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2 GRAPH THEORY

1 Introduction

This report was completed at McGill University as part of a directed
reading project on algebraic methods combinatorics supervised by Gabriel
Crudele. The following work is a collection of proofs the authors have learned
and rewritten for themselves while being introduced to this topic. This work
provides examples of how tools from algebra can be employed to solve prob-
lems in combinatorics where a direct approach is possibly more complicated
(see 4.2). Most of the material is from the unpublished lecture notes of
Natasha Morrison [3], with the exception of the sections 4 and 5 whose con-
tents are mostly from [2].

2 Graph Theory

2.1 Introduction to Spectral Graph Theory

Definition 2.1. A graph G is a pair pV,Eq where V is a set of vertices and
E contains edges between vertices, i.e. elements of the form xy for x, y P V .
For any graph G we let GpV q and GpEq denote its set of vertices and edges
respectively. Every graph mentioned here will be finite and simple, meaning
|V pGq| ă 8, there is at most one edge between any two vertices, and edges
cannot start and end at the same vertex.

Definition 2.2. A graph G is connected if there is a path in G between any
pair of vertices, i.e. for any x, y P V pGq there exists i1, i2, ..., in P V pGq such
that xi1, i1i2, ..., iny P EpGq.

Example 2.2.1. A complete graph Kn with n vertices has an edge between
any pair of distinct vertices.

Example 2.2.2. A complete bipartite graph Ka,b has a vertex set A Y B
where A and B are disjoint sets of cardinality a and b respectively, and has
an edge xy if and only if x P A and y P B, or x P B and y P A. We sometimes
denote Ka,b as pA,Bq.

Definition 2.3. Npxq :“ ty : yx P EpGqu is the neighborhood of a vertex
x P V pGq for a graph G.

Definition 2.4. For a graph G, the degree dpxq of a vertex x P V pGq is the
amount of neighbors x has, meaning dpxq “ |Npxq|. A graph is said to be
regular or d-regular if every vertex has the same degree d.
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2.1 Introduction to Spectral Graph Theory 2 GRAPH THEORY
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Figure 1: A cycle graph with 4 vertices.

Definition 2.5. The adjacency matrix ApGq of a graph G is a |V pGq| ˆ

|V pGq| matrix where relabeling the vertices to be integers from 1 to |V pGq|,

pApGqqij :“

#

1 if ij P EpGq

0 otherwise.
(1)

Example 2.5.1. The entries of the adjacency matrix of Kn are 1 everywhere
except on the diagonal since Kn contains every edge ij where i ‰ j.

Example 2.5.2. The adjacency matrix of the bipartite graph pt1, 2u, t3, 4uq

is
»

—

—

–

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

fi

ffi

ffi

fl

.

Remark 2.6. Since simple graphs do not contain edges starting and ending
at the same vertex, the diagonal of their adjacency matrix is 0. Additionally,
the adjacency matrix is symmetric since containing the edge ij is the same
as containing the edge ji.

The spectrum of adjacency matrices provide information on a graph. We
give the following example for intuition on dealing with eigenvalues of ad-
jacency matrices. This way of viewing eigenvectors of adjacency matrices
works for any graph, but we give a concrete example.

Example 2.6.1. Let G be the graph in figure 1 with adjacency matrix

A “

»

—

—

–

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

fi

ffi

ffi

fl

.
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2.1 Introduction to Spectral Graph Theory 2 GRAPH THEORY

If we take a vector x “ px1, x2, x3, x4q to be weights placed on the corre-
sponding vertices of G, the ith entry of Ax is the addition of weights from
the neighbors of i since

Ax “ x1

»

—

—

–

0
1
0
1

fi

ffi

ffi

fl

` x2

»

—

—

–

1
0
1
0

fi

ffi

ffi

fl

` x3

»

—

—

–

0
1
0
1

fi

ffi

ffi

fl

` x4

»

—

—

–

1
0
1
0

fi

ffi

ffi

fl

“

»

—

—

–

x2 ` x4

x1 ` x3

x2 ` x4

x1 ` x3

fi

ffi

ffi

fl

.

In this interpretation, any eigenvector of A is a way of distributing weights on
the vertices of G such that the addition of weights from neighboring vertices
of a vertex is a uniform scalar multiple of the weight on that vertex. With
this insight, one can see without much computation that p1, 1, 1, 1q is an
eigenvector of G, and that the unit vector is an eigenvector of the adjacency
matrix for any regular graph.

Proposition 2.7. Let G be a graph with adjacency matrix A, and let ∆ “

maxxPV pGq dpxq be the largest degree of a vertex in G. Then

(i) If λ is eigenvalue of A, |λ| ď ∆.

(ii) If G is connected, then ∆ is an eigenvalue of A if and only if G is
regular.

(iii) If G is connected, then ´∆ is an eigenvalue of A if and only if G is
regular and bipartite.

Proof. (i) Let v “ pv1, ..., vnq be an eigenvector for A with eigenvalue λ and
i be such that |vi| “ maxjďn |vj|. Then rescaling v so that vi “ 1 we have

|λ| “ |pAvqi| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPNpiq

vj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď ∆|vi| “ ∆.

(ii) Suppose G is connected. If ∆ is an eigenvalue of G with eigenvector
v “ pv1, ..., vnq, if we pick i and rescale v as in (i),

∆ “ pAvqi “
ÿ

jPNpiq

vj, (2)

but since 1 “ vi “ maxjďn |vj| and |Npiq| ď ∆, vj “ 1 for all j P Npiq and
dpiq “ ∆. Applying this argument to the vertices in Npiq and repeating,
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2.1 Introduction to Spectral Graph Theory 2 GRAPH THEORY

since G is connected we get that each vertex has degree ∆ so G is regular.
On the other hand, if G is regular then the unit vector is an eigenvector with
eigenvalue ∆.

(iii) Suppose G is connected. If ´∆ is an eigenvalue of G with eigenvector
v “ pv1, ..., vnq, the argument in (ii) using ´∆ instead of ∆ in (2) gives that
vj “ ´1 for all j P Npiq and dpiq “ ∆. Furthermore, for j P Npiq the
argument in (ii) gives that for k P Npjq, vk “ 1 and dpkq “ ∆. Since G is
connected, we may repeat this argument to get that G is regular and that for
any vertex x, if y P Npxq then vy “ ´vx. Therefore letting X “ tx : vx “ 1u

and Y “ ty : vy “ ´1u, we get that G “ pX, Y q so G is bipartite. On the
other hand, if G “ pA,Bq is regular, v “ pv1, ..., vnq such that

vi “

#

1 if i P A

´1 if i P B

is an eigenvector for A. Indeed,

pAvqi “

#

´∆ if i P A

∆ if i P B
,

so v has eigenvalue ´∆.

Proposition 2.8. Let A be a real symmetric matrix and u1, ..., un an or-
thonormal eigenbasis for A such that Aui “ λiui for any i “ 1, ..., n. Then
for any x “

řn
i“1 ciui P Rn, we have

xTAx “

n
ÿ

i“1

λic
2
i and xTx “

n
ÿ

i“1

c2i .
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2.1 Introduction to Spectral Graph Theory 2 GRAPH THEORY

Proof.

xTAx “

´

n
ÿ

i“1

ciu
T
i

¯´

A ¨

n
ÿ

j“1

cjuj

¯

“

´

n
ÿ

i“1

ciu
T
i

¯´

n
ÿ

j“1

cjAijuj

¯

“

´

n
ÿ

i“1

ciu
T
i

¯´

n
ÿ

j“1

cjλjuj

¯

“

´

n
ÿ

i“1

n
ÿ

j“1

cicjλju
T
i uj

¯

“

´

n
ÿ

i“1

n
ÿ

j“1

cicjλjδij

¯

since ui, uj are orthonormal

“

n
ÿ

i“1

λic
2
i all other terms vanish for i ‰ j

xTx “

´

n
ÿ

i“1

ciu
T
i

¯´

n
ÿ

i“1

cjuj

¯

“

´

n
ÿ

i“1

n
ÿ

j“1

cicjδij

¯

“

n
ÿ

i“1

c2i

Definition 2.9. A decomposition of a graphG is a set of subgraphsG1, ..., Gk

whose sets of edges are pairwise disjoint and
Ť

i GipEq “ G

In the following proof we see that the adjacency matrix is not the only
useful matrix

Theorem 2.1. (Graham-Pollak Theorem) Let Kn be a complete graph with
a decomposition G1, ..., Gk where each Gt is a complete bipartite graph. Then
k ě n ´ 1.

6



2.2 Expander Graphs 2 GRAPH THEORY

Proof. Suppose V pKnq “ t1, ..., nu and for each t ď k let Gt “ pXt, Ytq. Also,
let Mt be an n ˆ n matrix defined by

pMtqi,j :“

#

1 if i P Xt, j P Yt

0 otherwise
.

Note that every non-zero row of any Mt is 1 where the label of the column
is the same as the label of a vertex in Yt, and thus they are all the same.
Hence each Mt has rank 1. Because rankpA ` Bq ď rankpAq ` rankpBq, if
n ´ 1 ď rankpMq ď k then we are done.

Let M 1 : Rn Ñ Rn`1 be obtained from adding a row of ones to M .
Supposing towards a contradiction that rankpMq ď n ´ 2, we have that
rankpM 1q ď n ´ 1, and by rank-nullity theorem kerpM 1q ě 0 so there exists
a nonzero vector x P Rn such that M 1x “ 0, and by considering the row of
ones we see that

Mx “ 0 and

˜

n
ÿ

i“1

xi “ 0 ðñ Jnx “ 0

¸

(3)

where Jn is the n ˆ n matrix with 1 in every entry. Notice that for i ‰ j,
if pMqi,j “ 0 then since Kn is complete and G1, ..., Gk is a decomposition,
the edge ij lies in some Gt where i R Xt, so pMqj,i “ 1. Observing that
M ` MT “ Jn ´ In, where In is the n ˆ n identity matrix, the following
calculation leads to a contradiction

0 “ xTMx ` pMxq
Tx “ xTMx `

¨

˚

˝

x1 `

¨

˚

˝

pMq1,1
...

pMq1,n

˛

‹

‚

... ` xn

¨

˚

˝

pMqn,1
...

pMqn,n

˛

‹

‚

˛

‹

‚

T

“ xT
pM ` MT

qx “ xT
pJn ´ Inqx

“ ´

n
ÿ

i“1

x2
i ă 0,

where the last equality comes from (3).

2.2 Expander Graphs

Definition 2.10. A graph is said to be a δ-expander if for every partition
V pGq “ A Y B with |A| ď |B|, it satisfies epA,Bq ě δ|A|.
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2.2 Expander Graphs 2 GRAPH THEORY

In other words, regardless of how one chooses to split an expander graph
into two parts, there will always be a large number of edges emanating from
the smaller part to the other so that one can quickly reach some part of the
graph starting at any vertex.

We write
ř

i„Gj to denote the sum over all edges ij in G, where each edge
contributes exactly once. That is, if the edge pi, jq is in the sum, then the
edge pj, iq is not.

Lemma 2.2. Let G be an n-vertex d-regular graph whose adjacency matrix
A has eigenvalues λ1 ě λ2 ě ¨ ¨ ¨ ě λn. Then for any x1, . . . , xn P R,

ÿ

i„j

pxi ´ xjq
2

ď pd ´ λnq

n
ÿ

i“1

x2
i p1q

Moreover, if
ř

xi “ 0, then

pd ´ λ2q

n
ÿ

i“1

x2
i ď

ÿ

i„j

pxi ´ xjq
2

p2q

Proof. (1) Let u1, . . . , un be an orthonormal eigenbasis for A such that Aui “

λiui and u1 “ 1?
n

p1, . . . , 1qT . Note that G being d-regular implies that we
can choose the all-ones unit vector u1 to be an eigenvector of A, and it has
eigenvalue d. By algebraic expansion, we see that

ÿ

i„Gj

pxi ´ xjq
2

“
ÿ

i„Gj

x2
i ´ 2

ÿ

i„Gj

xixj `
ÿ

i„Gj

x2
j “ d

n
ÿ

i“1

x2
i ´

ÿ

i,j

Aijxixj p:q

One may ask why there is no factor of 2 in front of the d coefficient when
equating

ř

i„Gj x
2
i `

ř

i„Gj x
2
j “ d

řn
i“1 x

2
i . The key is that we must be

consistent about what
ř

i„Gj fpi, jq means when f is a function that depends
on only one of the indices. Define

ÿ

i„Gj

fpi, jq :“
1

2

ÿ

i,j

Aijfpi, jq

where

Aij “

#

1 if pi, jq is an edge

0 otherwise

8



2.2 Expander Graphs 2 GRAPH THEORY

Here each edge ti, ju appears twice in the sum
ř

i,j Aijfpi, jq: once as pi, jq

and once as pj, iq. The factor 1{2 ensures each edge contributes exactly once.
Applying this interpretation to our case, we have

ÿ

i„Gj

x2
i “

1

2

ÿ

i,j

Aijx
2
i “

1

2

n
ÿ

i“1

x2
i

n
ÿ

j“1

Aij “
1

2

n
ÿ

i“1

x2
i ¨ d “

d

2

n
ÿ

i“1

x2
i

ÿ

i„Gj

x2
j “

1

2

ÿ

i,j

Aijx
2
j “

1

2

n
ÿ

j“1

x2
j

n
ÿ

i“1

Aij “
1

2

n
ÿ

j“1

x2
j ¨ d “

d

2

n
ÿ

i“1

x2
i

where
řn

j“1Aij is the row sum of the ith row of the adjacency matrix A, and
this sum represents the degree of vertex i in the graph G. We can thus see
why their sum only has a factor of d. In addition, 2

ř

i„Gj xixj “
ř

i,j Aijxixj

By the result of p:q, we notice that proving p1q can be reduced to showing
that

ÿ

i,j

Aijxixj ě λn

n
ÿ

i“1

x2
i

To that end, let x “ px1, . . . , xnqT “
ř

i ciui, for ci P R. We have

ÿ

i,j

Aijxixj “ xTAx quadratic form

“

n
ÿ

i“1

λic
2
i Proposition 2.8

ě λn

n
ÿ

i“1

c2i λn is the smallest eigenvalue

“ λnx
Tx Proposition 2.8

This completes the proof of p1q.
To prove p2q, p:q tells us that it suffices to show

ÿ

i,j

Aijxixj ď λ2x
Tx

Suppose
řn

i“1 xi “ 0. This means

xx, u1y “ 0 ðñ xc1u1 ` ¨ ¨ ¨ ` cnun, u1y “ 0 ðñ c1 “ 0

9



2.2 Expander Graphs 2 GRAPH THEORY

Again, by Proposition 2.8, we have

ÿ

i,j

Aijxixj “ xTAx
c1“0
“

n
ÿ

i“2

λic
2
i

λ2ěλi@i
ď λ2

n
ÿ

i“2

c2i “ λ2x
Tx

which proves p2q.

Theorem 2.3. Let G be a d-regular graph with second largest eigenvalue λ2.
Then G is a d´λ2

2
-expander.

Proof. We must show for any A,B that partition V pGq with |A| ď |B|, that
epA,Bq ě d´λ2

2
|A|. So let A Y B be such a partition. Then |A| ` |B| “ n.

Define a vector x where

xi “

#

n ´ |A| if i P A,

´|A| if i R A ðñ i P B.

Consider
ř

i„Gjpxi ´ xjq
2. The only nonzero terms that contribute to the

sum are those edges having one endpoint in A and the other in B, and each
such edge contributes pxi ´ xjq

2 “ pn ´ |A| ´ p´|A|qq2 “ n2. So we can see
that

ÿ

i„Gj

pxi ´ xjq
2

“ n2epA,Bq

We also have

n
ÿ

i“1

x2
i “

|A|
ÿ

i“1

pn´|A|q
2
`

n
ÿ

i“|A|`1

p´|A|q
2

“ |A|pn´|A|q
2
`pn´|A|q|A|

2
“ |A|pn´|A|qn

Now observe that the sum of coordinates of x satisfies
ÿ

i

xi “ pn ´ |A|q|A| ` p´|A|qpn ´ |A|q “ 0,

so we can apply part p2q of Lemma 2.2 to obtain

ÿ

i„Gj

pxi ´ xjq
2

“ n2epA,Bq ě pd ´ λ2q

n
ÿ

i“1

x2
i “ pd ´ λ2q|A|pn ´ |A|qn.

Since |A| ď |B| and |A| ` |B| “ n, we have |A| ď n{2 then |B| “ n ´ |A| ě

n ´ n{2 “ n{2, and dividing both sides by n2 completes the proof.

10



3 DISCRETE GEOMETRY

3 Discrete Geometry

3.1 Points on a Line

Theorem 3.1. Let k ą n and let A1, ..., Ak Ď t1, ..., nu be non-empty.
Then there exist non-empty disjoint sets I, J Ď t1, ..., ku such that

Ť

iPI Ai “
Ť

jPJ Aj.

Proof. Let S “ tv1, ..., vku be a collection of vectors in Rn such that each
vi “ pai1, ..., ainq where

aij “

#

1 if j P Ai

0 if j R Ai

.

Since k ą n, S is linearly dependent, so there exists D Ď t1, ..., ku and a
collection of αi P R which are not all zero such that

ř

iPD αivi “ 0. We take
I :“ ti : αi ą 0u and J :“ tj : αj ą 0u and observe that

ÿ

iPI

αivi “
ÿ

jPJ

p´αjqvj.

Then for any p P
Ť

iPI Ai, by the definition of the vectors in S and the
definition of I, the pth coordinate of

ř

iPI αivi is positive, and by the equation
above we have that p P

Ť

jPJ Aj. We apply the same argument in the other
direction to get that

Ť

iPI Ai “
Ť

jPJ Aj.

With a slightly stronger assumption, we slighlty modify this technique to
get a stronger result.

Theorem 3.2. Let k ą n ` 1 and let A1, ..., Ak Ď t1, ..., nu be non-empty.
Then there exist non-empty disjoint sets I, J Ď t1, ..., ku such that both
Ť

iPI Ai “
Ť

jPJ Aj and
Ş

iPI Ai “
Ş

jPJ Aj.

Proof. Let S “ tv1, ..., vku be a collection of vectors in Rn such that each
vi “ pai1, ..., ainq where

aij “

#

1 if j P Ai

0 if j R Ai

.

Also, let S 1 “ tu1, ..., uku be a collection of vectors in Rn`1 where each ui is
the same as vi for its n first coordinates and 1 for its n ` 1 coordinate.

11



3.2 Convex Geometry 3 DISCRETE GEOMETRY

Since k ą n, S is linearly dependent, so there exists D Ď t1, ..., ku and a
collection of αi P R which are not all zero such that

ř

iPD αivi “ 0. We take
I :“ ti : αi ą 0u and J :“ tj : αj ą 0u so using the same proof as in theorem
3.1 we have that

Ť

iPI Ai “
Ť

jPJ Aj.
It remains to show that

Ş

iPI Ai “
Ş

jPJ Aj. Note that
ř

iPD αiui “ 0, and
since the last coordinate of every ui is 1,

ř

iPD αi “ 0. Hence for some t P R,
ÿ

iPI

αi “
ÿ

jPJ

p´αjq “ t.

Then the pth coordinate of
ř

iPI αivi is t if and only if p P
Ş

iPI Ai, but
p P

Ş

jPJ Aj if and only if the pth coordinate of
ř

jPJ αjvj is t. Since if the
pth coordinate of is

ř

iPI αivi is t, the same is true of
ř

jPJ αjvj, so we have
that

Ş

iPI Ai “
Ş

jPJ Aj.

3.2 Convex Geometry

Definition 3.1. A set S Ď Rn is convex if the line between any two points in
S lies in S. In other words, S is convex if for any x, y P Rn, tx` p1´ tqy P S
for all t P r0, 1s.

The convex hull of S, denoted convpSq, is the smallest convex set con-
taining the points of S. By this we mean that for any convex set C Ě S,
convpSq Ď C.

A convex combination of a finite set S is a point of the form
ř

sPS αss
where αs ě 0 for all s P S and

ř

sPS αs “ 1. A convex combination can be
thought of as a weighted average of points.

Proposition 3.2. For any finite set S Ď Rn, convpSq is the set of all convex
combinations of points in S, denoted ccpSq.

Proof. For any point s P S, taking αs “ 1 we see that s P ccpSq, so S Ď ccpSq.
Additionally, for any x1 “

ř

sPS αs,1s and x2 “
ř

sPS αs,2s in ccpSq, the points
on the line tx1 ` p1 ´ tqx2 are convex combinations of S for each t P r0, 1s,
so ccpSq is convex. Indeed, for any t P r0, 1s,

tx1 ` p1 ´ tqx2 “
ÿ

sPS

ptαs,1 ` p1 ´ tqαs,2qs,

tαs,1 ` p1 ´ tqαs,2 ě 0 for every s P S, and
ÿ

sPS

ptαs,1 ` p1 ´ tqαs,2q “ t
ÿ

sPS

αs,1 ` p1 ´ tq
ÿ

sPS

αs,2 “ 1.

12



3.2 Convex Geometry 3 DISCRETE GEOMETRY

It remains to show that ccpSq Ď convpSq. Letting S “ ts1, ..., snu, we
proceed by induction on n. For n “ 1, take α1 “ 1 so α1s1 “ s1 P S. Assume
that for n “ k ´ 1, ccpSq Ď S. Let x “

řk
i“1 αisi be convex combination

where we take without loss of generality that αn ‰ 1. Then

αn “ 1 ´

n´1
ÿ

i“1

αi ùñ

n´1
ÿ

i“1

αi

1 ´ αn

“ 1

and αi{p1 ´ αnq ě 0 for any i, so by the induction hypothesis we have that

n´1
ÿ

i“1

αi

1 ´ αn

si P convpSq.

Therefore,

x “

n
ÿ

i“1

αisi “ p1 ´ αnq

n´1
ÿ

i“1

αi

1 ´ αn

si ` αnsn,

which is a point on a line between two points in convpSq, so x P convpSq.

Theorem 3.3. (Radon) Let A “ tx1, ..., xku P Rn such that k ě n ` 2, then
there exist disjoint sets I, J Ď t1, ..., ku such that

convptxi : i P Iuq X convptxj : j P Juq ‰ H.

Proof. For each i P t1, ..., ku let yi “ pxi, 1q P Rn`1. Since k ě n ` 2 we have
that there exists a collection of constants αi which are not all 0 such that

k
ÿ

i“1

αiyi “ 0.

From the last row we get that
řn

i“1 αi “ 0.
Let I “ ti : ai ą 0u, J “ tj : aj ă 0u. Then

ÿ

iPI

αiyi “
ÿ

jPJ

p´αjqyj,

and from the last row we may let t :“
ř

iPI αi “ ´
ř

jPJ αj ą 0. Then if we
drop the last entry of the yjs and divide by t we have that

p :“
ÿ

iPI

αi

t
xi “

ÿ

jPJ

´αj

t
xj.

13



4 POLYNOMIAL METHODS

Noting that
ř

iPI αi{t “
ř

jPJp´αjq{t “ 1 and αi{t,´αj{t ą 0 for every i P I
and j P J , we have that

p P ccptxi : i P Iuq X ccptxj : j P Juq “ convptxi : i P Iuq X convptxj : j P Juq.

Theorem 3.4. (Helly) Let k ě n ` 1 and let C1, .., Ck Ď Rn be convex sets
such that any n ` 1 of them intersect. Then

Şk
i“1Ci ‰ H

Proof. We proceed by induction on k. For k “ n`1, by assumption we have
that

Şn`1
i“1 ci ‰ H. Assume that for k ´ 1 ą n ` 1, the intersection of k ´ 1

convex subsets of Rn where n ` 1 of them intersect is non-empty. Then for
any i P t1, ..., ku :“ rks, there exists a point xi P

Ş

jPrksztiu Cj. Therefore we

may let A “ tx1, ..., xku be a collection of points such that xi P Cj for every
i ‰ j. Since k ě n ` 2, by theorem 3.3 there exist disjoint sets I, J Ď rks

such that

convptxi P A : i P Iuq X convptxj P A : j P Juq

contains a point x. By definition of A, for each j P J , txi P A : i P Iu Ď Cj

and since Cj is convex, convptxi P A : i P Iuq Ď Cj. By the same argument,
for each i P I, convptxj P A : j P Juq Ď Ci. Taking I and J disjoint such
that I Y J “ rks does not change the theorem, and doing this we get that
x P

Şk
i“1Ci ‰ H.

4 Polynomial Methods

4.1 Basic Results

Lemma 4.1. Let F be a field and f P Frxs a polynomial of degree at most
d. For any x1 P F there exists a polynomial f1 P Frxs of degree at most d´ 1
and r P F such that

fpxq “ f1pxqpx ´ x1q ` r.

Proof. We proceed by induction on d. For d “ 0 f is constant and we take
f1pxq “ 0 and r “ f . Let k P N assume the hypothesis holds for k ´ 1.
Write fpxq “

řk
n“1 anx

n and let gpxq “ fpxq ´ px ´ x1qpakx
k´1q. The terms

14
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of degree k in g cancel so g has degree at most k ´ 1. For x1 P F, by the
assumption we have that there exist g1 of degree at most k ´ 2 and r P F
such that

gpxq “ g1pxqpx ´ x1q ` r.

Then,

fpxq “ pg1pxq ` akx
k´1

qpx ´ x1q ` r.

Lemma 4.2. Let F be a finite field and f P Frxs a polynomial of degree at
most d. Then if f P Frxs has more than d roots, it is the 0 polynomial.

Proof. We proceed by induction on d. For d “ 0, f is constant so if it has a
root f must be 0. Let k P N and assume the hypothesis for d “ k ´ 1. Let
f have distinct roots x1, ..., xd`1. Then by lemma 4.1 we have that for f1 of
degree at most d ´ 1,

fpxq “ f1pxqpx ´ xd`1q

where we have r “ 0 since fpxd`1q “ 0. Then f1pxq has roots x1, ..., xd, but
by the assumption f1 is the 0 polynomial hence f is the zero polynomial.

The below lemma tells us that a nonzero polynomial of small degree can’t
have too many zeroes:

Lemma 4.3. (Schwartz-Zippel) Let F be a finite field with q elements. A
non-zero polynomial fpx1, ..., xnq “

ř

tPZn c1x
t1
1 `¨ ¨ ¨`cnx

tn
n of degree at most

d over Fq has at most dqn´1 roots.

Proof. By induction on the number of variables n. For n “ 1, a univariate
polynomial has at most d “ dq1´1 roots over F. So let n ą 1 and consider a
multivariate polynomial fpx1, ..., xnq of degree at most d over F. Note that
Fn “ Fn´1 ˆ F. For y “ px1, ..., xn´1q P Fn´1 and z P F, write

fpy, zq “ g0pyq ` g1pyqz ` ¨ ¨ ¨ ` gtpyqzt

where each gipyq is a polynomial in n ´ 1 variables of degree at most d ´ i
(because the degree degpgipyqq ` i of each term gipyqzi must not exceed the

15
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degree d of fpy, zq), t is the highest power of z appearing in fpy, zq. We
now partition the roots based on (two cases) whether or not gtpyq “ 0 (if
gtpyq “ 0 then fpy, zq has lower degree in z). We have

|tpy, zq P Fn : fpy, zq “ 0u| “ |tpy, zq : fpy, zq “ 0, gtpyq “ 0u|

`|tpy, zq : fpy, zq “ 0, gtpyq ‰ 0u|

We can upper bound the first summand:

|tpy, zq : fpy, zq “ 0, gtpyq “ 0u| ď q|ty : gtpyq “ 0u| ď qpd´tqqn´2
“ pd´tqqn´1

by the inductive hypothesis since gtpyq is a polynomial of degree at most d´t
in n ´ 1 variables. Also, for each y, z has q possible choices. Now, for each
y P Fn´1 such that gtpyq ‰ 0, we have that fpy, zq is a univariate nonzero
polynomial of degree t. By the base case, it has at most t roots. Thus, we
obtain

|tpy, zq : fpy, zq “ 0 and gtpyq ‰ 0u| ď tqn´1

Summing the two bounds yields

|tpy, zq : fpy, zq “ 0 and gtpyq ‰ 0u| ď dqn´1

Lemma 4.4. Let F be a field. The vector space V of polynomials in Frx1, ..., xns

of degree at most d has dimension
`

n`d
n

˘

.

Proof. A basis for V consists of polynomials xt1
1 x

t2
2 ...x

tn
n where

řn
i“1 ti ď d

and ti ě 0 for all i. This basis is in 1-1 correspondence with tt1 ` t2 ` ...` tn :
řn

i“1 ti ď d, ti ě 0u which has the same cardinality as tt1 ` t2 ` ...` tn ` tn`1 :
řn`1

i“1 ti “ d, ti ě 0u. We proceed by the stars and bars method. If we take
n ` d slots and place n ‘`’ signs in them, we are left with d slots within
which we place bars. The number of bars between consecutive ‘`’ signs or
between ‘`’ signs and the first and last slots corresponds to a value of ti since
we have d bars. For example, for d “ 6 and n “ 3, the string || ` ||| ` `|

corresponds with t1 “ 2, t2 “ 3, t3 “ 0, t4 “ 1. Since there are
`

n`d
n

˘

such

strings, dimV “
`

n`d
n

˘

.

Lemma 4.5. Let F be a field and let S Ď Fn such that |S| ă
`

n`d
n

˘

, then
there exists a non-zero polynomial f P Frx1, ..., xns of degree at most d which
vanishes on S.

16
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Proof. By lemma 4.4, the vector space V of polynomials in Frx1, ..., xns of
degree at most d has dimension

`

n`d
n

˘

. Let E : V Ñ F|S| such that Epfq “

pfpsqqsPS. E is linear since for α, β P F and f, g P V ,

Epαf ` βgq “ pαfpsq ` βgpsqqsPS “ αpfpsqqsPS ` βpgpsqqsPS.

By rank-nullity theorem we have that

dimV ´ dimpImEq “ dimpkerEq,

but since dimpImEq ď dimF|S| ă
`

n`d
n

˘

“ dimV , dimpkerEq ą 0 so there
exists a non-zero polynomial in V vanishing on S.

Lemma 4.6. Let F be a finite field and n ě 2.Then for any set S Ď Fn there
exists a non-zero polynomial f P Frx1, ..., xns vanishing on S with degree at
most n|S|1{n.

Proof. Let d P N such that d ď n|S|1{n and n|S|1{n ´ d ă 1. Since n ě 2 we
have that nn ą n!, so

|S| ă

ˆ

d ` 1

n

˙n

ă
pd ` nqpd ` n ´ 1q...pd ` 1qd!

n!d!
“

ˆ

n ` d

n

˙

.

Then by lemma 4.5 there exists a nonzero polynomial of degree at most
n|S|1{n vanishing on S.

4.2 The Finite Field Kakeya Problem

Definition 4.1. Let F be a finite field. For a P Fn and b P Fnzt0u a line
La,b Ď Fn is defined as

La,b :“ ta ` t ¨ b : t P Fu.

We say that La,b is a line centered at a with the direction b. We also let Lx

denote a line containing a point x P Fn.

Remark 4.2. Let F be a finite field. If La,b and Lc,d are distinct lines in Fn,
there is at most one point where they intersect.

17
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Lp0,2q,p0,1q

L p0
,0

q,
p1
,1

q Lp2,0q,p0,1qL
p2,0q,p1,2q

Figure 2: A Kakeya set in Z{3Z2 colored in rhodamine where some lines it
contains are colored and labeled. We have one line for each direction.

Proof. Suppose for contradiction that there exist two distinct points in La,bX

Lc,d, then there exist t1, t2, t3, t4 P F such that t1 ‰ t3 and t2 ‰ t4 where
#

a ` t1 ¨ b “ c ` t2 ¨ d

a ` t3 ¨ b “ c ` t4 ¨ d
ùñ pt2 ´ t4q ¨ d “ pt1 ´ t3q ¨ b ùñ d “ pt1 ´ t3qpt2 ´ t4q

´1
¨ b.

Letting λ “ pt1 ´ t3qpt2 ´ t4q´1 we have

a ´ c “ t2 ¨ d ´ t1 ¨ b “ pt2λ ´ t1q ¨ b,

so for any t P F,

a ` t ¨ b “ c ` pt2λ ´ t1qλ
´1

¨ d ` tλ´1
¨ d “ c ` pt2λ ´ t1 ` tqλ´1

¨ d,

which means La,b “ Lc,d, contradiction.

Definition 4.3. Let F be a finite field. A set K Ď Fn is a Kakeya set if it
contains a line in every direction. In other words, for every b P Fnzt0u there
exists a P K such that La,b Ď K. See figure 2 for an example.

In Rn, Kakeya sets are compact sets containing unit line segments in
every direction. In [5], Wolff introduced a conjecture on the cardinality of
Kakeya sets in finite fields as an analogue of the Kakeya conjecture, which
asks about the size of Kakeya sets in Rn with respect to Hausdorff and
Minkowski dimension. Several years later, Dvir resolved this conjecture in
[1] by using polynomial methods. We provide some methods of obtaining
bounds on the size of Kakeya sets in finite fields without the polynomial
method in comparison with Dvir’s proof.

18
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Proposition 4.4. (Counting Method) Let Fq be a finite field with q elements
and K Ď Fn

q a Kakeya set. Then if n ą 1, |K| ě p1{2qq2.

Proof. We can count the elements in K as follows. For n ą 1, we have
q choices for the first component of the direction of a line in K so there
are at least q distinct lines in K. Pick a line in K, this has q points, then
by remark 4.2 there is another line with q ´ 1 points not in the first, and
repeating this till we’ve picked q distinct lines we get that K has at least
q ` pq ´ 1q ` ... ` 1 “ p1{2qq2 points.

Proposition 4.5. (Bush Method) Let Fq be a finite field with q elements and

K Ď Fn
q a Kakeya set. Then |K| ě pqn ´ 1q

1
2 .

Proof. Let λ P Fqzt0u, then for any line La,b Ď K, we also have that La,λ¨b “

La,b. Since we have qn ´ 1 choices for a direction b and q ´ 1 directions
are a scalar multiple of b, K contains at least pqn ´ 1q{pq ´ 1q distinct lines.
Then, by the pigeonhole principle, there exists x P K which lies in at least
pqn ´ 1qpq ´ 1q´1{|K| distinct lines. By remark 4.2, these lines only intersect
at x, and if there are many of these lines one may picture this as a bush.
Each line through x has q ´ 1 points disjoint from any other line through x,
hence

|K| ě
qn ´ 1

pq ´ 1q|K|
pq ´ 1q ` 1 ùñ |K|

2
ě qn ´ 1 ùñ |K| ě pqn ´ 1q

1
2 .

Theorem 4.7. (Finite Field Kakeya Theorem (Dvir)) Let Fq be a finite field
with q elements and K Ď Fn

q a Kakeya set. Then for some constant cn ą 0
depending only on n,

|K| ě cnq
n.

Proof. It will suffice to prove the following claim.

Claim 4.7.1. Let f P Fqrx1, ..., xns be a non-zero polynomial with degree at
most q ´ 1. Then there exists a P K such that fpaq ‰ 0.

We proceed by contradiction. If there exists K such that |K| ă
`

n`q´1
n

˘

,
then by lemma 4.5 there exists a non-zero f P Fqrx1, ..., xns with degree at
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most q ´ 1 vanishing on K, which contradicts claim 4.7.1. Hence we would
have that

|K| ě

ˆ

n ` q ´ 1

n

˙

“
pn ` q ´ 1qpn ´ 1 ` q ´ 1q ¨ ... ¨ pq ´ 1q!

n!pq ´ 1q!
ě

qn

n!
,

and choosing cn “ 1{n! we are done.
We now prove claim 4.7.1. Suppose that f P Frx1, . . . , xns is a non-zero

polynomial of degree ă q that vanishes on S. We will show that f ” 0, and
thus obtain a contradiction. Let d “ degpfq and write f “

řd
i“0 fi, where

for each i, fi is the polynomial containing all the monomials of f of degree i.
In particular, fd ‰ 0. For every b P Fnzt0u, there exists a “ apbq P Fn such
that the polynomial fpa ` tbq “ 0 for all t P F (as S is a Kakeya set). So
define ga,b : F Ñ F such that for t P F, we have ga,bptq :“ fpa ` tbq. Then
ga,b P Frxs is a polynomial of degree at most d ă q (by assumption) that
vanishes on F. But by lemma 4.2, ga,bptq ” 0. The coefficient of td in ga,bptq
is fdpbq (check). So we have fdpbq “ 0 for all b P Fnzt0u. So fd has at least
qn ´ 1 roots in F. As d ă q, we have dqn´1 ă qn ´ 1, and so this contradicts
the Schwartz–Zippel lemma.

Dvir’s proof demonstrates how the polynomial method can provide a
quick proof to a combinatorial problem which might otherwise be rather
difficult.

4.3 The Finite Field Nikodym Problem

Closely related to Kakeya sets are Nikodym sets, which in R2 are subsets
of the unit square with area 1 where for each point there is a line intersecting
the set at only that point. Nikodym sets also have a finite field analogue. The
finite field Nikodym problem asks about the size of Nikodym sets in finite
field, and the method to approaching this is similar to that of the Kakeya
problem.

Definition 4.6. Let F be a finite field. A set N Ď Fn is a Nikodym set if for
each point x P N there is a line Lx through x such that Lxztxu Ď N .

The complement of a Nikodym set in R2 in the square has measure 0,
though it is not easy to see that it must have Hausdorff dimension 2 (see
chapter 9 of [4]). If one thinks about Fn

q as an n dimensional grid with q
points on each side, see figure 3, a Nikodym set in Fn

q will be at a ’distance’
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y

x

Ly

L x

Figure 3: A Nikodym set N in Z{3Z2 colored in orchid where x and y are
examples of points such that Lxztxu Ď N and Lyztyu Ď N .

of at most 1 of any point in Fn
q , and the complement of the Nikodym set will

have a line through it only intersecting the complement at that point. This
resembles the Euclidean version of Nikodym sets, though the condition on
their size has been removed since in a finite field knowing the size of a set
also reveals the size of its complement.

Theorem 4.8. Let Fq be a finite field with q elements and N Ď Fn
q a Nikodym

set. Then for some constant cn ą 0 depending only on n,

|N | ě cnq
n.

To prove this theorem, we will first need the vanishing lemma.

Lemma 4.9. (Vanishing lemma) Let F be a finite field. If a polynomial
f P Frx1, ..., xns of degree at most d vanishes at d ` 1 points on a line, then
it vanishes at all points on that line.

Proof of lemma 4.9. Suppose f P Frx1, ..., xns of degree at most d vanishes
on d ` 1 points of the line La,b. Letting gptq “ fpa ` tbq P Frxs we have that
g is a polynomial of degree at most d. Since f has d ` 1 roots on La,b, g has
more than d roots, hence by lemma 4.2 g is the zero polynomial so f vanishes
at all points on La,b.

Proof of theorem 4.8. Assume by contradiction that |N | ă p10nq´nqn.
Then by lemma 4.6 there exists a non-zero polynomial f P Frx1, ..., xns van-
ishing on N with degree at most n|N |1{n ă 10´nq ă q ´ 1. Then for any
x P Fn since N is a Nikodym set there exists a line Lx through x such that
Lxztxu Ď N . f vanishes on the q ´ 1 points of Lxztxu, so by the vanishing
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lemma (lemma 4.9) f vanishes on all points of Lx. Because x was arbitrary,
f vanishes on all points of Fn

q , but this alone does not guarantee that f is
the zero polynomial. Indeed, xp´1 ´ 1 vanishes on Fq without being the zero
polynomial. However, since we also know that f has degree at most q ´ 1,
the following claim will show that f is the zero polynomial, leading us to a
contradiction.

Claim 4.9.1. If f P Fqrx1, ..., xns has degree at most q ´ 1 and vanishes on
Fn
q , then f is the zero polynomial.

Proof. We proceed by induction on n. For n “ 1, f has q roots so by lemma
4.2 f is the zero polynomial. For k P N, assume the hypothesis for k ´ 1 and
let f of degree at most q ´ 1 vanish on Fk

q . For x1, ..., xk P F, let F P Frxs

such that

Fx1,..,xk
pxkq “ fpx1, .., xkq “

q´1
ÿ

i“1

gipx1, .., xk´1qx
i
k

where x1, ..., xk´1 are fixed and each gi P Frx1, ..., xk´1s is a polynomial of
degree at most q ´ 1. Since f has degree at most q ´ 1 and vanishes on all q
values of xk, by lemma 4.2 f is the zero polynomial. Then each gi vanishes
on Fk´1

q so by the assumption they are also zero polynomials. Hence, f is
the 0 polynomial.

5 Harmonic Analysis and the Kakeya Prob-

lem

5.1 The Loomis-Whitney Inequality

The Loomis-Whitney inequality is a combinatorial and geometric inequal-
ity about Euclidean space with many consequences in Analysis.
Let X be a set of unit cubes in the unit cubical lattice in Rn with volume
|X|. Let πj be the projection onto the coordinate hyperplane perpendicular
to the xj-axis. We would like to bound |X| given that πjpXq is ‘small’ for
all j. Informally, this is asking: if a set X appears small when viewed from
any angle, is it actually small as a whole?
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Theorem 5.1 (Loomis-Whitney). If |πjpXq| ď A for all 1 ď j ď n, then
|X| ď A

n
n´1 .

The original proof uses induction and Holder’s inequality repeatedly to
obtain the bound.
The below proof by induction does not give a sharp upper bound but is fairly
straightforward and not too computational.

Proof. Define a column of cubes to be the set of cubes obtained by starting
at any cube and taking all the cubes that lie along a line parallel to the
xj-axis, for some 1 ď j ď n. We require the following lemma:

Lemma 5.2. If |πjpXq| ď B for all j, then there exists a column of cubes

with between 1 and B
1

n´1 cubes of the set X.

Proof. Suppose for the sake of contradiction that every column has ą B
1

n´1

cubes of the set X. This implies, in particular, that there are ą B
1

n´1

along some line parallel to the x1-axis. Call this line A1. If a point p lies
on the line A1 and inside a cube of X, then the line passing through p

parallel to the x2-axis must intersect ą B
1

n´1 cubes of X. The plane A2

containing the line A1 and parallel to the px1, x2q-plane must intersect ą

pB
1

n´1 q2 “ B
2

n´1 cubes of X. If we continue in this manner, each time
sweeping along dimensions, we can find an pn ´ 1q-dimensional plane An´1

which is parallel to the px1, ¨ ¨ ¨ , xn´1q-plane and intersects ą pB
1

n´1 qn´1 “ B
cubes of X. However, this would imply that |πnpXq| ą B, which contradicts
the assumption that |πjpXq| ď B for all 1 ď j ď n.

The Loomis-Whitney inequality then follows from this lemma by induc-
tion.

Corollary 5.3. If
ř

j |πjpXq| ď B, then |X| ď
řB

b“1 b
1

n´1 . Therefore, |X| ď

B
n

n´1 .

Proof. We prove this by induction on B, the total size of all projections. The
base case B “ 1 is trivial since if the sum of all projection sizes is at most 1,
thenX can contain at most 1 cube. For the inductive step, consider the setX
and identify its smallest column (the column containing the fewest cubes).
Let X 1 denote the set X with this smallest column completely removed.
The key insight is that removing any column reduces the projection size
in at least one direction. Specifically, if we remove a column parallel to
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the xj-axis, then |πjpX
1q| becomes strictly smaller than |πjpXq|. Therefore,

ř

j |πjpX
1q| ď

ř

j |πjpXq| ´ 1 ď B ´ 1. By the inductive hypothesis applied
to the smaller set X 1, we have:

|X 1
| ď

B´1
ÿ

b“1

b
1

n´1

Now we need to account for the column we removed. By Lemma 5.2, since
ř

j |πjpXq| ď B, there exists some column containing at most B
1

n´1 cubes.
Since we chose the smallest column to remove, it certainly contains at most

B
1

n´1 cubes. Combining these facts:

|X| “ |X 1
| ` (size of removed column) ď

B´1
ÿ

b“1

b
1

n´1 ` B
1

n´1 “

B
ÿ

b“1

b
1

n´1

The final inequality |X| ď B
n

n´1 follows because the sum
řB

b“1 b
1

n´1 can

be bounded by the integral
şB

1
x

1
n´1dx, which evaluates to approximately

n´1
n
B

n
n´1 .
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