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1 Introduction

For our project, we read the book Office Hours with a Geometric Group Theorist [CM17], edited
by Matt Clay and Dan Margalit. After reviewing groups and metric spaces, which is necessary
background for this topic, we dove into our main object of study, Cayley graphs, along with some
important theorems in geometric group theory and their proofs.

An important initial question in geometric group theory is how we can represent groups as geometric
objects. One way to do this is called a Cayley graph. This paper will discuss the definition of a
Cayley graph, how to construct one for a given group, and go through many examples.

Moreover, this paper discusses how groups act on graphs, and how these geometric group actions
can provide algebraic information.

2 Preliminaries

Definition 1. A tree is a connected graph with no cycles, i.e. there exists a unique path between
any two vertices.

Definition 2. The path metric on a connected graph Γ with vertex set X is given by: d(v1, v2)
is the length of the shortest edge path between v1 and v2, v1, v2 ∈ X.

Definition 3. The action of a group, G, on a set X is called a free action if the only element
that fixes any x ∈ X is the identity. Moreover, a group action on a tree is free if the identity is
the only group element that fixes a vertex of the tree, and if only the identity preserves edges of the
tree.
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3 Groups

3.1 Torsion

Definition 4. A torsion element of a group is an element that has finite order. A group is said
to be torsion free if the identity is its only torsion element.

3.2 The Free Group

Definition 5. In an arbitrary set S, a word is a finite sequence of elements that may be empty
which can be written as a product of elements in S. We say that a word is reduced if an element
is never followed by its inverse.

Definition 6. A free group is a group with generating set S where the operation is concatenate
and reduce. The free group consists of all reduced words that are products of elements of S. The
cardinality of S is called the rank of the free group.

For example, the free group of rank 2, F2, has generating set {a, b}. The group consists of words
containing a, b, a−1, and b−1, with no element ever followed by its inverse.

3.3 Group Presentations

Definition 7. A group presentation is a pair (S,R), where S is a set and R is a set of words
in S. We say that a group G has presentation ⟨S|R⟩ if S ∪ S−1 is a generating set for G and the
words in R are the same as the identity element. The set S are the generators of G and the words
in R are the relators.

Group presentations are not unique and every group has at least one group presentation. To see
this, simply take the generating set to be the entire group.

Examples

• For Z2, the generators are x and y, and xy = yx is our relator

– Typically we write the relator to be a single word which is equal to the identity: xyx−1y−1

– Z2 ∼= ⟨x, y|xyx−1y1⟩

• Z/nZ ∼= ⟨a|an⟩

This is how we write the group presentation for any cyclic group generated by a.

• Z ∼= ⟨x⟩

• D4
∼= ⟨r, s|r4, s2, (rs)2⟩

• F2
∼= ⟨a, b|∅⟩

Any free group does not have relators.
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4 Graphs

4.1 Automorphisms and Actions on Graphs

Definition 8. A graph isomorphism, Γ → Γ′, is a pair of bijections, V → V ′ and E → E′ that
preserves all of the graph structures, where V and V ′ are the vertex sets of Γ and Γ′ and E and E′

are the edge sets of Γ and Γ′. In other words, the endpoints of the image of an edge are images of
the endpoints of that edge.

Definition 9. A graph automorphism is a graph isomorphism from a graph to itself. We call
Aut(Γ) the set of automorphisms of Γ.

Another way to think about graph automorphisms is to picture them as the symmetries of the
graph, as you would any other geometric object.

Definition 10. The group action of G on a graph Γ is a homomorphism G → Aut(Γ).

Group actions on graphs must preserve all graph structures.

4.2 Cayley Graphs

The first step to geometric group theory is figuring out how to represent any group as a geometric
object. This can be done with a specific type of graph called a Cayley graph. The goal of construct-
ing a Cayley graph is to find a graph that, when acted on by the group using left multiplication,
returns all of the symmetries of the graph. This action will essentially give us back the group. This
is described formally in Theorem 12.

Definition 11. The Cayley Graph of a group G with generating set S is a directed, labeled graph
Γ(G,S) such that the vertices of the graph are the elements of G, and for all g ∈ G, every s ∈ S
creates an edge connecting g to gs.

Example We will look at a section of the Cayley graph

G ∼= ⟨s1, s2 | s22⟩

around a group element g ∈ G.

First we note that the Cayley graph can be drawn in two different ways. On the left side of Fig. 1,
we draw a two-way edge instead of two separate directed edges, as on the right. Drawing a two-way
edge is the standard way to draw the edge of a generator with order 2 because the graph appears
cleaner and simpler.

From Fig. 1 we can note some characteristics of any Cayley graph:

• Any vertex g has 2 · |S| edges coming out of it, half going out to gsi and half coming in from
gs−1

i for every i = 1, . . . , n where n is the number of generators of G.

• Any relator creates a loop in the Cayley graph, as shown in the right image. Therefore we
anticipate that the Cayley graph of a free group will be a tree.
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Figure 1: Two ways to draw a small section of the Cayley graph of G ∼= ⟨s1, s2 | s22⟩. The pink lines
represent edges corresponding to the generator s1 and the blue lines represent edges corresponding
to the generator s2.

• Locally, or around any point, the Cayley graph should look the same everywhere.

To get a better grasp on how Cayley graphs look and are constructed, we will look at some examples.
We also found that attempting to construct a Cayley graph of another group that you know or like
is another way to develop a better understanding.

Example First, we will look at the Cayley graph of Z2 which has group presentation:

Z2 ∼= ⟨x, y |xy = yx⟩

This is an infinite group so the Cayley graph is also infinite. The relator tells us that traveling
along the horizontal direction then the vertical direction will give the same vertex as traveling first
in the vertical direction then the horizontal direction.

Figure 2: The Cayley graph of Z2 with generators x = (1, 0) and y = (0, 1).
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We can draw the Cayley graph of a single group with different group presentations. Note that the
choice of group presentation does not matter up to quasi-isometry of their Cayley graphs, which
we will not cover.

Example We look at two ways to draw the Cayley graph of Z using two group presentations:

Z ∼= ⟨x⟩ Z ∼= ⟨a, b | a3 = b2⟩

Figure 3: Two Cayley graphs of Z using the different group presentations listed above. On the
right, a = 2 and b = 3.

Example
Z/6Z ∼= ⟨a | a6⟩

Figure 4: The Cayley graph of Z/6Z.

From this, we can see that any cyclic group of order n will have a Cayley graph that looks like a
polygon with n sides.

Example D4
∼= ⟨r, s | r4, s2, (rs)2⟩ is shown in Fig. 5.

Example Now we look at the process of constructing the Cayley graph of F2, which can been seen
in Fig. 6. The method we use is to start with the identity element. Then apply each generator
and their inverses to the element. Each successive step is produced by applying each generator
and their inverses to every new element. We are careful not to redraw any edge and vertex that
is already drawn. So in this case, three new edges and vertices are added to each vertex that was
drawn in the previous step.

F2
∼= ⟨a, b⟩
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Figure 5: The Cayley graph of D4.

Figure 6: First four steps in constructing the Cayley graph of F2 from left to right.

Now that we’ve seen several Cayley graphs, we can formalize the connection between a group and
its Cayley graph with Theorem 12.

Theorem 12. Let S be a generating set for the group G. Let Φg be an automorphism of the graph
given on the vertices by Φg(v) = gv, that is, the action of G by left multiplication. Then the map
G → Aut(Γ(G,S), g 7→ Φg is an isomorphism.

5 Groups Acting on Trees

Theorem 13. If a group G acts freely on a tree, then G is a free group.

Proof. Before we dive into the proof, we need a few definitions.

Let T be a tree. The barycentric subdivision of T , denoted by T ′, is the graph obtained by
placing new vertices in the center of every edge of T . A tile of T is a subtree of the barycentric
subdivision of T .
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A tiling of T is a collection of tiles that satisfy the following properties:

1. No tiles share an edge, so two tiles either intersect at a single vertex or they do not intersect.

2. The union of all tiles is the entire tree, T ′.

For this proof, we have the group G acting freely on T and we will impose a third condition
on the tiling.

3. There is a single tile, T0, such that the set of tiles is {gT0 | g ∈ G}. In other words, every tile
must be of the form gT0 and for every g ∈ G, gT0 is a tile.

We will call a tiling of T that satisfies all three conditions a G-tiling of T . The whole proof
consists of three steps. First, we find a G-tiling of T . Next, we find a generating set for G using
that tiling. Finally, we show that this generating set is a free-generating set, which the proves that
G is a free group.

Step 1: Tiling the Tree

To find a G-Tiling of T , we choose any vertex v ∈ T and consider the orbit of v under G, called the
G-orbit of v. Since G acts freely on the tree, that is, no non-trivial element preserves any vertex
or edge, there exists a bijection between the G-orbit of v and the elements of G.

Now for every g ∈ G, we take Tg to be the subgraph of T ′ with the following conditions:

• Tg has vertex set Wg such that for every w ∈ Wg,

d(w, gv) ≤ d(w, g′v) ∀g′ ∈ G.

Note that we are using the path metric on T’.

• Tg has edge set Eg such that both vertices of e ∈ Eg are in Wg

In other words, Tg is all of the vertices closest to the vertex gv and the edges connecting them.

To better understand this, we look at an example with the group F2 acting on its Cayley graph,
which is a group acting freely on a tree.

In Fig. 7, the left image is the Cayley graph of F2. The center image is the barycentric subdivision
of the Cayley graph, where the purple vertices are the new vertices. The right image shows the
tiles of the Cayley graph, circled in orange. The center tile is T0 or the identity tile. Each tile
includes a vertex of T and the four closest vertices of T ′. Adjacent tiles only intersect at a single
vertex, which is an element of T ′ but not T .

The following three claims will prove that the union of {Tg}g∈G is indeed a G-tiling of T .

Claim 14. Every Tg is a tile.
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Figure 7: F2-Tiling of the Cayley graph of F2

By the definition of a tile, we want to show that every Tg is a subtree of T ′ (the barycentric
subdivision of T). This is the same as showing that every Tg is a connected subgraph of T ′ because
any connected subgraph of a tree is a tree.

We already know that Tg is a subgraph of T ′ since all its vertices and edges are contained in T ′ by
construction. All that is left to show is that Tg is connected.

Let w be a vertex of Tg, so w ∈ Wg. We will show that every vertex in the unique path from w to
gv in T ′ is contained in Tg. This automatically implies that the edges along the path are also in Tg

by construction of Tg. This would prove that Tg is connected.

Let d(w, gv) = n on the path metric. Let vertex u ∈ T ′ be the first vertex in the path from w to
gv. So d(u, gv) = n− 1.

Suppose u /∈ Tg, then there exists some g′ ∈ G such that

d(u, g′v) = m < n− 1

Then
d(w, g′v) ≤ m+ 1 < n

This contradicts the fact that w is in Tg, since it would be closer to g′v than to gv. So u must also
be in Tg. Now this process can be repeated with u instead of w, all the way along the unique path
back to gv, showing that w is connected to gv in Tg. Hence every Tg is a connected subgraph of T ′

and so is a tile.

Claim 15. The union of the Tg is all of T’

Now that we have established that Tg as previously defined is a tile, we want to show that the
union of all of these tiles forms T ′, the barycentric subdivision of T .
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By the definition of Tg, every vertex in T ′ must lie in some Tg, since said vertex must be closest to
some gv. Thus, to show that T ′ is the union of all Tg, we must show that every edge of T ′ is in
some Tg.

Since T ′ is the barycentric subdivision of T , every edge in T ′ will have one vertex u that is also a
vertex of T , and one vertex w that is only a vertex of T ′. We can then observe that for any edge
path in T ′, the vertices will alternate between vertices of T , and vertices of T ′ that are not vertices
of T .

Again taking distance to be the path metric in T ′, we can see that the distance between any two
vertices u1, u2 of T will be even. To see this, note that two adjacent vertices of T will have two
edges between them, and we can then see that the distance between any two vertices of T must be
even. Since the G-orbit of v is a set of vertices in T , we can then see that the distance from any u
of T to the G-orbit of v will be even. Similarly, the distance from any vertex w of T ′, where w is
not a vertex of T , to the G-orbit of v will be odd, since any vertex w is exactly one edge from its
closest vertex in T , and the distance to any other vertex in T from this point will be even.

Now, suppose that u and w are vertices of the same edge, and that the distance from u to the
G-orbit of v is less than the distance from w to the G-orbit of v, and assume that u lies in Tg. Since
u and w are adjacent, the distance between them is 1. By the triangle inequality, we have that

d(w, gv) ≤ d(u, gv) + 1

However, we have also assumed that

d(u,Gv) ≤ d(w,Gv)

(Note that d(u,Gv) = d(u, gv) since u lies in Tg).

We then get that
d(w, gv) ≤ d(u, gv) + 1 ≤ d(w,Gv)

Since distance in the path metric must be an integer, this inequality shows that d(w,Gv) = d(w, gv),
and hence w lies in Tg. Thus, the edge between u and w lies in some Tg for every u of T and w of
T ′, so T ′ is the union of all Tg.

Claim 16. For all g, h ∈ G, gTh = Tgh

Let h = Id, this implies Th = T0. Recall that every tile, Tg, is equal to gT0 for some g ∈ G. Since
we already know the vertex set of T0, we can show that the vertex set of T0 goes to the vertex set
of each Tg upon action by g. We’ll prove this for an arbitrary vertex, u ∈ Th.

Suppose u is a vertex of Th, then for all k ∈ G,

d(u, v) ≤ d(u, kv) if u ∈ Th

Similarly,
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d(gu, gv) ≤ d(gu, kv) if gu ∈ Tgh

Considering G acts by isometries, apply g−1:

g−1 · d(gu, gv) ≤ g−1 · d(gu, kv)
d(u, v) ≤ d(u, (g−1k)v) for all k ∈ G

d(u, v) ≤ d(u, kv) for all k ∈ G

The action of g−1 on the tile Tgh has yielded the original inequality with which we started (the
one that characterizes u as a vertex of Th). This implies the action of g−1 on the tile Tgh sends its
vertices to those of Th, proving gTh = Tgh for all g ∈ G.

Step 2: Finding a Symmetric Generating Set for G

Let S = {g ∈ G | (gT0) ∩ T0 ̸= ∅}, that is (gT0 ∩ T0) is a single vertex of T ′ since two tiles either
intersect at a single vertex of T ′ or do not intersect.

To show that S is symmetric, we will show that if s ∈ S, then s−1 ∈ S. Let s ∈ S. Then

(sT0) ∩ T0 = {w}

where w is a vertex of T ′. Apply s−1 to obtain

T0 ∩ (s−1T0) = {s−1w}

We have that s−1w ∈ T ′, thus s−1 ∈ S, thus S is symmetric.

Now we must show that S generates G. Let g ∈ G. We will show that g is a product of elements
in S. For any vertex gv obtained by the element g acting on the tree, consider the path going from
gv back to v. This path is unique, and goes along the tiles

Tgn , Tgn−1 , · · · , Tg1 , Tg0

where gn = g and g0 = Id.

Claim 17. Each g−1
i−1gi is equal to some si ∈ S

Proof. If a path from gv to v goes through the tiles Tgi+1 and Tgi without going through any other
tiles in between, then Tgi+1 ∩ Tgi is a single vertex. By applying g−1

i , we obtain

(g−1
i Tgi+1) ∩ (g−1

i Tgi) = Tg−1
i gi+1

∩ T0 ̸= ∅

Where we applied the result of Claim 16. Hence g−1
i gi+1 ∈ S.

Now that we have proved this claim, it follows by induction, shown below, that gn = s1s2 · · · sn.
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Proof. Base case (n = 1): s1 = g−1
1−1g1 = g1.

Assume that gk = s1s2 · · · sk.

We want to show that gk+1 = s1s2 · · · sk+1. By the previous claim, we have that

sk+1 = g−1
k+1−1gk+1 = g−1

k gk+1

Thus, if we apply gk to the equality and use the induction hypothesis, we obtain

gksk+1 = gk+1 = s1s2 · · · sksk+1

Hence for any g ∈ G, g = gn = s1s2 · · · sn, thus S is a generating set for G.

Step 3: Free Generation Here we will show that S generates G freely, so G is a free group. Free
generation means that the word associated with each element of G, which is a product of elements
in S, is unique.

Let g = s1 . . . sk be a freely reduced word. We will use this word to construct a tile path that
follows the vertices from Tg to T0. Because this tile path is along a tree, it will be unique, and thus
the word is also unique.

Let v be a vertex in T0. In order to trace a path from gv ∈ Tg to v, we’ll have to pass through the
following tiles:

Tg, Ts1...sk−1
, . . . , Ts1 , T0

To achieve such a path, we’ll first notice that the path from v to s1v is the tree T0 ∪ Ts1 . It’s
important to note that the union of these two trees is itself a tree, implying that, so far, the path
from v to s1v is unique. We can repeat this process when finding the path from vs1 to vs1s2 , noting
that the union of tiles Ts1 and Ts1s2 is, again, a tree. Inductively one can conclude the tile path
from v to gv is

T0 ∪ Ts1 ∪ · · · ∪ Tg.

Again, this tile path is a tree since it’s the union of trees, and with that we can confirm the reduced
word associated with each element of G is unique, and so S generates G freely.

6 Conclusion

We went through the basics of geometric group theory and one very important theorem, which is
just one example of the algebraic information that can be gained from studying the geometry of
groups.

There are many other topics in geometric group theory that we discussed but did not have a
chance to delve into in great detail. Many of these include properties of Cayley graphs that can be

11



used to study the group, including quasi-isometries, ends of groups, and hyperbolic groups. This
introduction to geometric group theory is the basis needed to dive into a whole branch of math
with some amazing results.
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