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Abstract

We use numerical simulations to study a high-dimensional dynamical system that describes the
gradient flow of an energy function defined on a system of particles. We investigate how the steady
states exhibit a symmetry-breaking phenomenon. We implement these simulations in Julia, a lan-
guage designed for scientific computing.

1 Introduction

The Directed Reading Program (DRP) offered by McGill’s Department of Mathematics and Statistics
pairs selected undergraduate students with graduate mentors to introduce them to mathematical research.
Over the course of a semester, the undergraduate student explores a mathematical topic in depth, cul-
minating in a short written report and a 10-minute oral presentation to fellow DRP participants and
mentors. From January to May 2025, I had the opportunity to work with Miguel Ayala, a PhD student
in the department, and explore computer-assisted proofs and computational methods in applied mathe-
matics.

The main goal of our project was to understand how computers can aid in modern applied math-
ematical research. Scientific computing is a powerful tool that enables faster analysis and exploration
of complex problems. It also plays a vital role in industry, where large datasets must be processed and
analyzed efficiently. Computational methods in applied mathematics can be used to approximate solu-
tions to complex systems of differential equations. They can also be used to filter, group, and compute
summary statistics of large datasets, and to visualize the results in a clear and flexible way.

In this paper, we describe how we use computational tools to study the structure of local minimizers in
a high-dimensional dynamical system. We begin by introducing the system’s energy function, its gradient,
and its Hessian. Then we describe how we use Julia to implement and solve the system of equations.
The rest of the report analyzes a symmetry-breaking phenomenon in the structure of the steady states
and shows how computational methods help analyze and visualize various properties of these shapes.
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2 The Energy Function of a System of Particles

Consider a system of N particles Xi ∈ R3 i = 1, . . . , N . The energy function of the particle system at
each time is given by

E(X1, . . . , XN ) :=
1

2N

∑
i ̸=j

Kα,λ(|Xi −Xj |) (1)

or equivalently,

E(X1, . . . , XN ) :=
1

N

N∑
i=1

Kα,λ(|Xi −Xj |)

where the interaction kernel is

Kα,λ(r) :=
1

α
rα +

1

λ
r−λ (2)

with the attraction and repulsion parameters α and λ both being real positive numbers. This specific
kernel came from this paper on nonlocal interaction energies [1].

Given two particles X1 = (x1, y1, z1) and X2 = (x2, y2, z2) in R3, we use the notation |X1 − X2| for
the Euclidean distance between the two particles:

|X1 −X2| :=
√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

2.1 The Gradient and Hessian of the Energy Function

To find the steady states of the energy function, we track each particle Xi, for i = 1, . . . , N using the
vector field given by the gradient of the energy:

dXi

dt
= −∇Xi

E(X) = − 1

N

N∑
j=1

∇Kα,λ(|Xi −Xj |) (3)

Steady states occur when all particles stop moving, which corresponds to the vanishing of the gradient.
For N particles, the gradient of the energy function will be a system of 3N ODEs. For example, suppose
we have the particles X1, X2, X3. Using Equation (3), if X1 = (x1, y1, z1), we see that:

dX1

dt
= −


∂E
∂x1

∂E
∂y1

∂E
∂z1

 = −1

3


∂(Kα,λ(|X1−X2|)+Kα,λ(|X1−X3|))

∂x1

∂(Kα,λ(|X1−X2|)+Kα,λ(|X1−X3|))
∂y1

∂(Kα,λ(|X1−X2|)+Kα,λ(|X1−X3|))
∂z1


Following the definition for the interaction kernel of eq. (2), one can show that :

∂Kα,λ(|X1 −Xj |)
∂x1

= (x1 − xj)(r
α−2
1j − r

−(λ+2)
1j )

∂Kα,λ(|X1 −Xj |)
∂y1

= (y1 − yj)(r
α−2
1j − r

−(λ+2)
1j )

∂Kα,λ(|X1 −Xj |)
∂z1

= (z1 − zj)(r
α−2
1j − r

−(λ+2)
1j )

Let Xi ∈ R3 have coordinates (xi, yi, zi). Denote the vector of 3 particles by

P = (x1, x2, x3, y1, y2, y3, z1, z2, z3)
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Then dP
dt = −∇pE will be a 9-dimensional vector. To implement and solve numerically for the steady

states of the particle system, we also need to compute the Hessian of the energy function. Let P =
(x1, x2, ..., x3N ) be the vector representing each coordinate of all the different particles. Then, the hessian
of the energy function is defined by the following 3N × 3N matrix:

H :=


∂2E
∂x2

1

∂2E
∂x1∂x2

. . . ∂2E
∂x1∂x3N

∂2E
∂x2∂x1

∂2E
∂x2

2
. . . ∂2E

∂x2∂x3N

...
...

. . .
...

∂2E
∂x3N∂x1

∂2E
∂x3N∂x2

. . . ∂2E
∂x2

3N

 (4)

For a system of 3 particles, the hessian will be a 9×9 matrix. The eigenvalues of the Hessian indicate
the stability of the steady states. In our simulations, the eigenvalues of the Hessian are always positive,
meaning we are always finding stable steady states, which are also local minimizers. In the following
sections, the term local minimizers will be used to refer to the steady states of the particle system.

3 Solving the System for a Fixed Number of Particles

Consider the energy function defined in eq. (1) with 50 particles. This yields a system of 150 ODEs.
Solving this system by hand is not practical. However, we can use a scientific programming language
such as Julia to implement a numerical algorithm that allows a computer to solve the system with high
accuracy. For our simulations we will be using the numerical algorithm TRBDF2. The solver combines
an implicit Runge-Kutta formula using a trapezoidal rule step with a backward differentiation formula of
order 2. More details about this numerical algorithm and its implementation are found in the following
references: [2] [3].

We start by generating a random initial condition for our system of particles. Recall that the interac-
tion kernel depends on two parameters: α and λ. We fix our kernel parameters to λ = 0.01 and α = 20.
Using our Julia implementation, we are able to find the following steady states with a sup-norm precision
of the order of 10−7.

Figure 1: Position of the Local Minimizers when λ = 0.01, α = 20

From the plot of fig. 1, it seems that the local minimizers replicate a spherical shape. What happens
if we increase the parameter α?
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(a) λ = 0.01, α = 65 (b) λ = 0.01, α = 70

Figure 2: Comparison of the Shape of the Local Minimizers for α = 65 and α = 70 (λ = 0.01)

Comparing fig. 2 with fig. 1, we observe that between values 20 and 65, there is no significant qual-
itative change in the shape of the steady states. Radial symmetry is still present. However, between
values 65 and 70, we observe a drastic change in shape-a clear break in radial symmetry. When α = 70,
the overall shape resembles a solid of constant width known as the Meissner Body. This resemblance
becomes more apparent as we continue increasing α (see fig. 3 and fig. 4).

Figure 3: Local Minimizer for λ = 0.01, α = 200 Figure 4: Meissner Body

How can we quickly identify the symmetry breaking without directly examining the shape of the local
minimizers? How can we quantify the difference between the two shapes? In the first case, are we truly
observing a sphere? In the second, does the shape genuinely resemble a solid of constant width? The
following section introduces the tools needed to answer these questions.

4 Analyzing and Measuring the Shape of the Local Minimizers

We aim to quantify the overall shape of the local minimizers by examining various characteristics of the
steady states and how they change as the parameter α is varied. For both types of shapes, we introduce
specific distance-based measures that allow us to verify or reject the properties discussed in section 3.

4.1 Analyzing the Symmetry of the Local Minimizers

Let us begin by analyzing the overall shape of the global minimizers before the symmetry break. We
define a reference frame with the origin at the center of mass of the steady states. If the configuration
is truly spherical, we expect each local minimizer to lie at nearly the same distance from the center of
mass. To test this, we measure the following quantities:

• Maximum distance between any steady state and the center of mass
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• Minimum distance between any steady state and the center of mass

• Mean distance of all steady states from the center of mass

• Standard deviation of these distances

We let α range from 20 to 200 in steps of 5, keeping λ fixed at 0.01.

Figure 5: Evolution of the Maximum, Minimum, Mean and Standard Deviation of the Distances
Measured Between Each Steady State and the Center of Mass (λ = 0.01, α ∈ [20; 200])

Distances from the Center of Mass for α = 20

Maximum Distance 563, 4137× 10−3

Minimum Distance 563, 1221× 10−3

Mean Distance 563, 2145× 10−3

Standard Deviation 9, 383749× 10−5

From fig. 5 and its table we observe that for α = 20 (before the symmetry breaking) the mean,
maximum and minimum distances are all on the order of 10−3. The standard deviation of all the
distances between each local minimizer and the center of mass is on the order of 10−5. This strongly
suggests that the pattern observed in fig. 1 is indeed spherical.

4.2 Analyzing the Shape of the Local Minimizers After the Symmetry Break

We now turn to the shape observed after the symmetry break. We aim to determine whether it corre-
sponds to a solid of constant width. A convex solid S ⊂ R3 has constant width w if for every pair of
parallel planes tangent to the solid S, the distance between the two planes is always w [4]. Equivalently,
the solid S is of constant width w if for any unit direction u⃗ ∈ R3,

max
x∈S

u⃗ · x−min
x∈S

u⃗ · x = w

There exists an uncountable number of directions u⃗ in the unit sphere. However, sampling 500 random
unit directions is sufficient to evaluate whether the shape is of constant width. Using the formula above,
we compute a width w for each of the 50 particles in the system.
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Figure 6: Distribution of the Solid Widths for 500 Different Directions when λ = 0.01, α = 70

Figure 7: Distribution of the Solid Widths in 500 Different Directions when λ = 0.01, α = 200

In both fig. 6 and fig. 7, it seems there is a small but non-negligible difference in the widths measured
in the 500 different directions. In both cases, the standard deviation σ of the widths is close to 10−2. This
is significantly larger than the standard deviation reported in the table under fig. 5. However, since the
distances measured and the algorithms used are different, we cannot directly compare these two standard
deviations. The results from section 4.1 strongly suggest a spherical pattern for small values of α, and
a sphere is a body of constant width. Interestingly, when we run this new algorithm with α = 20, we
also obtain a standard deviation σ close to 10−2. This indicates the dispersion in the widths after the
symmetry break is similar to the one observed before the symmetry break.

Another interesting phenomenon we notice is the influence of the attraction parameter α on the overall
values of the computed widths. As α increases, all widths tend to decrease, indicating the particles are
moving closer to the center of mass. This behaviour justifies the name attraction given to the parameter
α.
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5 Further Explorations

Up to now we only focused on the variation of the parameter α. However, we could also analyze the
behavior of the local minimizers as we vary the parameter λ. Another interesting path is to investigate
what happens when we increase the number of particles in our system. If we change the number of
particles, do we arrive at the same conclusions as those discussed in section 4? To explore this, let us
reproduce the diagram from fig. 5, this time for different values of N.

Figure 8: Evolution of the Local Minimizers Distances over a Fixed Range of α (20 to 100 with
λ = 0.01) for Different Values of N

In fig. 8, we fixed the range of α between 20 and 100. When N = 20, the radial symmetry breaks
between α = 20 and α = 40. When the number of particles is doubled to N = 40, the critical value of
α shifts to around 55. Finally, when the number of particles is doubled again to N = 80, the symmetry
break does not occur before α = 80. Increasing the number of particles delays the start of symmetry
breaking in the system.

6 Conclusion

In the previous sections, we have employed various visualization tools—such as scatter plots, line dia-
grams, and histograms—to illustrate our results. The use of the numerical algorithm TRBDF2, along
with its Julia implementation, was also essential to the success of our simulations. These tools and
techniques represent just a glimpse of the vast possibilities that computers offer in applied mathematical
research and industry. As the complexity of the mathematical models we study continues to grow, the
role of computational methods will become increasingly central. Mastering the ability to harness compu-
tational power, interpret the results effectively, and communicate them clearly will be a crucial skill for
both current and future applied mathematicians.

References

[1] Almut Burchard, Rustum Choksi, and Elias Hess-Childs. On the strong attraction limit for a class
of nonlocal interaction energies. Nonlinear Analysis, 198:111844, 2020.

7



[2] E. Hosea, M. and F. Shampine, L.˙ Analysis and implementation of tr-bdf2. Applied Numerical
Mathematics, 20(1-2):21–37, 1996.

[3] Randolph E. Bank, Jr. Coughran, William M., Wolfgang Fichtner, Eric H. Grosse, Donald J. Rose,
and R. Kent Smith. Transient simulation of silicon devices and circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 4(4):436–451, 1985.

[4] Thomas Lachand-Robert and Edouard Oudet. Bodies of constant width in arbitrary dimension.
Mathematische Nachrichten, 280(7):740–750, 2007.

8


	1 Introduction
	2 The Energy Function of a System of Particles
	2.1 The Gradient and Hessian of the Energy Function

	3 Solving the System for a Fixed Number of Particles
	4 Analyzing and Measuring the Shape of the Local Minimizers
	4.1 Analyzing the Symmetry of the Local Minimizers
	4.2 Analyzing the Shape of the Local Minimizers After the Symmetry Break

	5 Further Explorations
	6 Conclusion

