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ABSTRACT. Building on Benoit Mandelbrot’s The Fractal Geometry of Nature, this expository paper aims to

formally define the geometric forms known as fractals. By first defining topological dimension, then detouring

through measure theory and dimension theory, this paper will enrich the reader’s understanding about the com-

plexity of fractals, while providing basic tools for discussing and quantifying different fractals. Its principal aim

is to provide an accessible account of fractals’ unique geometric properties.
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1. OVERVIEW AND AIMS

Departing from Benoit Mandelbrot’s The Fractal Geometry of Nature [3], this paper will describe and mo-

tivate the basic concepts needed for an appreciation of the complexity of fractals and their dimension. In

particular, we will draw from topology, measure theory, and dimension theory to grasp fractals and their

unique properties.

For Mandelbrot, fractals are a response to the perception that geometry is “cold” and “dry” (1). They are an

attempt to challenge this notion by appealing to the irregularity and complexity of the geometry of nature.

Thus, fractals are a way of understanding geometry’s rich possibilities beyond its sterile and purely abstract

applications. Examples of complex geometry observable in nature can be seen below in Figure 1.

Among many of Mandelbrot’s neologisms, the name “fractal” is rooted in Latin. The word is based on the

adjective fractus and the corresponding verb fragere, which mean to break or to create irregular fragments

(Mandelbrot, 4). However, fractals are more than just complex and irregular shapes. Formally defined, they

are sets whose Hausdorff Dimension D1 strictly exceeds their Topological Dimension DT , understood by

Lebesgue Covering Dimension2. Hence, we have our first definition:

Definition 1.1. A set is called a fractal if its Hausdorff Dimension D strictly exceeds its topological

dimension DT . Hence, for all fractals, D ą DT .

Because it defines what it means to be a fractal, we can refer to Hausdorff Dimension D as a fractal di-

mension. The following sections of this paper are devoted to providing a rich and accessible explanation of

fractal and topological dimension. In the end, my hope is that this paper will allow for a richer appreciation

of fractals and their complexity, while demonstrating the mathematical equipment required to deal with these

forms.

2. FOUNDATIONAL CONCEPTS

This section will briefly review two concepts: first, metric spaces from analysis and geometry, and second,

outer measures from measure theory. Despite their origin in different areas of mathematics, both concepts

serve as important bases for understanding how sets and subsets can be ”measured” or quantified in different

1See Definition 5.1
2See Definition 1.0
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FIGURE 1. Left: complex geometric forms observed in the gills of a mushroom; Right: frozen
water forms a unique pattern near the Niagara Falls in Ontario, Canada [6]

ways. Both definitions, and the notion of measurement in the first place, are useful for understanding the

work undertaken later in this paper.

2.1. METRIC SPACES

We devote the first part of this paper to a brief summary of metric spaces, an important concept within analysis

and geometry.

Definition 2.1. Given a set X , a function d : X ˆ X Ñ R is a metric on X if for all x, y P X:

a) dpx, yq ě 0 with equality if and only if x “ y;

b) dpx, yq “ dpy, xq; and

c) d satisfies the triangle inequality, ie for all z P X , dpx, zq ď dpx, yq ` dpy, zq

If d is a metric over X , we write pX, dq to denote the metric space: a the set equipped with its metric.

Simply put, a metric space is a set X equipped with a “measure” d satisfying the above axioms. With our

measure, it is possible to have a notion of “distance” in a set. This concept is invaluable for understanding

Hausdorff Dimension, discussed in Section 5. While a simple example is given below, various functions can

serve as our measure, including the regular Euclidean distance function. Proving that Euclidean Distance is
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a metric is fairly easy task and is left to the reader. For the below observation, we notice the one-dimensional

formula for Euclidean distance is a metric:

Observation 2.1. We demonstrate a brief observation proving that dpx, yq :“ |x ´ y| is a metric over

R, hence proving that pR, dq is a metric space.

Proof. For all x, y, z P R:

a) |x ´ y| ě 0 and |x ´ y| “ 0 if and only if x “ y;

b) |x ´ y| “ |y ´ x|;

c) By the triangle inequality: |x ´ z| ď |x ´ y| ` |y ´ z|

Hence, dpx, yq :“ |x ´ y| is a metric over R, and pR, dq is a metric space. □

2.2. OUTER MEASURE

Another useful notion of measurement, this time from measure theory, is that of ‘outer measure’, defined in

this section.

Definition 2.2. An outer measure B over Rn is a function assigning a non-negative real number to

every subset of Rn with the following properties:

a) BpHq “ 0;

b) if A Ď B then BpAq ď BpBq; and

c) if tAju
8
j“1 are subsets of X , then Bp

Ť8

j“1Ajq ď
ř8

j“1 BpAjq

Essentially, an outer measure satisfies the conditions of a measurement we would in everyday life. The first

property simply states that the measure of nothing is zero. For the second, we can think of having a room

and measuring a table within it. The measurement of this table should be less than or equal to that of the

room. There is no way the table, fully contained within the room, could exceed the room in length. The final

property holds that if we have multiple pieces of furniture in the room, the measure of the furniture taken

together must not exceed the summed measures of each piece of furniture. This property with furniture is

true in general, accounting for situations where furniture is stacked or overlapping.
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Further discussion of outer measures, specifically the related concept of a ‘metric outer measure’ is possible.

Such a measure satisfies the properties of an outer measure, while satisfying the following additional property:

Definition 2.3. A metric outer measure B over a metric space pX, dq is an outer measure B satisfying

the property that for all A,B P X:

BpA Y Bq “ BpAq ` BpBq

While it can be shown that Hausdorff measure, defined later in Section 5, is a Metric Outer Measure, the

task of proving this property takes us afield in our expository discussion of fractals. For that reason, further

elaboration on the properties of Hausdorff measure as a metric outer measure are omitted. However, the

reader is encouraged to explore this result, found in Theorem 2.2 in Robinson’s textbook [5].

3. TOPOLOGICAL DIMENSION

In this section, we explore the notion of topological dimension, defined formally as Lebesgue Covering

Dimension. Informally conceived of as the number of coordinates needed to describe a set, topological

dimension is always an integer value. The reason for this will become clear in the discussion below. For a

set X Ď RDT , X has topological dimension DT . Generally, then, individual points have dimension DT “ 0,

lines have dimension DT “ 1, a square has dimension DT “ 2, cubes have dimension DT “ 3, and so on.

Many of the definitions in this section are lifted from James C. Robinson’s Dimensions, Embeddings, and

Attractors [5].

3.1. COVERINGS AND REFINEMENTS

We begin by identifying some of the necessary concepts for understanding how the Lebesgue Covering

Dimension is defined:

Definition 3.1. Let S Ď Rn be a set. A covering of S is a collection U “ tUαuαPA of sets such that:

ď

αPA

Uα Ě S

A covering of S consisting of open sets Uα is called an open cover.
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Simply put, a cover U of a set S is a collection of sets whose union contains the set S. We apply this definition

in the example below:

R

R

S1U1

U3

U2

Example 3.1

Here, S1 is a subset of R2. The collection of sets U :“ tU1, U2, U3u is a cover of S1, since
Ť3

i“1 Ui Ě S1.

Notice that U1 :“ tU1, U2u is also a cover of S1. However, U2 :“ tU1, U3u is not a cover of S1.

Next, we define the refinement of a cover:

Definition 3.2. A refinement of a covering U is a collection W “ tWλuλPG of sets such that each Wλ

is a subset of some Uα.

This definition indicates that each set contained in a collection W of sets is a refinement of the cover U only

if each set Wλ P W is contained in at least one set Uα P U.

R

R

S1U1

W1 W2

U2

W3

Example 3.2

In this figure U1, U2, and S1 are as before. Notice that W1 and W2 are completely contained in U2 and

U1 Y W1 Y W2 is a covering of S1. Hence, W :“ tU1,W1,W2u is a refinement of the cover U1 from the
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previous example. However, notice that W3 is not completely contained in either of U1 or U2. Hence, any

covering of S1 containing W3 is not a refinement of U1.

Finally, we define the order or ply of a covering:

Definition 3.3. The order or ply of a covering (if finite) is the largest integer n such that there are n`1

sets in the covering with a non-empty intersection.

With these definitions understood, we can now properly define Lebesgue covering dimension, which is a

formally defined topological dimension. Note that Lebesgue covering dimension is one of many possible

topological dimensions. Nevertheless, it is rigorously defined, making it the formal basis for topological

dimension for the purposes of our investigation.

3.2. DEFINING THE LEBESGUE COVERING DIMENSION

Informally, Lebesgue covering dimension is the smallest number n such that for any open cover U of a set

X , there is a refinement of W such that every x P X lies in the intersection of no more than n ` 1 sets in the

refinement. A set without a Lebesgue Covering Dimension n is said to be infinite-dimensional.

Example 3.1. From this definition, we can demonstrate that any point x P R has the expected dimen-

sion n “ 0:

Proof. Let U be an arbitrary covering of the set X :“ txu Ď R. We know W “ ttxuu is

a refinement of U. This is because W “ ttxuu is a refinement of U since if U covers X, it must

contain a set containing x, and so txu P W is contained in this set. Thus, U can be refined to W :“ txu.

Since W is the singleton txu, it cannot be further refined. Consequently, we found that the smallest n

such that X “ txu lies in the intersection of no more than n ` 1 sets. Namely, X is contained in no

more than than 1 set. Hence,

n ` 1 “ 1 ùñ n “ 0

Therefore, the point x P R has dimension n “ 0. □
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Formalizing the above definition slightly, we get the following proper definition of Lebesgue covering di-

mension, from Robinson [5]:

Definition 3.4. Let pX, dq be a metric space. A set A Ď X has Lebesgue covering dimension DT “ n

if every covering U of X has a refinement of order ď n. A set has DT “ n if DT ď n but it is not true

that DT ď n ´ 1.

From this definition, we can create a function DT : X Ñ Z defined by DT pXq “ the dimension of X.

This function takes sets as inputs and their dimension as outputs. Now, we have a definition of topological

dimension, as understood by Lebesgue covering dimension. In the following sections, we will motivate and

introduce the Hausdorff/Fractal Dimension in contrast to this definition.

4. MOTIVATING HAUSDORFF DIMENSION FROM LEBESGUE COVERING DIMENSION

This section will be devoted to a discussion motivating the need for a “fractal dimension” to measure and

understand fractal sets. With Lebesgue covering dimension, we have come to appreciate how regular topo-

logical dimension is defined. This proves useful in many situations we are used to dealing with in Euclidean

geometry, such as points, lines, planes etc. However, our understanding of dimension reaches an impasse,

or a point of impossibility, when dealing with fractals and natural phenomena. Consequently, we must move

beyond our conventional methods to grapple with these special cases.

Mandelbrot [3] discusses how topology, through the concept of homeomorphism (the existence of a contin-

uous bijection between topological spaces with a continuous inverse) excessively reduces the complexity of

coastlines (17). Equivalent to isomorphism in the context of topology, two homeomorphic spaces are consid-

ered topologically the same. For the sake of concision, we will avoid further discussion of these ideas in this

work. What should be drawn from this discussion, is that topologically speaking, a circle, with a circumfer-

ence C “ 1, is “the same” as an island whose coastline measures 1 unit. Hence, complex coastlines become

reducible to simple figures, and archipelagos into groups of circles.
8



FIGURE 2. Measuring the coastline of Britain using increasingly small measurement “yard-
sticks” from left to right [1]

4.1. CAPTURING THE COMPLEXITY OF COASTLINES

Going beyond topology, Mandelbrot invites us to further consider coastlines when asking “how long is the

coast of Britain?” (25). This length must at least be equal to the distance measured in a straight line from the

beginning to the end of the coast. Indeed, a typical coastline is irregular, winding, and of a different length

than the a straight line drawn from end-to-end on the coastline. Mandelbrot goes on to discuss various ways

in which coastlines can be measured, but it proves to be a difficult task.

For example, we know that a line, having topological dimension DT “ 1 and length 1 can be measured with

yardsticks of a given length ϵ, say ϵ “ 1
4
. Then, dividing my line into segments of length ϵ, I have four

segments, corresponding to a length Lpϵq “ 4 ˚ 1
4

“ 1. Lpϵq, which we can call the true length, settles to

a single value once a certain threshold of precision is met by my choice of ϵ. The function itself is simply

constructed as follows: Lpϵq “ N ¨ ϵ, where N is the number of lengths needed to ‘cover’ or measure the

line/coastline in question. This function only has natural number outputs, corresponding to the number of

lengths ϵ. For example, measuring my unit line with segments of length ϵ “ 2, Lpϵq “ 0, since we use 0

ϵ-long segments in measuring the line. However, after a certain point of reducing ϵ, the measurement settles

to a well-defined value.

However, this story is more complicated when dealing with real coastlines. As we see in Figure 2, shrinking

my yardstick length ϵ increases the amount of detail captured in a given measurement. Consequently, it is

not clear whether or not Lpϵq will converge to a true length as ϵ shrinks. Indeed, Mandelbrot finds that many

natural curves, like coastlines, are non-rectifiable. This means that approximate measurements of the curve
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FIGURE 3. Empirical Measurements of Coastlines by Richardson Fry, lifted from [3]

increase as ϵ shrinks, making the value of the measurement diverge as ϵ decreases. Conversely, a rectifiable

curve, such as the circumference of a circle, quickly converges to its true value. We see this expressed in

empirical measurements by Lewis F. Richardson in Figure 3.

Figure 3, from Mandelbrot’s textbook (33), plots points along the horizontal axis by the length ϵ of the faces

of polygons whose lengths were used to approximate the true length of various coastlines. Meanwhile, the

vertical axis marks the log length of the coastline with each measurement. We see that the circumference of

a circle quickly converges toward a value as ϵ decreases. However, various coastlines do not converge to a

stable value, and appear to diverge.

Hence, techniques for measuring one-dimensional Euclidean curves seem to fail when attempting to gain

accurate measurements of naturally occurring curves, like coastlines. This same problem occurs when at-

tempting to measure fractal curves, which have “infinite detail”. The issue here lies in the dimension of the

measuring tools we are using. Throughout the processes of measurement discussed by Mandelbrot, one-

dimensional yard sticks or lengths ϵ are used to determine a true length. However, by changing the dimension

of our measuring tool, accurate measurements suddenly become possible.
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4.2. THE NEED FOR FRACTAL DIMENSION

Ultimately, the accurate measurement of fractal curves boils down to using the appropriate measurement

tools. For instance, it is clear from early results in Real Analysis that lines cannot meaningfully be measured

with points. To exemplify this, we can consider the infinitude of points needed to build a line. For instance,

the density of both the rational numbers, Q, and the irrational numbers, RzQ, on the real line R, demonstrate

that an uncountable infinitude of points are contained within R and any subset of it. Interestingly, an infinite

number of points is therefore needed to cover a line of any length.

However, the length of a line of finite length is of course measurable, but only by using sets of the same

dimension, i.e. other lines. Hence, it does not make sense to measure the length of a line by asking how

many points it contains, but how many intervals of a length ϵ it contains. This is reflected in the process

of measurement discussed in the previous section. Thus, using a measuring tool of too low of a dimension

results in an “infinite measurement”, like measuring the length of a line with points. Meanwhile, measuring

the length of a set with a tool with too high of a dimension results in a measured length of 0. Indeed, asking

about the “surface area” of a line is non-sensical, like asking for the volume of a square. Hence, a tool of the

right dimension is required for an accurate measurement of a given set. Hausdorff dimension, which provides

unconventional non-integer dimension values, can help us find the right measuring tools for fractals.

5. HAUSDORFF DIMENSION

Hausdorff Dimension provides the mathematical equipment required to determine the measuring tool of an

appropriate dimension for fractals. In his textbook [3], Mandelbrot presents Hausdorff dimension as a kind

of “effective dimension” for fractals. Often a non-integer value for fractals, Hausdorff dimension is often

“disconcordant” with other notions of dimension (14). While standard figures in Euclidean geometry, like

points, lines, planes, etc. are dimensionally concordant (i.e. have the same value) for different notions of

dimension, fractals do not. Indeed, as first discussed in this paper, fractals are defined by having a fractal

dimension that strictly exceeds its topological dimension.

Devoted to understanding how Hausdorff dimension is calculated, the following sections will provide the

formal definition of Hausdorff dimension. Then, we will see an approximation of Hausdorff dimension from
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the work of Lewis F. Richardson. A sample calculation, using Richardson’s approximation, will also be

shown below for the Koch Curve.

5.1. INTRODUCTION

Recognizing the need for a notion of dimension which allows for the accurate measurement of fractals and

coastlines, we turn to Hausdorff’s notion of dimension, as discussed in Geometric Measure Theory: A Begin-

ner’s Guide by Frank Morgan [4].

We begin with definition of the diameter of a set, an important start for understanding Hausdorff dimension:

Definition 5.1. For any subset S of Rn, define the diameter of S:

diampSq “ suptdpx, yq : x, y P Su

where d is a metric defined over the set Rn.

For our purposes, we will use the metric d representing Euclidean distance, ∥x ´ y∥. Then, we can think of

diameter is the longest straight line that can be drawn between two points in the set S. In a circle, this would

a straight line passing from one point on the circle’s circumference through the centre, or twice the length of

the radius. We begin with a simple example:

Example 5.1. Let S be the line from 0 to 1 i.e. p0, 1q Ď R. Then,

( )
0 1

We can visually intuit that:

diampSq “ supt∥x ´ y∥ : x, y P Su “
a

p0 ´ 1q2 “
?
1 “ 1

We show an example for a line segment in a subset of R2:
12



Example 5.2. Let L be the line from p1, 2q to p3, 4q over R2:

R

R

r1, 2s

r3, 4s

Here again, we can intuit that the greatest distance between two points of L is the interval between the

two ends, p1, 2q and p3, 4q. Here, we use the metric d as the Euclidean distance function in R2, where

x and y are points in R2. Hence, the calculation of the diameter set is as follows:

diampLq “ supt|x ´ y| : x, y P Lu “
a

p1 ´ 3q2 ` p2 ´ 4q2 “
?
4 ` 4 “

?
8 “ 2

?
2

Indeed, this length is what we would expect by applying the Pythagorean theorem to the right triangle

whose hypotenuse is the line L.
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5.2. S-DIMENSIONAL HAUSDORFF MEASURE

Now, we can approach the definition of Hausdorff Dimension by constructing an outer measure:

Definition 5.2. An approximation of the s-dimensional Hausdorff Measure of a set A Ď X , with δ ą 0

and s ě 0 is defined by:

Hs
δ :“ inft

ÿ

iPI

diampAiq
s : X Ă

ď

iPI

Ai, diampAiq ă δu

Where the infimum is taken over the set of countable covers tAiuiPI of A

This approximation takes, for a fixed non-negative diameter δ, the infimum of the set of summed diameters

of all countable covers A of X . We can demonstrate that this approximation is a an outer measure:

Lemma 5.1. Hs
δ is an outer measure on pX, dq for all δ ą 0

Proof. Fix δ ą 0.

a) Clearly, Hs
δpHq “ 0

b) A Ď B ùñ Hs
δpAq ď Hs

δpBq since we are taking the supremum (by definition of diampSq) of a

set bigger than A.

c) See Lemma 2.1 of [5]

□

Now, we obtain the s-dimensional Hausdorff Measure as follows:

Definition 5.3. The s-dimensional Hausdorff Measure, Hs is defined by Hs
δ such that:

Hs
“ lim

δÑ0
Hs

δpXq

This s-dimensional measure is defined in terms of a limit which does not necessarily exist. Whether or not

the limit exists depends on the value of s, which corresponds to the dimension of the measure used. We want

to show that as s is decreased, there is a critical value at which the measurement of a given set goes from zero

to infinity. We demonstrate this in the following section.
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5.3. HAUSDORFF DIMENSION

Proposition 5.2. Let A be a subset of pX, dq. Take s̃ ą s ą 0: if HspAq ă 8 then Hs̃pAq “ 0, and if

Hs̃pAq ą 0, then HspAq “ 8.

Proof. Note that the two statements are equivalent, so we prove the first. Assume HspAq ă 8. Then,

for any δ ą 0, there is a cover of A by the sets tBjujPJ all satisfying diampBjq ď δ such that for all

ϵ ą 0:
ÿ

jPJ

diampBjq
s

ď Hs
pAq ` ϵ

Then, for s̃ ą s,

ÿ

jPJ

diampBjq
s̃

“
ÿ

jPJ

diampBjq
s̃´s`s

“
ÿ

jPJ

pdiampBjq
s̃´s

¨ diampBjq
s
q

Then, by construction,

diampBjq
s̃´s

ď δs̃´s
ùñ

ÿ

jPJ

pdiampBjq
s
¨diampBjq

s̃´s
q ď

ÿ

jPJ

pdiampBjq
s
¨δs̃´s

q “ δs̃´s
ÿ

jPJ

pdiampBjq
s

Hence,
ÿ

jPJ

diampBjq
s̃

ď δs̃´s
ÿ

jPJ

pdiampBjq
s

“ δs̃´s
pHs

pAq ` ϵq

Finally, we note that δ can get arbitrarily close to 0. Hence, we conclude that Hs̃pAq “ 0. □

Now, we can properly define the Hausdorff dimension of a set A using the above proposition:

Definition 5.4. For any subset A Ď pX, dq, the Hausdorff Dimension of A is:

dHpAq “ inft0 ď s ď 8 : Hs
pAq “ 0u

“ supt0 ď s ď 8 : Hs
“ 8u

Finally, we have defined Hausdorff dimension, allowing us to distinguish fractal and non-fractal curves by

comparing topological dimension (given by Lebesgue covering dimension) with this fractal dimension. How-

ever, Hausdorff Dimension, as defined above, is difficult to calculate for a given set. So, we briefly turn to
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the work of Lewis F. Richardson for his approximation of Hausdorff Dimension for self-similar fractals. We

will also provide a sample computation using his approximation.

6. LEWIS F. RICHARDSON’S APPROXIMATION OF HAUSDORFF DIMENSION

In Mandelbrot’s textbook, Richardson’s discovery of an approximation of Hausdorff Dimension is described

as emerging from his empirical studies (29). Responding to the question of how coastlines can be measured,

Richardson argued that the length of a coastline, Lpϵq, could be approximated as follows:

Definition 6.1. For a given coastline, for some ϵ ą 0, the Richardson Approximation of Length Lpϵq is

the following function:

Lpϵq « Fϵ´D
¨ ϵ “ Fϵ1´D

where Fϵ´D is the number of yardsticks of length ϵ needed to cover the coastline.

In this approximation, the value of D depends upon the coastline chosen. For our purposes, D is Richardson’s

approximation of Hausdorff Dimension for coastlines. Interestingly, it can be shown that the value of D is

independent of our choice of yardstick length ϵ:

If we take a polygonal approximation of the coastline made up of small intervals of length ϵ, and raise this

to the power D, we obtain what Mandelbrot calls an “approximate measure in the dimension D” (30). For

Richardson, the number of yardsticks N “ Fϵ´D takes the value Fϵ´DϵD “ F . Hence, F appears to

approximate HDpAq for a given coastline A.

Fractals, heuristically taken as possessing an infinite amount of detail, can be described by Richardson as

having a cascade. Mandelbrot discusses this notion as the consequence of adding increasingly finer detail to

a given drawing/map (34). However, as we will see in the following section, these details and complexity do

not necessarily mean unpredictability.

6.1. SELF-SIMILAR FRACTALS AND THEIR GENERATION

A certain class of fractals, called self-similar, contain a piece that is geometrically similar to the whole. For

such fractals, the shape and the cascade that generate it are self-similar. For fractals in this class, we can use

two shapes to generate them iteratively.
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FIGURE 4. Iteratively generating the Koch curve K using the initiator and generator method [2]

First, we begin with an initiator and a generator. The initiator is our initial shape. The generator is an

oriented broken line, made up of N equal sides of length r. With this scheme, we can generate a fractal by

replacing each fixed interval along the initiator with a scaled-down copy of the generator. These copies are

shrunk and pasted so as the have the same endpoints as each interval of in the initiator.

The initiator-generator construction is demonstrated for the generation of the Koch curve in Figure 4. Here,

E0 is the first initiator, and E1 is the first generator. To get the first iteration E1, each straight-line interval

of E0 (i.e. the whole line) is replaced with an appropriately scaled copy of E1. To attain the next iteration,

E2, we scale down the generator E1 to 1
3

its size and paste four copies replacing the straight-line intervals of

E1. To generate E3, we scale down E2 to 1
3

its size, and again paste it along every interval of E2 that is E1

(namely, four times). This iterative process can be continued by continuous copying, scaling, and pasting.

Taken to the limit, this method generates F , the Koch Curve.

With this construction, Mandelbrot defines an analog of Hausdorff dimension, stemming from Richardson’s

research. In this construction, the fractal dimension D is defined as follows (30):

D “
logpNq

logp1
r
q
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In this formula, N is the number of copies of the generator pasted onto the initiator to acquire the next

iteration. Meanwhile, r is the scaling factor we apply to the generator so that it becomes an appropriate size.

For a curve, this scaling factor is such that the endpoints of the scaled generator map appropriately onto the

endpoints of the intervals in the initiator. Of course, this approximation only makes sense for self-similar

fractals, which, like K, can be constructed iteratively.

Then, for the Koch curve, we see that each successive iteration involves the scaling of the previous iteration

by r “ 1
3
, with N “ 4 copies added to create the next curve. Hence, the dimension of the Koch curve, by this

construction, is:

D “
logpNq

logp1
r
q

“
logp4q

logp3q
« 1.2619

Now, this value D, which coincides with the Koch Curve’s Hausdorff dimension, can be used to measure its

length, by using Hausdorff measure. The yardstick of length ϵ acts here like the diameter of each set in a

cover, whose added lengths are used to calculate the length of the curve. Indeed, like in Hausdorff Measure,

the value of D must be appropriately chosen. Otherwise, an underestimate of length 0 or an overestimate of

length 8 emerges.

By this understanding of dimension and Richardson’s approximation of coastline length, we can think of the

iterations of the Koch curve as the “level of resolution” of a map of a coastline in the shape of K for a given

yardstick length ϵ. For instance, if we attempt to measure a K-shaped coastline using yardsticks of length

ϵ “ 1
3

(assuming the first iteration E0 has length 1), we find that four yardsticks can be placed along K, which

coincides with the measured length of the iteration E1. Hence, the image of the coastline K using this value

ϵ “ 1
3

is E1. However, if smaller yardsticks were used, a “higher-resolution” image of K would be possible,

with ever-increasing precision. Taken to the limit, we can measure the length of the Koch curve K using a

measuring tool of the appropriate dimension, determinable using Richardson’s approximation! Suddenly, we

can accurately measure coastlines and certain fractals!

7. CONCLUSION AND ACKNOWLEDGEMENTS

Overall, we have taken Mandelbrot’s discussion about fractals to explore how they are defined; namely,

shapes whose Hausdorff dimension exceeds their topological dimension. We learned that topological dimen-

sion is formally understood as Lebesgue covering dimension, which we then defined. We demonstrated the

insufficiency of topological dimension when measuring and discussing natural phenomena and fractals. After
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motivating Hausdorff dimension, a fractal dimension, we learned how it is defined. Finally, we explored an

approximation of Hausdorff dimension for self-similar curves, applying this approximation to calculate the

Hausdorff dimension of the Koch curve.

Hopefully, this account of fractals and their dimension has enriched the reader’s understanding of how fractals

are defined, and the kinds of mathematical tools their analysis requires. Despite the theoretical nature of the

definitions and concepts used towards this end, I would like to emphasize that fractals and natural phenomena

are found everywhere in concrete reality. Indeed, fractals demonstrate that previous work in mathematics and

in the realm of ideality do not even begin to describe the complexity found everywhere in nature.

In light of this development, I do not believe that mathematics, at its very limit, is intended to work purely

in the realm of abstraction and ideality. Rather, nature gives us plenty to ponder, often presenting us with

incomparable complexity. While mathematical work in the realm of the theoretical remains fascinating,

nature, in its everydayness, provides more than enough to push us to the limits of mathematical thought. I

hope that through a richer understanding of fractals, we are able to open our hearts and minds to nature’s

complexity, which we can always find around us.

I would like to thank my mentor Jessie Meanwell for her constant support throughout the semester. Guiding

my efforts and providing great patience, her mentorship gave me the space and the confidence to research

this topic. I would also like to acknowledge my fellow group members Henry Olsen and Nora Kollokian.

Working with them was a pleasure, and I enjoyed our extensive discussions. Finally, I would like to thank

the DRP committee for hosting this amazing opportunity for personal and intellectual development. As my

first research experience in math, I appreciated the opportunity to work on interesting problems that do not

necessarily have solutions. I am excited to continue to reflect on this experience and to apply the skills and

confidence I gained to explore other topics in mathematics and engage in further research work.
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