local coordinates

v|𝑥 =
𝑟∑
𝑖=1

𝜉𝑖(𝑥)𝜕𝑥 𝑖 .

Let 𝑓 : 𝐷 ⊆ 𝑀 → R be a smooth function on 𝑀. Then, for any 𝑥 ∈ 𝐷, we have a
corresponding flow of v, 𝜑(𝑡) : 𝐼 → 𝑀, and can consider 𝑓 ◦ 𝜑 = (𝜑1, . . . , 𝜑𝑟) : 𝐼 → R.

We would like to see how 𝑓 changes under the flow of 𝜑(𝑡); ie we want to find
the change with respect to "time" 𝑡 of 𝑓 (𝜑(𝑡)). Differentiating with respect to 𝑡 via the
chain rule, remark then that

d
d𝑡 ( 𝑓 (𝜑(𝑡))) =

𝑟∑
𝑖=1

𝜕 𝑓

𝜕𝑥 𝑖
(𝜑(𝑡)) ·

d𝜑𝑖(𝑡)
d𝑡

=

𝑟∑
𝑖=1

𝜕 𝑓

𝜕𝑥 𝑖
(𝜑(𝑡)) · 𝜉𝑖(𝜑(𝑡)).

But then, remark that this is simply equivalent to treating v|𝜙(𝑡) as a partial differential

8We will usually omit the |𝑥 in this notation when it is clear from the context what 𝑥 is, but it is
necessary, technically speaking - we are working in different spaces for each 𝑥, which thus carry different
basis vectors.

9Finding the (maximal) integral curve of a given v reduces to solving a system of differential equa-
tions; namely, in standard notation taking 𝜑 = (𝜑1 , . . . , 𝜑𝑟), we solve

¤𝜑𝑖 = 𝜉𝑖(𝜑𝑖), 𝑖 = 1, . . . , 𝑟 ,

which, if we take some arbitrary initial condition, will admit a unique solution by classical ODEs theory.
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operator; notably, at 𝑡 = 0 (at 𝜑(0) = 𝑥), we have

v( 𝑓 )(𝑥) =
𝑟∑
𝑖=1

𝜕 𝑓

𝜕𝑥 𝑖
(𝑥) · 𝜉𝑖(𝑥).

This hopefully clears up the reason for the notation used for vectors in the tangent
space; vector fields act as partial derivative operators in their respective coordinate
components on functions10. Indeed, it can be shown that v|𝑥 defines a derivation on the
space of smooth, real-valued functions defined around 𝑥, ie it is linear and obeys the
Leibniz rule.

Proposition 3.1. Let v be a vector field on an 𝑟-dimensional smooth manifold 𝑀, and
for 𝑥 ∈ 𝑀 denote the flow of v as 𝜓(𝑡 , 𝑥), where 𝜓(0, 𝑥) = 𝑥. Then, 𝜓 is equivalent to
the (local) action of R (as a Lie group) on 𝑀.

Conversely, given a local (one-parameter) group of transformations on 𝑀 𝜙(𝑡 , 𝑥),
there exists a unique corresponding vector field v on 𝑀 such that its flow coincides with
𝜙, given by

v|𝑥 =
d
d𝑡

����
𝑡=0

𝜙(𝑡 , 𝑥).

In short, there is a one-to-one correspondence with one-parameter groups of trans-
formations on 𝑀 and vector fields on 𝑀.

Proof Recall that the action, +, of R on 𝑀 must be a smooth operation obeying the
following (cf. definition 3.3):

i) 𝑔 + (ℎ + 𝑥) = (𝑔 + ℎ) + 𝑥

ii) 𝑒 + 𝑥 = 𝑥

iii) 𝑔−1 + (𝑔 + 𝑥) = 𝑥

for any 𝑔, ℎ ∈ R, 𝑥 ∈ 𝑀. In the language of 𝜓, we prove each in turn; fix 𝑡0, 𝑡1 ∈ 𝐼 and
𝑥 ∈ 𝑀.

10An intuitive way to think about this is that a fixed vector (ie, v|𝑥) on a manifold "tells" a function
defined on the manifold how much to "move" in a given direction, the directions given by the basis
vectors 𝜕𝑥 𝑖 .
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i) We need to show 𝜓(𝑡0,𝜓(𝑡1, 𝑥)) = 𝜓(𝑡0 + 𝑡1, 𝑥). By definition

d
d𝑡0

𝜓(𝑡0,𝜓(𝑡1, 𝑥)) = v|𝜓(𝑡1 ,𝑥)
d

d𝑡0
𝜓(𝑡0 + 𝑡1, 𝑥) = v|𝜓(𝑡1 ,𝑥),

and in addition, at 𝑡0 = 0, the left hand side 𝜓(0,𝜓(𝑡1, 𝑥)) = 𝜓(𝑡1, 𝑥). Hence,
we have two differential equations with the same initial conditions, and since
everything is smooth we are guaranteed unique solutions and the two sides must
be equal.

ii) This is equivalent to showing 𝜓(0, 𝑥) = 𝑥, which holds by assumption.

iii) We need to show 𝜓(−𝑡0,𝜓(𝑡0, 𝑥)) = 𝑥; by i), we have that this equals 𝜓(0, 𝑥) = 𝑥.

Finally, 𝜓 is smooth by construction. The second claim follows by similar arguments.
■

In short, this proposition gives us an equivalent manner of working with a local
group of transformations acting on a manifold by considering vector fields on the
manifold.

We call the vector field v corresponding to a given group of transformations 𝜓 the
infinitesimal generator of 𝜓; consider the Taylor expansion of 𝜓:

𝜓(𝑡 , 𝑥) = 𝜓(0, 𝑥) + 𝑡 · d
d𝑡𝜓(𝑡 , 𝑥) + 𝒪(𝑡2) = 𝑥 + 𝑡 · (𝜉1(𝑥), . . . , 𝜉𝑝(𝑥)) + 𝒪(𝑡2).

The coefficients of the vector field arise as the linear terms in the group action, hence we
say that v "linearizes" the group action. From now on, we’ll denote exp(𝑡v)·𝑥 ≡ 𝜓(𝑡 , 𝑥).

Example 3.8. We consider yet again SO(2) acting on R2, with group operation given
by

𝜃 · (𝑥, 𝑦) = (𝑥 cos𝜃 − 𝑦 sin𝜃, 𝑥 sin𝜃 + 𝑦 cos𝜃).
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We have

d
d𝜃

����
𝜃=0

(𝜃 · (𝑥, 𝑦)) = d
d𝜃

����
𝜃=0

(𝑥 cos𝜃 − 𝑦 sin𝜃, 𝑥 sin𝜃 + 𝑦 cos𝜃)

= (−𝑥 sin𝜃 − 𝑦 cos𝜃, 𝑥 cos𝜃 − 𝑦 sin𝜃)
����
𝜃=0

= (−𝑦, 𝑥),

hence the corresponding infinitesimal generator is given by

v|𝑥 = −𝑦𝜕𝑥 + 𝑥𝜕𝑦 . (1)

In perhaps more familiar notation, this is equivalent to writing −𝑦𝑖 + 𝑥 𝑗, which can
readily be seen to correspond to a counterclockwise rotating vector field in the plane; see
fig. 3.

Conversely, if we were given eq. (1), to find the group action we would have to solve

d𝑥
d𝑡 = −𝑦,

d𝑦
d𝑡 = 𝑥,

a linear system of differential equations. Solving with standard methods yields a solution
with an arbitrary constant, serving as the parameter of the group action.

Figure 3: The vector field −𝑦𝜕𝑥 + 𝑥𝜕𝑦 in the plane.

More generally, finding a vector field from a group action amounts to taking a
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derivative with respect to the group operation parameter, and finding the group action
from a vector field amounts to solving a (or even a system of) differential equations.

3.2.2 Lie Algebra Construction

With these properties in mind, we return now to our Lie group setting. Since a Lie
group is also a manifold, we can repeat these same constructions of vector fields, flows,
etc. However, we have an additional structure now, namely the group itself, and hence
we would like to somehow restrict our attention to maintain this structure. Namely,
we’d like to only consider vector fields that are, in a sense, "compatible" with the group
operation.

Let (𝐺, ·) be an 𝑟-parameter Lie group. We let

𝑅𝑔 : 𝐺 → 𝐺, 𝑅𝑔(ℎ) ..= ℎ · 𝑔

represent right multiplication11 by some fixed 𝑔. Recall that by definition, the group
operation is smooth hence so is 𝑅𝑔 . In addition, one can show that 𝑅𝑔 is a diffeomor-
phism, and hence 𝑑𝑅𝑔 : 𝑇𝐺 → 𝑇𝐺 is a well-defined map on the tangent bundle of 𝐺.
We say a vector field v is right invariant if, for all 𝑔, ℎ ∈ 𝐺,

𝑑𝑅𝑔(v|ℎ) = v|ℎ𝑔 .

Definition 3.6 (Lie Algebra of a Lie Group). Given12a Lie group 𝐺, we define

𝔤 ..= {right-invariant vector fields on 𝐺} = {v : 𝑑𝑅𝑔(v|ℎ) = v|ℎ𝑔∀ℎ, 𝑔 ∈ 𝐺}.

That is, 𝔤 contains the "group operation compatible" vector fields defined on 𝐺.

Proposition 3.2. 𝔤 ≃ 𝑇𝐺 |𝑒 ; that is, the Lie algebra of 𝐺 can be identified with tangent
space of 𝐺 at the identity.

Proof Let v be a right-invariant vector field on 𝐺. Then, at any point 𝑔 ∈ 𝐺,

v|𝑔 = 𝑑𝑅𝑔(v|𝑒),

11A similar construction follows by instead using left multiplication; it’s a matter of convention.
12One can (and many do) define Lie algebras in their own right without our aforementioned moti-

vations, namely as an algebra with multiplication obeying certain properties. We won’t discuss this
here.
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hence v uniquely determined by its value at 𝑒. On the other hand, given any tangent
vector v|𝑒 at the origin, we can define v|𝑔 ..= 𝑑𝑅𝑔(v|𝑒) for any 𝑔 ∈ 𝐺, and one can show
that

𝑑𝑅𝑔(v|ℎ) = v|ℎ𝑔 ,

hence v right-invariant. ■

Proposition 3.3. 𝔤 is an algebra, equipped with the skew-symmetric, bilinear Lie
bracket [·, ·] : 𝔤 × 𝔤 → 𝔤, where [v,w] ∈ 𝔤 the unique vector field such that

[v,w]( 𝑓 ) = v(w( 𝑓 )) − w(v( 𝑓 ))

for any 𝑓 : 𝑀 → R.

Proof If v,w right invariant, then 𝑑𝑅(𝑐1v + 𝑐2w) = 𝑐1𝑑𝑅(v) + 𝑐2𝑑𝑅(w) = 𝑐1v + 𝑐2w
for any scalars 𝑐1, 𝑐2. We won’t discuss the Lie bracket too much to follow, so will omit
proving the necessary properties. It is very important in a more rigorous classification
of Lie algebras and provides extra structure to compare vector fields in our algebra in
a meaningful way. It can essentially be seen as the commutator of the flows of the two
vector fields v, w:

v

w
𝑥

v(w)

w(v)

■
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Example 3.9. Let 𝐺 ..= SO(2) ≃ 𝑆1 be the Lie group of rotations in the plane;

𝑇𝐺 |𝑒 = {𝑐1 · 𝜕𝑥 |(𝑥,𝑦)=(1,0) + 𝑐2 · 𝜕𝑦 |(𝑥,𝑦)=(1,0)}
= {𝑐2𝜕𝑦} = Span(𝜕𝑦) � R.

𝑒 = (0, 1)

𝑆1

𝑇𝑆1 |𝑒

Let 𝐺 be a Lie group with Lie algebra 𝔤 acting on some manifold 𝑀 with operation
𝜓. One can show that the differential of 𝜓, 𝑑𝜓, is a homeomorphism between 𝔤 and the
set of vector fields on 𝑀, and thus 𝔤 � 𝑑𝜓(𝑔). This, in practice, means we can directly
work on 𝑀, without reference to local coordinates in 𝐺. We will do this to follow
without explicitly saying so.

3.2.3 Prolongation of Vector Fields and a Symmetry Condition

With all this setup, we need just one more concept before being able to state the most
practically useful theorem so far.

Recall from the previous section the concept of the prolongation of a group action
as how a given group acts on the derivatives of arbitrary functions. Analogously, we
can define the prolongation of vector fields as the vector fields "extension" to prolonged
space including said derivatives. More technically, suppose v lives on 𝑀 ⊂ 𝑋 ×𝑈 , our
space of independent, dependent variables. Then, the 𝑛th prolongation of v, which
we denote

pr(𝑛)v

lives on 𝑀(𝑛) = 𝑋 × 𝑈 (𝑛); if 𝑋 × 𝑈 has local coordinates (𝑥, 𝑢), 𝑈 (𝑛) has coordinates
(𝑢; 𝑢(1); . . . , 𝑢(𝑛)); it follows again that 𝑇𝑀(𝑛) has coordinates {𝜕𝑥 ; 𝜕𝑢 ; 𝜕𝑢(1) ; . . . ; 𝜕𝑢(𝑛)}.

For example, if 𝑝 = 2, 𝑞 = 1, we would have 𝑈 (2) would be the space with co-
ordinates (𝑢; 𝑢𝑥 , 𝑢𝑦 ; 𝑢𝑥𝑥 , 𝑢𝑥𝑦 , 𝑢𝑦𝑦). One can consider these as formal placeholders for
functions; a more rigorous construction involves the notion of jet space and concepts
not necessary for the sake of our applications.

Now, just as we differentiated our group action to find our vector field, we can
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differentiate our prolonged group action to find the corresponding prolonged vector
field. Recall that we had

pr(1)𝜃 · (𝑥, 𝑢, 𝑢𝑥) = (𝑥 cos𝜃 − 𝑢 sin𝜃, 𝑥 sin𝜃 + 𝑢 cos𝜃, sin𝜃 + 𝑢𝑥 cos𝜃
cos𝜃 − 𝑢𝑥 sin𝜃

)

as the first prolongation of the action of SO(2). Differentiating with respect to 𝜃 at
zero, we find

pr(1)v = −𝑢𝜕𝑥 + 𝑥𝜕𝑢 + (1 + 𝑢2
𝑥)𝜕𝑢𝑥 .

More generally, we have the following formula.

Theorem 3.1 (General Prolongation Formula [Olv86]). Let

v =

𝑝∑
𝑖=1

𝜉𝑖(𝑥, 𝑢) 𝜕

𝜕𝑥 𝑖
+

𝑞∑
𝛼=1

𝜙𝛼(𝑥, 𝑢)
𝜕

𝜕𝑢𝛼

be a vector field defined on an open set 𝑀 ⊆ 𝑋 ×𝑈 . Then,

pr(𝑛)(v) = v +
𝑞∑

𝛼=1

∑
𝐽

𝜙𝐽𝛼(𝑥, 𝑢(𝑛))
𝜕

𝜕𝑢𝛼
𝐽

, (2)

where

𝜙𝐽𝛼(𝑥, 𝑢(𝑛)) ..= 𝐷𝐽(𝜙𝛼 −
𝑝∑
𝑖=1

𝜉𝑖𝑢𝛼
𝑖 ) +

𝑝∑
𝑖=1

𝜉𝑖𝑢𝛼
𝐽 ,𝑖 ,

where 𝑢𝛼
𝑖

..= 𝜕𝑢𝛼

𝜕𝑥 𝑖
, 𝑢𝛼

𝐽 ,𝑖
..=

𝜕𝑢𝛼
𝐽

𝜕𝑥 𝑖
.

This theorem tells us how to find pr(𝑛)(v) for any v. We won’t prove it here but
it’s worth noting the proof of this theorem also employs the idea of "representative
function" as we used earlier to find the first prolongation of the group action of SO(2)
previously, though of course on some general group action.

Despite the fairly scary formulae involved, remark that each term is always linear
with respect to 𝜉𝑖 , 𝜙𝛼. In practice, we wish to determine these coefficients given some
conditions, and these formulae give us a system of PDEs to solve which are thus linear,
even if the original differential equation we’re working with is not.
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Example 3.10. We verify that the first prolongation of v = −𝑢𝜕𝑥+𝑥𝜕𝑢 is as determined
above using theorem 3.1 directly to elucidate how to actually apply it. We have 𝑝 = 𝑞 = 1,
and

𝜉 ≡ 𝜉1 = −𝑢, 𝜙 ≡ 𝜙1 = 𝑥.

We thus have

pr(𝑛)(v) =
𝑛∑
𝑗=0

𝜙 𝑗 · 𝜕𝑢𝑗 ,

where 𝑢𝑗 ..= 𝜕𝑗𝑢
𝜕𝑥 𝑗

. We find 𝜙1:

𝜙1 = 𝐷𝑥(𝜙 − 𝜉 · 𝑢𝑥) + 𝜉𝑢𝑥𝑥

= 𝐷𝑥(𝑥 + 𝑢𝑢𝑥) − 𝑢𝑢𝑥𝑥
= 1 + 𝑢2

𝑥 + 𝑢𝑢𝑥𝑥 − 𝑢𝑢𝑥𝑥 = 1 + 𝑢2
𝑥 ,

as previously found. For use later, we also find pr(2); we have

𝜙2 = 𝐷𝑥𝑥(𝑥 + 𝑢𝑢𝑥) − 𝑢𝑢𝑥𝑥𝑥 = 3𝑢𝑥𝑢𝑥𝑥 .

With the concept of prolongation of vector fields, we can finally introduce the
"infinitesimal symmetry criterion", the "fundamental theorem of continuous symme-
tries".

Theorem 3.2 (Infinitesimal Symmetry Criterion). Let Δ[𝑢] = 0 be a differential
equation defined on 𝑀(𝑛) ⊂ 𝑋 ×𝑈 (𝑛) and 𝐺 a local group of transformations on 𝑀. If

pr(𝑛)v(Δ[𝑢]) = 0 whenever Δ[𝑢] = 0

for every infinitesimal generator v of 𝐺, then 𝐺 is a symmetry group of Δ.

Remark the similarity in the statement with our original definition of symmetry,
definition 3.4. This definition, along with the one-to-one relationship between groups
of transformations and vector fields from proposition 3.1 almost directly implies this
theorem, technical statements about the domain of definition, etc, aside.

4 Applications

Having built up quite a lot of theory, we present now several applications of the theory
presented above.
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4.1 Symmetries of Differential Equations

This is our main application and directly applies theorem 3.1 and theorem 3.2. Gener-
ally, given a differential equation

Δ[𝑢] = 0

we wish to answer the question

What are all of the (continuous) symmetries of Δ?

More formally, we wish to find the Lie algebra of symmetries ofΔ, 𝔤. We begin by defining
an arbitrary vector field

v =

𝑝∑
𝑖=1

𝜉𝑖(𝑥, 𝑢) 𝜕

𝜕𝑥 𝑖
+

𝑞∑
𝛼=1

𝜙𝛼(𝑥, 𝑢)
𝜕

𝜕𝑢𝛼
,

and apply theorem 3.2 by solving

v(Δ) = 0 ⇐= Δ = 0.

In practice, this gives a system of differential equations for the coefficients 𝜉𝑖 , 𝜙𝛼 of the
form theorem 3.1.

Once we find all of the independent infinitesimal generators v of 𝔤, we can expo-
nentiate each to find the corresponding group operations.

Example 4.1 (Symmetry Groups of the Heat Equation). We present here a worked-
out example of the previously described methodology for computing the symmetry groups
of the one-dimensional heat equation, namely

𝑢𝑡 = 𝑢𝑥𝑥 . (3)

First, we have that 𝑝 = 2, 𝑞 = 1, so we take the general form of our vector field to be

v ..= 𝜉(𝑡 , 𝑥, 𝑢) · 𝜕𝑥 + 𝜏(𝑡 , 𝑥, 𝑢) · 𝜕𝑡 + 𝜙(𝑡 , 𝑥, 𝑢) · 𝜕𝑢 .

More precisely, we take v to be a general vector field on the space 𝑋 ×𝑈 ≃ R2 × R; we
aim to find the forms of the functions 𝜉, 𝜏, 𝜙 such that the corresponding group action
to v leaves eq. (3) invariant.

We are working with highest order-derivative 2, so we need to take the second
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prolongation, which we’ll denote

pr(2)v = v + 𝜙𝑥 · 𝜕𝑢𝑥 + 𝜙𝑡 · 𝜕𝑢𝑡 + 𝜙𝑡𝑡 · 𝜕𝑢𝑡𝑡 + 𝜙𝑥𝑥 · 𝜕𝑢𝑥𝑥 + 𝜙𝑡𝑥 · 𝜕𝑢𝑡𝑥 , (4)

where we find closed forms for each prolongation coefficient using eq. (2). Remark that
each prolonged coefficient is a function of 𝑡 , 𝑥, 𝑢, and 𝑢(𝑛) up to the degree of the basis
element corresponding to the coefficient, (ie, 𝜙𝑥𝑥 = 𝜙𝑥𝑥(𝑡 , 𝑥, 𝑢, 𝑢𝑡 , 𝑢𝑥 , 𝑢𝑡𝑡 , 𝑢𝑥𝑥 , 𝑢𝑡𝑥))
but we omit this for conciseness. Applying eq. (4) to eq. (3), we find (recalling that
we can either interpret pr(2)v as a differential operator or consider, more geometrically,
"flowing" our differential equation on the prolonged space and seeing the corresponding
infinitesimal change)

pr(2)v(𝑢𝑡 − 𝑢𝑥𝑥) = 𝜙𝑡 − 𝜙𝑥𝑥 = 0,

ie our infinitesimal criterion for invariance is

𝜙𝑡 = 𝜙𝑥𝑥 whenever 𝑢𝑡 = 𝑢𝑥𝑥 .

Hence, we compute 𝜙𝑡 , 𝜙𝑥𝑥 , set them equal to each other, and replace 𝑢𝑥𝑥 by 𝑢𝑡 wherever
it occurs to effectively "solve" in terms of our differential equation.

Treating our result as a polynomial in derivatives of 𝑢, we then require the coefficients
of each distinct term to be identically zero, yielding a (linear!) system of PDEs defining
the 𝜏, 𝜉, 𝜙. Solving these, we find

𝜉 = 𝑐1 + 𝑐4𝑥 + 2𝑐5𝑡 + 4𝑐6𝑥𝑡

𝜏 = 𝑐2 + 2𝑐4𝑡 + 4𝑐6𝑡
2

𝜙 = (𝑐3 − 𝑐5𝑥 − 2𝑐6𝑡 − 𝑐6𝑥
2)𝑢 + 𝛼(𝑥, 𝑡),

where 𝑐1, . . . , 𝑐6 constants and 𝛼(𝑥, 𝑡) any solution to the heat equation (ie 𝜕𝑥𝑥𝛼 = 𝜕𝑡𝛼).
From here, setting each 𝑐𝑖 = 𝛿𝑖 𝑗 for 𝑗 = 1, . . . , 6 in turn yields the corresponding
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(independent) vector fields

v1 = 𝜕𝑥

v2 = 𝜕𝑡

v3 = 𝑢𝜕𝑢

v4 = 𝑥𝜕𝑥 + 2𝑡𝜕𝑡
v5 = 2𝑡𝜕𝑥 − 𝑥𝑢𝜕𝑢
v6 = 4𝑡𝑥𝜕𝑥 + 4𝑡2𝜕𝑡 − (𝑥2 + 2𝑡)𝑢𝜕𝑢
v𝛼 = 𝛼(𝑥, 𝑡)𝜕𝑢 ,

which span the Lie algebra 𝔤 of symmetries of the heat equation. Remark that v𝛼 itself
spans an infinite-dimensional submanifold of 𝔤.

Now, for each of these vector fields, we can exponentiate to recover the corresponding
Lie group. For instance, for v1, we need to solve

d𝑥
d𝜀 = 1

so

exp(𝜀 · 𝜕𝑥)(𝑥, 𝑡, 𝑢) = (𝑥 + 𝜀, 𝑡 , 𝑢),

which is just the scaling group in 𝑥.

As another example, for v5, we need to solve

d𝑥
d𝜀 = 2𝑡 , d𝑢

d𝜀 = −𝑥𝑢,

which gives

exp(2𝜀𝑡𝜕𝑥 − 𝜀𝑥𝑢𝜕𝑢)(𝑥, 𝑡, 𝑢) = (𝑥 + 2𝜀𝑡 , 𝑡 , 𝑢 · 𝑒(−𝜀𝑥−𝜀2𝑡)).

Repeating such calculations for each group, we find the following:
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𝐺𝑖 exp(𝜀 · v𝑖)(𝑥, 𝑡, 𝑢) Physical Interpretation
1 (𝑥 + 𝜀, 𝑡 , 𝑢) Space Translation
2 (𝑥, 𝑡 + 𝜀, 𝑢) Time Translation
3 (𝑥, 𝑡, 𝑒𝜀𝑢) Linearity (Constants)
4

(
𝑒𝜀𝑥, 𝑒2𝜀𝑡 , 𝑢

)
Space/Time Scaling

5
(
𝑥 + 2𝜀𝑡 , 𝑡 , 𝑢 · 𝑒−𝜀𝑥−𝜀2𝑡

)
Galilean Boost

6
(

𝑥

1 − 4𝜀𝑡 ,
𝑡

1 − 4𝜀𝑥 , 𝑢
√

1 − 4𝜀𝑡𝑒
−𝜀𝑥2
1−4𝜀𝑡

)
(None)

𝛼 (𝑥, 𝑡, 𝑢 + 𝜀𝛼(𝑥, 𝑡)) Linearity (Additivity)

In particular, the symmetries 𝐺3, 𝐺𝛼 are simply a restatement of the principle of
superposition of solutions to linear differential equations.

Given any solution, then, if we apply any of these groups, we will find another. For
instance, any constant 𝑢 = 𝑐 is a solution, hence, applying 𝐺6 with 𝜀 = 1, we find

𝑢̃ =
𝑐√

1 + 4𝑡
𝑒

−𝜀𝑥2
1+4𝑡 ,

a far less trivial solution. Indeed, if we apply time translation and set 𝑐 appropriately,
we can actually obtain the so-called "fundamental solution" to the heat equation.

Example 4.2 (Symmetry Groups of Korteweg-deVries (KDV)). We consider

Δ = 𝑢𝑥𝑥𝑥 + 𝑢𝑢𝑥 + 𝑢𝑡 = 0,

a nonlinear, third-order PDE that arises in the study of shallow waves; in this case
𝑝 = 2, 𝑞 = 1. The infinitesimal criterion of invariance gives us

𝜙𝑥𝑥𝑥 + 𝑢𝑥𝜙 + 𝑢𝜙𝑥 + 𝜙𝑡 = 0 whenever Δ = 0.

The computation of 𝜙𝑥𝑥𝑥 using theorem 3.1 is quite tedious, but the steps from the
previous example follow identically. We eventually find

𝜉(𝑡 , 𝑥, 𝑢) = 𝑐1 + 𝑐2𝑡 + 𝑐3𝑥

𝜏(𝑡 , 𝑥, 𝑢) = 𝑐4 + 3𝑐3𝑡

𝜙(𝑡 , 𝑥, 𝑢) = 𝑐2 − 2𝑐3𝑢
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for constants 𝑐1, 𝑐2, 𝑐3, 𝑐4, hence the symmetry Lie algebra of Δ is spanned by the vector
fields

v1 = 𝜕𝑥

v2 = 𝜕𝑡

v3 = 𝑡𝜕𝑥 + 𝜕𝑢

v4 = 𝑥𝜕𝑥 + 3𝑡𝜕𝑡 − 2𝑢𝜕𝑢 .

The first two correspond to translation in time and position respectively, the second to a
form of Galilean boost, and the last to a form of scaling.

It’s worth noting that the two examples above work out quite nicely; the infinites-
imal criterion yielded quite simple PDEs to solve, and resulted in fairly reasonable
symmetries. Unfortunately, this method does not always work quite so nicely, but it is
quite powerful regardless.

Note that theorem 3.1 is actually quite amenable to computational implementation,
see for instance [Olv23b] and corresponding software [Olv23a].

4.2 Differential Invariants of a Group Action

In the previous section, we addressed the issue of finding symmetry groups given a
differential equation. Conversely, we may be interested in finding the general form of
differential equations that admit a given symmetry group.

More precisely, if 𝐺 is a local group acting on 𝑀, we say that a smooth function
𝜂 : 𝑀(𝑛) → R is a 𝑛-th order differential invariant of 𝐺 if

𝜂(pr(𝑛)𝑔 · (𝑥, 𝑢) = 𝜂(𝑥, 𝑢(𝑛)))

for all (𝑥, 𝑢(𝑛)) ∈ 𝑀(𝑛) and 𝑔 ∈ 𝐺 such that the left-hand side is well-defined.

Example 4.3. Let 𝐺 = SO(2), which has infinitesimal generator

pr(1)v = −𝑢𝜕𝑥 + 𝑥𝜕𝑢 + (1 + 𝑢2
𝑥)𝜕𝑢𝑥 .

For 𝜂(𝑥, 𝑢, 𝑢𝑥) to be a second-order invariant, we require then that

−𝑢𝜂𝑥 + 𝑥𝜂𝑢 + (1 + 𝑢2
𝑥)𝜂𝑢𝑥 = 0,



28

which is just a differential equation for 𝜂, treating 𝑥, 𝑢, 𝑢𝑥 as dependent variables, which
we can solve with the method of characteristics

−d𝑥
𝑢

=
d𝑢
𝑥

=
d𝑢𝑥

1 + 𝑢2
𝑥

.

Solving each, we find

𝑟 =
√
𝑥2 + 𝑢2, 𝜉 =

𝑥𝑢𝑥 − 𝑢
𝑢𝑢𝑥 + 𝑥

,

which constitute a complete set of (functionally independent) first-order differential
invariants of SO(2); that is, any function 𝐹 invariant under SO(2) can be written as a
function 𝐹̃(𝑟, 𝜉).

For instance, consider the differential equation

Δ = (𝑢 − 𝑥)𝑢𝑥 + 𝑢 + 𝑥 = 0.

This equation has SO(2) as a symmetry group:

pr(1)v(Δ) = −𝑢 𝜕Δ
𝜕𝑥

+ 𝑥 𝜕Δ
𝜕𝑢

+ (1 + 𝑢2
𝑥)

𝜕Δ

𝜕𝑢𝑥
= −𝑢(−𝑢𝑥 + 1) + 𝑥(𝑢𝑥 + 1) + (1 + 𝑢2

𝑥)(𝑢 − 𝑥)
= 𝑢𝑥(𝑢 + 𝑥) −���𝑢 + 𝑥 + 𝑢2

𝑥(𝑢 − 𝑥) +���𝑢 − 𝑥
= 𝑢𝑥((𝑢 − 𝑥)𝑢𝑥 + 𝑢 + 𝑥) = 𝑢𝑥 · Δ,

which thus equals 0 whenever Δ = 0.

Alternatively, multiplying Δ = 0 by 𝑢𝑥 and rearranging, we find

Δ = (𝑢 − 𝑥)𝑢𝑥 + 𝑢 + 𝑥 = −(𝑥𝑢𝑥 − 𝑢) + 𝑢𝑢𝑥 + 𝑥

= (−𝑥 + 𝑢𝑢𝑥)
[
𝑥𝑢𝑥 − 𝑢
𝑥 + 𝑢𝑢𝑥

− 1
]

= (−𝑥 + 𝑢𝑢𝑥) [𝜉 − 1] .

Finally, remark that if change coordinates to polar, ie 𝑥 = 𝑟 cos𝜃, 𝑢 = 𝑟 sin𝜃, Δ becomes

d𝑟
d𝜃 = 𝑟,
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which is quite simple to solve. More generally, certain symmetry groups will provide an
obvious change of coordinates in which the differential equation in question will be quite
easily solvable.

4.3 Conservation Laws

In this section, we briefly discuss conservation laws, a topic naturally related to sym-
metries per Noether’s Theorem, which we will present briefly.

Definition 4.1 (Conserved Quantity). Let 𝐹(𝑥, 𝑢(𝑛)) = 0 be a differential equation.
A conserved quantity or conservation law of 𝐹 is a function 𝜑(𝑥, 𝑢(𝑛)) such that

𝐷𝑥𝜑(𝑥, 𝑢(𝑛))|𝐹=0 = 0,

that is, 𝜑 is constant on solutions to 𝐹.

In a PDE 𝐹(𝑡 , 𝑥, 𝑢(𝑛)), we more typically denote a conservation law of 𝐹 as the
divergence expression (

𝐷𝑡𝜓(𝑥, 𝑢(𝑛)) + 𝐷𝑥𝜑(𝑥, 𝑢(𝑛))
)
|𝐹=0 = 0,

to emphasize the time dependence. We call 𝜓 and 𝜑 the density and flux of the PDE,
respectively.

Conservation laws provide value information about the solutions to a given differ-
ential equation. Namely, suppose

Δ(𝑥, 𝑢(𝑛)) = 0

a differential equation with conserved quantity 𝜑(𝑥, 𝑢(𝑛)). Since

𝐷𝑥𝜑(𝑥, 𝑢(𝑛)) = 0 whenever Δ = 0

we can conclude that solutions must lie on the level set

{(𝑥, 𝑢) : 𝜙(𝑥, 𝑢(𝑥)) = 𝑐, 𝑐 ∈ R}.

We can then, in a sense, restrict our space of variables of consideration and effectively
reduce the number of degrees of freedom in our system.
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To elucidate this, we work through the classical example of the Hamiltonian system

Δ =

(
¤𝑥
¤𝑦

)
−

(
−𝑦
𝑥

)
= 0 (5)

where (𝑥, 𝑦) = (𝑥1, . . . , 𝑥𝑝 , 𝑦1, . . . , 𝑦𝑝) ∈ R2𝑝 for some positive integer 𝑝. Let

𝐻(𝑥, 𝑦) = 𝑥2

2 + 𝑦2

2 ,

and notice that
Div(𝐻(𝑥, 𝑦)) = 𝑥 · ¤𝑥 + 𝑦 · ¤𝑦,

which vanishes identically on solutions, and is hence a conserved quantity of Δ = 0.

Consider in particular the case 𝑝 = 1, so we are working in the plane R2. Then,
remark that 𝐻(𝑥, 𝑦) = 𝑐2

2 defines a circle in the plane of radius 𝑐 for various constants
𝑐. Hence, solutions to Δ must trace out circles in the plane (in phase space).

Definition 4.2 (Characteristic of a Conservation Law). Let 𝜑 be the conservation
law of a differential equation Δ[𝑢] = 0. The characteristic of 𝜑 is a (tuple of) function
𝑄 such that

𝐷𝑥𝜑 = 𝑄 · Δ.

It turns out that every conservation law (under appropriate assumptions on the do-
main, etc) can be written in such a way, though such a 𝑄 is in general, though, not
unique.

A characteristic of eq. (5), for instance, is the vector 𝑄 = (𝑥, 𝑦)𝑇 , as one can readily
verify.

Before we can finally state Noether’s theorem, we briefly review/introduce the
concept of the calculus of variations.

Definition 4.3 (Calculus of Variations). Let 𝑋 = R𝑝 , 𝑈 = R𝑞 and let Ω ⊂ 𝑋 ×𝑈
be an open, connected subset with smooth boundary. Let 𝐿[𝑢] be a smooth function; a
variational problem asks to find the extrema of the functional

ℒ[𝑢] =
∫
Ω

𝐿[𝑢]d𝑥 , (6)

that is, functions 𝑢 = 𝑓 (𝑥) that minimize/extremize ℒ. We call 𝐿 the Lagrangian of



31

the problem.

Example 4.4 (Shortest Path). The classical first example of a variational question asks
one to find the shortest path between two points 𝑥1, 𝑥2 in the plane 𝑋 ×𝑈 = R2. Here,
the Lagrangian would thus be the arc length of a planar curve, namely 𝐿[𝑢] =

√
1 + 𝑢2

𝑥 ,
yielding the variational problem

ℒ =

∫ 𝑥2

𝑥1

√
1 + 𝑢2

𝑥 d𝑥 .

We will affirm the intuitive answer of a straight line shortly.

How does one actually find the extrema of such a problem? We won’t dive too
much into the theory but will introduce some basic necessary concepts.

Definition 4.4 (Euler Operator). For 1 ≤ 𝛼 ≤ 𝑞, the 𝛼-th Euler Operator is defined

E𝛼
..=

∑
𝐽

(−𝐷)𝐽
𝜕

𝜕𝑢𝛼
𝐽

, (7)

where (−𝐷)𝐽 ..= (−1)𝑘𝐷𝐽 , using the multi-index 𝐽 = (𝑗1, . . . , 𝑗𝑘) for 1 ≤ 𝑗𝜅 ≤ 𝑝 and
𝑘 ≥ 0.

We state E in the case 𝑝 = 𝑞 = 1 with coordinate (𝑥, 𝑢) to hopefully elucidate the
definition:

E =
𝜕

𝜕𝑢
− 𝐷𝑥

𝜕

𝜕𝑢𝑥
+ 𝐷2

𝑥

𝜕

𝜕𝑢𝑥𝑥
− 𝐷4

𝑥

𝜕

𝜕𝑢𝑥𝑥𝑥
+ · · · .

Theorem 4.1. Let 𝑢 = 𝑓 (𝑥) be an extremal of eq. (6). Then, 𝑓 is a solution to the
system of differential equations given by 𝐸𝛼(𝐿) = 0, 𝛼 = 1, . . . , 𝑞.

Proof See [Olv86], Proposition 4.2. The proof follows quite naturally (indeed, the
Euler operator naturally arises when attempting to find extrema solutions) from the
related variational derivative. ■

We call the equations given by

𝐸𝛼(𝐿) = 0

the Euler-Lagrange or EL equations of 𝐿.
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Example 4.5. Returning to example 4.4, we find

𝐸(𝐿) = −𝐷𝑥
𝑢𝑥√

1 + 𝑢2
𝑥

= − 𝑢𝑥𝑥

(1 + 𝑢2
𝑥)3/2

= 0.

This is just a second-order differential equation, with solution 𝑢 = 𝑚𝑥 + 𝑏 (with 𝑚, 𝑏
depending on 𝑥1, 𝑥2), that is, a straight line (alternatively, one can notice that this is
the equation for the curvature of an arbitrary curve 𝑢 = 𝑓 (𝑥), hence an extremum has 0
curvature ie is a straight line).

Many physical problems arise as the EL equations of a particular Lagrangian. For
instance, the wave equation in two spatial dimensions 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 𝑢𝑡𝑡 arises as the EL
of ∭

Ω

{𝑢
2
𝑥

2 +
𝑢2
𝑦

2 −
𝑢2
𝑡

2 } d𝑥 d𝑦 d𝑡 .

We say that a differential equation that arises as the EL of some Lagrangian has
"variational structure".

Theorem 4.2 (Variational Symmetry Group). We say 𝐺 is a variational symmetry
group if it is a symmetry group of the variational problem eq. (6). This holds if and
only if

pr(𝑛)v(𝐿) + 𝐿 · Div𝜉 = 0

for all 𝑥, 𝑢(𝑛) ∈ Ω(𝑛) and every infinitesimal generator v of 𝐺, where 𝜉 = (𝜉1, . . . , 𝜉𝑝).

This is nearly identical to our earlier theorem 3.2, with the added divergence term.

Example 4.6 (Symmetry of example 4.4). Recall the variational problem related to
finding the shortest curve between two points. Intuitively, one would expect that a
rotation of the curve should not change the length; indeed, we have the infinitesimal
generator of SO(2)

pr(1)v = −𝑢𝜕𝑥 + 𝑥𝜕𝑢 + (1 + 𝑢2
𝑥)𝜕𝑢𝑥 ,

and

pr(1)v(𝐿) + 𝐿 · Div𝜉 = pr(1)v(
√

1 + 𝑢2
𝑥) +

√
1 + 𝑢2

𝑥 · Div(−𝑢, 𝑥)

=
(1 + 𝑢2

𝑥) · 𝑢𝑥√
1 + 𝑢2

𝑥

− 𝑢𝑥
√

1 + 𝑢2
𝑥 = 0,

as expected.
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We finally have the tools and terminology to present Noether’s Theorem, which
establishes a powerful connection between variational symmetries and conservation
laws.

Theorem 4.3 (Noether’s Theorem). Let 𝐺 be a (local) symmetry group of the varia-
tional problem ℒ =

∫
Ω
𝐿[𝑢]d𝑥, with infinitesimal generator

v = 𝜉𝑖(𝑥, 𝑢)𝜕𝑥 𝑖 + 𝜙𝛼(𝑥, 𝑢)𝜕𝑢𝛼 .

Put

𝑄𝛼(𝑥, 𝑢) = 𝜙𝛼 −
𝑝∑
𝑖=1

𝜉𝑖(𝑥, 𝑢)𝜕𝑢
𝛼

𝜕𝑥 𝑖

for each 𝛼 = 1, . . . , 𝑞, called the characteristic of v. Then, the 𝑞-tuple𝑄 = (𝑄1, . . . , 𝑄𝑞)
is also the characteristic of a conservation law for the Euler-Lagrange equations E(𝐿) = 0.

Proof Let v𝑄 = 𝑄𝛼𝜕𝑢𝛼 as in the theorem.13 By theorem 4.2, we have

pr(𝑛)v(𝐿) + 𝐿 · Div(𝜉) = 0,

and by a simple computation from theorem 3.1, one finds that

pr(𝑛)v𝑄(𝐿) = pr(𝑛)v(𝐿) −
𝑝∑
𝑖=1

𝜉𝑖𝐷𝑖𝐿.

Combining these two expressions we find

0 = pr(𝑛)v𝑄(𝐿) +
𝑝∑
𝑖=1

𝜉𝑖𝐷𝑖𝐿 + 𝐿
𝑝∑
𝑖=1

𝐷𝑖𝜉
𝑖︸                      ︷︷                      ︸

⊛

(8)

Remark that the expression ⊛ is, by the product rule, simply the total divergence of
the 𝑝-tuple 𝐿𝜉 ..= (𝐿𝜉1, . . . , 𝐿𝜉𝑝).

We can now look closer at the expression pr(𝑛)v𝑄(𝐿). Expanding according to
theorem 3.1, we have

pr(𝑛)v𝑄(𝐿) =
∑
𝛼,𝐽

(𝐷𝐽𝑄𝛼) ·
𝜕𝐿

𝜕𝑢𝛼
𝐽

.

13We call such a vector field the "evolutionary representative" of v.
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From here, we can "integrate by parts" in a sense; namely, remark that by the product
rule, we have that

𝐷𝐽(𝑄𝛼 · 𝜕𝐿

𝜕𝑢𝛼
𝐽

) = (𝐷𝐽𝑄𝛼) · 𝐷𝐽−1
𝜕𝐿

𝜕𝑢𝛼
𝐽

+ 𝐷𝐽−1𝑄𝛼 · (𝐷𝐽
𝜕𝐿

𝜕𝑢𝛼
𝐽

).

Continuing in this fashion somewhat inductively, we can rewrite

pr(𝑛)v𝑄(𝐿) =
∑
𝛼,𝐽

𝑄𝛼 · (−𝐷)𝐽
𝜕𝐿

𝜕𝑢𝛼
𝐽︸      ︷︷      ︸

⊖

+Div𝐴,

where 𝐴 some 𝑝-tuple depending on 𝑄, 𝐿 and their derivatives. Remark that ⊖ is just
𝐸𝛼(𝐿). Substituting back into eq. (8), we have thus∑

𝛼,𝐽

𝑄𝛼𝐸𝛼(𝐿) + Div𝐴 = Div(𝐿𝜉)

=⇒ 𝑄 · 𝐸(𝐿) = Div(𝑃),

where 𝑃 ..= 𝐿𝜉 − 𝐴, 𝑄 = (𝑄1, . . . , 𝑄𝛼), 𝐸(𝐿) = (𝐸1(𝐿), . . . , 𝐸𝑞(𝐿)). But this final ex-
pression is precisely the characteristic form of a conservation law for 𝐸(𝐿), hence
completing the proof. ■

Hence, in short, the proof of Noether’s theorem reduces to integration by parts
thanks to theorem 3.1, theorem 3.2, and theorem 4.2.

Example 4.7 (Kepler’s Problem). In keeping with the "physics flavor" of Noether’s
Theorem, we consider Kepler’s Problem, in which two masses in R3 experience a central
interaction force. We fix our origin at one mass and consider the movement of a second
mass 𝑚 relative to this origin. Let x = (𝑥, 𝑦, 𝑧)(𝑡) denote the position of the mass 𝑚 in
space.

The kinetic energy of this situation is given by the function

𝐾 =
1
2𝑚 | ¤x|2,

and the potential energy we define

𝑈 =
𝑘

|x| ,
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ie an inverse-square force, where 𝑘 a non-zero constant and |x| =
√
𝑥2 + 𝑦2 + 𝑧2 In-

formally, one should expect the path of the mass to want to minimize the amount of
energy it "uses", hence we are dealing with the variational problem with Lagrangian
𝐿 = 𝐾 −𝑈 = 1

2𝑚( ¤𝑥2 + ¤𝑦2 + ¤𝑧2) − 𝑘√
𝑥2+𝑦2+𝑧2

, namely

ℒ =

∫ ∞

−∞
𝐾 −𝑈 dx .

Solving E(𝐿) = (E𝑥(𝐿),E𝑦(𝐿),E𝑧(𝐿)) gives the equations of motion of the mass; for
instance, for 𝛼 = 𝑥, we have

E𝑥(𝐿) =
𝑘𝑥

|x|3
− 𝑚 ¥𝑥 = 0.

We can summarize succinctly

E(𝐿) = 𝑘 · x
|x|3

− 𝑚¥x = 0, (9)

which matches (thankfully) with the equations of motion one would find using Newton’s
Laws.

Let v = 𝜏𝜕𝑡 + 𝜉𝜕𝑥 + 𝛾𝜕𝑦 + 𝜁𝜕𝑧 be an arbitrary vector field with each coefficient
depending on 𝑡 , 𝑥, 𝑦, 𝑧. The criterion for v to be a variational symmetry from theorem 4.2
thus reduces to

0 = pr(1)v(𝐿) + 𝐿 · Div𝜏 = pr(1)v(𝐿) + 𝐿 · (𝜏𝑡 + ¤𝑥𝜏𝑥 + ¤𝑦𝜏𝑦 + ¤𝑧𝜏𝑧). (10)

Consider the vector field v𝑡 = 𝜕𝑡 corresponding to translation in time, ie with 𝜏 = 1, 𝜉 =

𝛾 = 𝜁 = 0. According to theorem 3.1, pr(1)v𝑡 = v𝑡 . 𝐿 has no explicit time dependence,
and 𝜏𝑡 = 𝜏𝑥 = 𝜏𝑦 = 𝜏𝑧 = 0, and hence it’s clear that the symmetry condition is satisfied.
This vector field has characteristic

𝑄 = (𝑄𝑥 , 𝑄𝑦 , 𝑄𝑧) = (− ¤𝑥,− ¤𝑦,−¤𝑧).

Noether’s Theorem promises that this is also the characteristic of a conservation law of
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the equations of motion; indeed, we have

𝑄 · E(𝐿) = 𝑚 ¤𝑥 ¥𝑥 − 𝑘𝑥 ¤𝑥
|x|3

+ (same with 𝑦, 𝑧)

= 𝐷𝑡

[
1
2𝑚( ¤𝑥2 + ¤𝑦2 + ¤𝑧2) + 𝑘√

𝑥2 + 𝑦2 + 𝑧2

]
= 𝐷𝑡(𝐾 +𝑈),

that is, v𝑡 corresponds to the conservation of energy in the system.

Let us consider now the family of vector fields corresponding to rotations about fixed
axes. In particular, let v𝑧 = −𝑦𝜕𝑥 + 𝑥𝜕𝑦 be the infinitesimal generator of rotations about
the 𝑧-axis, with prolongation pr(1)v𝑧 = v𝑧 − ¤𝑦𝜕 ¤𝑥 + ¤𝑥𝜕 ¤𝑦 . Plugging into eq. (10), we find

�
�

��−𝑘𝑥𝑦
|x|3

+
�
�
��𝑘𝑦𝑥

|x|3
+ 𝑚

[
�

��− ¤𝑥 ¤𝑦 +
�
�¤𝑦 ¤𝑥
]
= 0,

hence v𝑧 indeed generates a variational symmetry group. It has characteristic

𝑃 = (−𝑦, 𝑥, 0),

and again appealing to Noether’s Theorem, we find

𝑃 · E(𝐿) =
�
�

��−𝑘𝑥𝑦
|x|3

+ 𝑚 ¤𝑦 ¥𝑥 +
�
�
��𝑘𝑥𝑦

|x|3
− 𝑚 ¤𝑥 ¥𝑦

= 𝐷𝑡(𝑚𝑦 ¤𝑥 − 𝑚𝑥 ¤𝑦),

corresponding to the conservation of angular momentum about the 𝑧-axis.

One naturally may ask when precisely a given differential equation actually arises
from a variational problem, for, if one does, Noether’s theorem can be applied. This
question is called the "inverse problem to the calculus of variations", and requires
quite a lot of background to solve, which we won’t do here (see [Olv86], chapter 5.4
for a simplified version or [And89] for a much more rigorous treatment). In short,
a differential equation 𝑃[𝑢] is the EL for some Lagrangian if and only if its "Fréchet
derivative" is self-adjoint.
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4.4 Generalized Symmetries

Recall that the types of symmetries we have considered all have infinitesimal generators
of the general form

v = 𝜉𝑖(𝑥, 𝑢)𝜕𝑥 𝑖 + 𝜙𝛼(𝑥, 𝑢)𝜕𝑢𝛼 , (11)

namely, the coefficient functions only depended on the variables 𝑥, 𝑢. In practice, we
call such symmetries "geometric" or "point" symmetries, since they literally transform
the geometry of the underlying space, in turn transforming the differential equation
defined on the space. More generally, we can consider symmetries of the form

v = 𝜉𝑖[𝑢]𝜕𝑥 𝑖 + 𝜙𝛼[𝑢]𝜕𝑢𝛼 ,

called generalized symmetries; that is, the coefficient functions can rely on 𝑥, 𝑢, and
derivatives of 𝑢. While we won’t get into the theory of such vector fields, we remark
the following.

• Is this even well-defined? Our original construction of infinitesimal generators
relied on defining vector fields on the underlying space 𝑋 ×𝑈 , then prolonging.
This had a clear, geometric interpretation, as we particularly can see in applica-
tions. To formally define such generalized symmetries, one needs to be more
explicit than we have been with regards to the jet space, and thus define these
vector fields over the space 𝑋 ×𝑈 (𝑛).

• In the same vein as the previous point, another issue that may arise is in the expo-
nentiation phase of computations; do these generalized vector fields necessarily
exponentiate to some well-defined group?

• Simply "allowing" generalized symmetries makes working with point symme-
tries often more convenient, as then we can always rewrite our symmetries in
"evolutionary form", where all 𝜉𝑖 are identically zero. Namely, given a point
symmetry eq. (11), and taking

𝑄𝛼
..= 𝜙𝛼 −

𝑝∑
𝑖=1

𝜉𝑖𝑢𝛼
𝑖

for each 𝛼 = 1, . . . , 𝑞, then we have a corresponding evolutionary representative

v𝑄 = 𝑄𝛼𝜕𝑢𝛼 ,
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(noting that each𝑄𝛼 may now depend explicitly on derivatives of 𝑢 and is hence
generalized) and one can show that a function is invariant under v if and only if
it is invariant under v𝑄 , hence the two are essentially equivalent.

• Theorem 3.2 extends naturally to generalized symmetries; however, one must fix
before computation the degree of derivatives of 𝑢 that the coefficient functions
depend on.

One of the more remarkable results one has upon consideration of generalized
symmetries is a natural extension of Noether’s Theorem; indeed, under appropriate
assumptions of domain, non-degeneracy, etc, the theorem becomes a one-to-one corre-
spondence between conservation laws14 and symmetries. Given the relative algebraic
ease that computing symmetry groups takes compared to conservation laws, this is
quite a powerful result. See [Noe18], [Olv86].
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