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1 Introduction

This report will focus on Copulas. It is meant as an introduction to the theory of Copulas. It should guide
the reader from fairly basic principles to a somewhat complex model in Vine Copulas. There is also some
commentary on the modeling and relevant to the former class of models, and the assumptions inherent. For
some prerequisite mathematical definitions and theorems, please refer to Appendix [8].

2 Copulas

2.1 Copulas Definition

Let [0, 1]d be the d-dimensional hypercube. A copula C is the distribution function on the hypercube with
uniformly distributed marginals.

• A d-dimensional copula C is a multivariate distribution function on the d-dimensional hypercube [0, 1]d

with uniformly distributed marginals.



• The corresponding copula density for an absolutely continuous copula, denoted by c, can be obtained by
partial differentiation, i.e., c(u) := ∂d

∂u1,...,ud
C(u) for all u in [0, 1]d.

We also often think of the copula density, which is the standard multivariate density function, i.e., c(u) :=
∂d

∂u1,...,ud
C(u)

When the marginals of variables are standardized to uniform distribution, ‘copulas’ characterizing the de-
pendence between random variables. Separates the dependence between the components from the marginal
distributions [1].

2.2 Sklar’s Theorem

Theorem 1. Sklar’s Theorem
Let X be a d-dimensional random vector with joint distribution function F and marginal distribution functions
Fi, i = 1, ..., d, then the joint distribution function can be expressed as

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd))

with associated density or probability mass function

f(x1, ..., xd) = c(F1(x1), ..., Fa(xd))f1(x1)...fa(xd)

for some d-dimensional copula C with copula density c. For absolutely continuous distributions, the copula C
is unique.
The inverse also holds: the copula corresponding to a multivariate distribution function F with marginal distri-
bution functions Fi for i = 1, ..., d can be expressed as

C(u1, ..., ud) = F (F−1
1 (u1), ..., F

−1
d (ud))

and its copula density or probability mass function is determined by

c(u1, ..., ud) =
f(F−1

1 (u1), ..., F
−1
d (ud))

f1(F
−1
1 (u1))...fd(F

−1
d (ud))

3 Vines

The following two definitions are the same, and each offer their own conceptual advantages. The key dif-
ference lies in the proximity condition. Additionally, the two definitions use slightly different notations and
terminologies.

3.1 Regular (R-) vine tree sequence - Czado Definition [1]

A set of trees {T1, ..., Td−1} forms a regular vine tree sequence V (T1, ..., Td−1) on d elements if:

• Connected: Each tree Tj = (Nj , Ej) is connected, meaning that there exists a path of nodes a, n1, ..., nk, b ⊂
Nj between every pair of nodes a and b within a tree Tj .

• Initial Tree: The first tree T1 is a tree with nodes numbered from 1 to d, and it has a set of edges denoted
as E1.

• Subsequent Trees: For j ≥ 2, these subsequent trees Tj have as node set Nj defined to be the set of edges
of the previous tree Ej−1. The set of edges is denoted Ej .

• Proximity: For j = 2, ..., d−1 and for every edge {a, b} in the edge set Ej , it is required that the cardinality
of the intersection of nodes in a and b is one. Reminder: a, b ∈ Ej are sets so a ∩ b is a set and an edge
in Ej−2 = Nj−1.

Simplified Czado Definition:

• Nodes of T (n) = Edges of T (n− 1)

• You may connect Nodes in T (n) which share one Node in T (n− 1)
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3.2 Regular vine - Joe Definition [2]

Let V be a regular vine on d elements, where ϵ(V ) = ϵ1 ∪ ... ∪ ϵd−1 denotes the set of edges of V . Then, the
vine V satisfies the conditions below:

• V consists of d− 1 trees, denoted as {T1, ..., Td−1}.

• T1 is a connected tree with nodes N1 = {1, ..., d} and edges ϵ1.

• For l = 2, ..., d − 1, Tl is a tree with nodes Nl = ϵl−1 (the edges in a tree become the nodes in the next
tree).

• Proximity: For l = 2, ..., d− 1, n1, n2 denote the set of all elements in the nodes that forming the edge ϵl.
For any edge ϵl, the symmetric difference of n1 and n2, denoted by #(n1△n2), equals 2 (nodes joined in
an edge differ by two elements).

Simplified Joe Definition:

• Nodes of T(n) = Edges of T(n-2)

• Connecting Nodes in T(n) which have symmetric difference=2

3.3 An example of Vine

Vines from both Czado’s and Joe’s point of view

Figure 1: Vine started with a Tree 1 of five Nodes
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4 Conditional Distributions

In statistics, when modeling joint distributions, we sometimes use conditioning and/or mixing to create models.
This approach allows us to break down complex distributions into simpler, more manageable components by
focusing on the relationships between variables. It is useful to consider these methods when thinking about how
Vines work, as Vines provide a convenient way to express joint distributions of two or more random variables
and their associated conditional distributions. First, we will give some definitions and explanations of key
concepts in conditional distributions.

Definition 1. (Chain Rule for Conditional Probability)
for any events A1, ..., An,

P [∩n
i=1Ai] = Pr[A1]× Pr[A2|A1]× Pr[A3|A1 ∩A2]× . . .× Pr[An|

n−1∏
i=1

Ai]

Definition 2. (Chain Rule for Conditional Density)
Similarly, for any x1, ..., xn,

fx1,...,xn(x1, ..., xn) = fx1(x1)× fx2|x1
(x2|x1)× fx3|x1,x2

(x3|x1, x2)× . . .× fxn|x1,...,xn−1
(xn|x1, ..., xn−1)

There are infinitely many forms of expressing fx1,...,xn(x1, ..., xn), for example:

fx1,...,xn(x1, ..., xn) = fx1,...,xn−1|xn
(x1, ..., xn−1|xn)× fxn(xn)

5 Mixture

For d random variables X1, ..., Xd with multivariate distribution F . S is a non-empty subset of 1, ..., d, which
represents the conditioning set of variables. T is a subset of the complement of S, denoted as Sc, with at least
two elements, which will serve as the set of conditioned variables. Denoting M = S ∪ T , we express:

FM (xM ) =

∫
(−∞,xS ]

FT |S(xT |yS)dFS(yS);

the conditional distribution FT |S(·|xS) exists almost everywhere on a set X ⊂ R|S| with P (XS ∈ X) = 1 [2].

proof.

FM (xM ) = FT |S =

∫ xs

−∞

∂|S|FT∪S∏
k∈S ∂yk

fs(ys)
dFs(ys)[5] =

∫ xs

−∞

∂|S|FT∪S∏
k∈S ∂yk

fs(ys)
fs(ys)dys =

∫ xs

−∞

∂|S|FT∪S∏
k∈S ∂yk

dys

=

∫ xs

−∞

∂|S|FT∪S∏
k∈S ∂yk

d(
∏
k∈S

∂yk) = FT∪S [3] = FM

6 Simplifying assumption

The theorem 4.7 from Czado(2019)[1] illustrates the fundamental principle of vine copulas, where the joint
density function of a multivariate distribution can be factorized into the product of marginal densities and
copulas. The copulas capture the dependencies between pairs of variables, conditioned on subsets of other
variables.
The theorem states:

Theorem 2. Every joint density f1,...,d can be decomposed as

f1,...,d(x1, ..., xd) =

d−1∏
j=1

(
d−j∏
i=1

ci,(i+j);(i+1),...,(i+j−1)

)
×

d∏
k=1

fk(xk) (1)
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Making a simplifying assumption eases the modeling with vine copulas, which assumes that the copulas for the
conditional distributions do not depend on the specific values of the conditioning variables (i+1),...,(i+j-1).
The following is a more formalized definition.

Definition 3. (Simplifying assumption) Let F be a multivariate Gaussian distribution of Z, the copulas
for the conditional distributions do not depend on the values vS of the conditioning variables, i.e.

CT ;S(·) = CT ;S(·; vS)

depends only on the variables in the set M = S ∪ T (or the correlation matrix for ZM ).

A discrete example:
In credit risk assessment, the assumption is made that the copulas, representing the interdependence between a
borrower’s credit score (S) and income level (T) given various conditions, remain consistent irrespective of the
specific values of conditioning variables, like loan amounts or terms.

7 Application in Paper[3]

The paper introduces the modeling of multivariate dependencies using PCCs, particularly focusing on trivariate
cases. The simplifying assumption states that the dependency captured by the copula is invariant to the values of
the conditioning variables. The paper suggests that this assumption might not hold in reality, which could lead
to misleading inferences about the dependence structure among variables in real-life cases. Therefore, the paper
introduces a nonparametric smoothing methodology to relax this assumption. It describes the methodology,
demonstrates its performance through simulations, and applies it to real data. This discussion will focus on the
implications for trivariate PCCs when the conditional independence assumption does not hold.

7.1 Trivariate PCCs

First, it is worth mention the Trivariate PCCs introduced in the paper.
Let X1, X2, X3 be random variables with joint distribution function F and continuous margins F1, F2, F3,
respectively. Sklar’s Representation Theorem [1] states that, for all x1, x2, x3 ∈ R,

F (x1, x2, x3) = C{F1(x1), F2(x2), F3(x3)},

where C is a copula [2.1], i.e., a distribution function with margins that are uniform on (0, 1). If F is absolutely
continuous, its density can be written in terms of the density c of C as

f(x1, x2, x3) = c{F1(x1), F2(x2), F3(x3)} · fk(xk),

where, for each k ∈ {1, 2, 3}, fk is the density of Fk. For more variables, it can be expressed as density[1].

A PCC is based on the fact that f can be decomposed as

f(x1, x2, x3) = f3(x3) · f2|3(x2|x3) · f1|23(x1|x2, x3). (1)

Note that this factorization is unique up to relabeling. For any index set A ⊂ {1, 2, 3} and k ∈ A, let
A− k = A\{k}. Using Sklar’s Representation Theorem, one can then write, for arbitrary j /∈ A,

fj|A = cjk|A−k(Fj|A−k, Fk|A−k) · fj|A−k. (2)

proof of (2).
∂

∂j∂k
Cjk|A−k(Fj|A−k, Fk|A−k) =

∂

∂j∂k
Fjk|A−k[1]

cjk|A−k(Fj|A−k, Fk|A−k) · fj|A−k · fk|A−k = fjk|A−k

cjk|A−k(Fj|A−k, Fk|A−k) · fj|A−k =
fjk|A−k

fk|A−k
=

fjk,(A−k)

fA−k

fk,(A−k)

fA−k

=

fj,A
fA−k

fA
fA−k

=
fj,A
fA

= fj|A
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Repeated applications of relation (2) in (1) make it possible to express f as

f(x1, x2, x3) = f1(x1)f2(x2)f3(x3) · c12{F1(x1), F2(x2)} · c23{F2(x2), F3(x3)}

·c13|2{F1|2(x1|x2), F3|2(x3|x2);x2}, (3)

which reduces to
c(u1, u2, u3) = c12(u1, u2)c23(u2, u3)c13|2(u1|2, u3|2;u2)

if the margins of F are uniform.

The univariate conditional distributions featuring in (3) are given by Fj|k(xj |xk) = hjk{Fj(xj), Fk(xk)}, where,
for all u, v ∈ (0, 1),

hjk(u, v) =
∂Cjk(u, v)

∂v
.

7.2 Investigating the Simplifying Assumption

Definition 4. (Kendall’s tau (τ))
The Kendall τ coefficient, denoted as τ , is defined as the difference between the proportion of concordant[7]
pairs and the proportion of discordant[7] pairs among all possible pairs of observations. Mathematically, it is
expressed as:

τ =
number of concordant pairs − number of discordant pairs

total number of pairs

Assume for simplicity that (X1, X2, X3) = (U1, U2, U3) is a random vector with standard uniform margins.
Further suppose that

1. C12 is a Clayton copula with parameter θ12 = 1.2;

2. C23 is a Gumbel–Hougaard copula with parameter θ23 = 3;

3. given U2 = u2, C13|2 is a Frank copula with parameter θ13|2(u2) = γ(4u2 − 2)3,

where γ ∈ {0, 1}.
When γ = 0, the Frank Copula with parameter 0 is an independence copula. The variables U1 and U3 are
conditionally independent given U2, and hence the simplifying assumption is satisfied. When γ = 1, however,
the conditional copula C13|2 depends on the value of U2, and the resulting model is not a simplified PCC.

Figure 2: Plots of τ(X1, X3|X2 = x2)[4] as a function of x2 assuming a Frank copula for C13|2 , as derived from θ̂13|2
(dashed) and θ̃13|2 (dotted) for the data when γ = 0 (left) and γ = 1 (right). In both graphs, the true function is shown
as a solid curve.

The figure above reveals several key findings. Firstly, regardless of whether the margins are known or estimated,
the estimates are similar to the true curve, indicating robustness in the estimation process. Most importantly,
what the paper aims to show is in the left panel where the parameter γ = 0, the curves demonstrate a flat trend
near τ = 0, consistent with the underlying assumption, suggesting that C13|2 is not functionally dependent on
the conditioning variable X2. Conversely, the right panel, representing γ = 1, exhibits a nonlinear pattern,
implying potential dependency between X2 and C13|2, challenging the simplifying assumption.
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This technique provides a methodology to examine the data for potential violations of the simplifying assump-
tion. The plots illustrate the differences between scenarios with and without a violation of this assumption.
These results indicate that the assumption should not be made blindly. Therefore, the proposed technique in
the following section of the paper is designed for validation before applying the assumption.

8 Appendix

Definition 5. (Conditional Distribution of a multivariate)
Let (X1, . . . , Xd) ∼ F , where F ∈ F(F1, . . . , Fd). If X1, . . . , Xd are all discrete, then conditional distributions
of the form P (Xj ≤ xj , j ∈ S1 |Xk = xk, k ∈ S2) are defined from conditional probability applied to events.
If X1, . . . , Xd are all continuous random variables, and F1, . . . , Fd are absolutely continuous with respective
densities f1, . . . , fd, then the Conditional CDFs are defined via limits [2].
If S2 = {k}, then

FS1 | k(xS1 |xk) := lim
ε→0+

P (Xj ≤ xj , j ∈ S1, xk ≤ Xk < xk + ε)

P (xk ≤ Xk < xk + ε)
=

∂FS1∪{k}
∂xk

fk(xk)

proof.

lim
ε→0+

P (Xj ≤ xj , j ∈ S1, xk ≤ Xk < xk + ε)

P (xk ≤ Xk < xk + ε)
=

∂FS1∪{k}
∂xk

∂F{k}
∂xk

=

∂FS1∪{k}
∂xk

fk(xk)

If the cardinality of S2 is greater than or equal to 2, then the definition of the conditional CDF is:

FS1 |S2
(xS1 |xS2) := lim

ε→0

P (Xj ≤ xj , j ∈ S1;xk ≤ Xk < xk + ϵ, k ∈ S2)

P (xk ≤ Xk < xk + ε, k ∈ S2)
=

∂|S2|FS1∪S2∏
k∈S ∂xk

fS2(xS2)
,

provided FS2 is absolutely continuous.

Definition 6. (Conditional PDF)

fS1 | k(xS1 |xk) =
∂FS1 | k(xS1 |xk)

∂xS1

Given the joint CDF FS1∪S2 and marginal PDF fS2 , the conditional PDF fS1|S2
(xS1 |xS2) is defined as follows:

fS1|S2
(xS1 |xS2) =

∂|S2|FS1∪S2∏
k∈S ∂xk

fS2(xS2)

This formula holds true only if the cardinality of S2 is greater than or equal to 2, and FS2 is absolutely
continuous.

Definition 7. (Concordant and Discordant)
Let (x1, y1), . . . , (xn, yn) be a set of observations of the joint random variables X and Y , such that all the values
of xi and yi are unique (ties are neglected for simplicity). Any pair of observations (xi, yi) and (xj , yj), where
i < j, are said to be Concordant if the sort order of (xi, xj) and (yi, yj) agrees: that is, if either both xi > xj
and yi > yj holds or both xi < xj and yi < yj ; otherwise they are said to be Discordant.

Theorem 3. (Fundamental Theorem of Calculus, Part I)
Let f be continuous on the closed interval [a, b], and let F be the function defined, for all x in [a, b], by

F (x) =

∫ x

a
f(t) dt.

Then F is continuous on [a, b] and differentiable on (a, b), and F ′(x) = f(x) for all x in (a, b).
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