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Abstract 

We started our journey by reading the paper “Nearly Tight Bounds on Approximate 

Equilibria in Spatial Competition on the Line” by U. Bhaskar and S. Pyne from the Tata Institute 

of Fundamental Research, published only last year. This paper introduces a game for which one 

cannot find a pure Nash-equilibrium in general and proves a lower bound for the best possible 

“approximation” of a Nash-equilibrium (we will formally define what is meant by 

approximation when introducing the problem). The paper also shows that this lower bound can 

be attained for three players, but whether it can be attained for more than three players remains 

an open question. So, we investigated whether the lower bound can be attained for any number 

of players. We first introduce the problem and the results from the paper, before presenting ideas 

and approaches to solve the problem.    
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Introduction 

 Consider three political parties trying to win the presidential election. Each party, based 

on the political convictions of the population, wants to choose the position that will maximize its 

proportion of the votes. For example, if most people in the population favor a left political 

ideology, the three parties would have the incentive to adopt a more extreme left position to 

please the largest number of voters. However, if the most left-extremist party, call it A, is too 

extreme, the second most extremist party, call it B, would have incentive to adopt a position 

close to A to steal as many voters from him as possible, which would be bad for party A. On the 

other hand, if party A is not left extremist, then the other two parties would have an incentive to 

be more extremist than party A to convince more people to vote for them, which would also be 

bad for party A. So, as we can see, choosing a strategic position for each player is more delicate 

than one might think.  

A natural question is whether this problem can be modeled and solved using 

mathematical tools. In 1929, Hotelling introduced a framework representing voters as a mass 

distribution over the unit interval [0,1] and analyzed where political parties — now viewed as 

players — should position themselves to attract the most voters. Focusing on the case of two 

players, Hotelling observed that each player has an incentive to move closer to the other and 

attract the voters between the players. If both players adopt the same position, they split the voter 

base evenly and neither has a reason to move, since any deviation would result in losing votes. 

This situation is a Nash equilibrium — a state where no player can improve their outcome 

unilaterally. However, political parties rarely adopt identical positions. To reflect this, we assume 

that no two players occupy the exact same position. Under this condition, a Nash equilibrium 

does not always exist for two players, but one can get arbitrarily close to an equilibrium by 
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moving the two players towards each other. This insight leads to a broader question: how can we 

approximate Nash equilibria in this model when more than two players are involved? 

 Let us now formalize the problem statement. We are given a positive and integrable 

function 𝑓 over the interval [0,1] with ∫ 𝑓(𝑥)𝑑𝑥
ଵ


= 1 to represent the distribution of voters. 

Then, let 𝑛 be the number of players, and for 1 ≤ 𝑖 ≤ 𝑛, define 𝑥 to be the position of the 𝑖-th 

player on the interval [0,1], when reading from left to right. Since we assume that no two players 

coincide, we have that 0 ≤ 𝑥ଵ < 𝑥ଶ <. . . < 𝑥 ≤ 1. Then, the proportion of voters for a given 

player, which we now refer to as utility, is the area under the curve of 𝑓 and above the points on 

the interval [0,1] closest to the player. More formally, for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, we let 𝑥, =
௫ା௫ೕ

ଶ
 

be the midpoint of the positions of players 𝑖 and 𝑗, and we denote by 𝑈(𝑖, (𝑥ଵ, 𝑥ଶ, . . . , 𝑥)) the 

utility of player 𝑖 given the positions 𝑥ଵ, 𝑥ଶ, . . . , 𝑥 of the players. Then, we have that: 

 𝑈൫1, (𝑥ଵ, 𝑥ଶ, . . . , 𝑥)൯ = ∫ 𝑓(𝑥)𝑑𝑥
௫భ,మ


 

 𝑈൫𝑛, (𝑥ଵ, 𝑥ଶ, . . . , 𝑥)൯ = ∫ 𝑓(𝑥)𝑑𝑥
ଵ

௫(షభ),
 

 𝑈൫𝑖, (𝑥ଵ, 𝑥ଶ, . . . , 𝑥)൯ = ∫ 𝑓(𝑥)𝑑𝑥
௫,(శభ)

௫(షభ),
 ∀2 ≤ 𝑖 < 𝑛 

Now, we need to define what it means to “approximate” a Nash-equilibrium. Formally speaking, 

given some 𝜀 ≥ 0, we define an additive 𝜀 Nash-equilibrium as a strategy profile (𝑥ଵ, 𝑥ଶ, . . . , 𝑥) 

for the players such that no player can increase his utility by more than 𝜀 if all other players 

maintain their positions. Note that if 𝜀 = 0, then we have a perfect Nash-equilibrium. The 

smaller 𝜀 is, the closer to a Nash-equilibrium we are. The problem statement is therefore the 

following: What is the smallest possible 𝜀 ≥ 0 such that for any distribution 𝑓 of the voters, there 

exists an additive 𝜀 Nash-equilibrium? 
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 U. Bhaskar and S. Pyne have proven that for 𝑛 ≥ 3 players, for any 𝜀 <
ଵ

ାଷ
, one can find 

a distribution for which there is no additive ε Nash-equilibrium. However, the question of 

whether one can find an 𝜀 =
ଵ

ାଷ
 equilibrium for 𝑛 ≥ 3 remains open. In fact, U. Bhaskar and S. 

Pyne have only proven the existence of an 𝜀 =
ଵ

ାଵ
 equilibrium for any distribution 𝑓 of the 

voters. In this write-up, we will first present the results shown by U. Bhaskar and S. Pyne, before 

exploring ideas to improve the results shown in their paper.  
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Results by U. Bhaskar and S. Pyne 

 Now, we present three results from the paper published by U. Bhaskar and S. Pyne. The 

first theorem explores the case of three players, while the next two theorems provide more 

general results for 𝑛 players. The second theorem provides an 𝜀-equilibrium, while the third 

shows a lower bound for the best possible 𝜀. Without further ado, here are the theorems: 

Theorem 1: When 𝑛 = 3, for any distribution of the voters, there exists an 𝜀 =
ଵ


+ 𝛾 

equilibrium for any 𝛾 > 0. 

Theorem 2: When 𝑛 ≥ 3, for any distribution of the voters, there exists an 𝜀 =
ଵ

ାଵ
 equilibrium. 

Theorem 3: For any 𝑛 ≥ 3, we have that for any 𝜀 <
ଵ

ାଷ
, there exists a distribution 𝑓 for which 

there exists no 𝜀-equilibrium. 

We will present proofs for Theorems 1 and 2 below. As we will see, the proofs of 

Theorems 1 and 2 are quite straightforward but involve a lot of case analysis, highlighting the 

complexity of the problem in general. We will omit the proof of Theorem 3, which is quite 

technical. Here are the proofs for Theorems 1 and 2: 

Proof of Theorem 1: Let 𝛾 > 0 be arbitrarily small. Then, for a given 𝑥 ∈ [0,1], let 𝐶𝑢𝑡(𝑥) 

denote the point 𝑦 ∈ [0,1] such that ∫ 𝑓(𝑡)𝑑𝑡
௬


= 𝑥. Set 𝑥ଵ = 𝐶𝑢𝑡 ቀ

ଵ

ଷ
ቁ and 𝑥ଷ = 𝐶𝑢𝑡 ቀ

ଶ

ଷ
ቁ. 

Then, ∫ 𝑓(𝑡)𝑑𝑡
௫య

௫భ
=

ଵ

ଷ
, so by additivity of the integral, we have: 

න 𝑓(𝑡)𝑑𝑡
௫భ,య

௫భ

+ න 𝑓(𝑡)𝑑𝑡
௫య

௫భ,య

=
1

3
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Then, it follows that one term of the sum is at least 
ଵ


, assume WLOG that ∫ 𝑓(𝑡)𝑑𝑡

௫భ,య

௫భ
≥

ଵ


. 

Then, note that 0 = ∫ 𝑓(𝑡)𝑑𝑡
௫య,య

௫య
<

ଵ


−

ఊ

ଶ
< ∫ 𝑓(𝑡)𝑑𝑡

௫భ,య

௫భ
, and the integral is continuous, so by the 

intermediate value theorem, ∃𝑧 ∈ (𝑥ଵ, 𝑥ଷ) such that ∫ 𝑓(𝑡)𝑑𝑡
శೣయ

మ
௭

=
ଵ


−

ఊ

ଶ
. Let 𝑥ଶ = 𝑧.  

Then, we claim that the strategy profile (𝑥ଵ, 𝑥ଶ, 𝑥ଷ) is an 𝜀 =
ଵ


+ 𝛾 equilibrium. 

First, assume that players 2 and 3 keep their respective positions 𝑥ଶ, 𝑥ଷ. Then, by design, 

∫ 𝑓(𝑡)𝑑𝑡
௫మ

௫భ,మ
<

ଵ


+ 𝛾, so player 1 cannot improve his utility by more than 𝜀 by moving closer to 

the left of 𝑥ଶ. Moreover, since ∫ 𝑓(𝑡)𝑑𝑡
௫య

௫మ
 and ∫ 𝑓(𝑡)𝑑𝑡

ଵ

௫య
 are less than 

ଵ

ଶ
+ 𝛾, player 1 cannot 

improve his utility by more than 𝜀 by going between the players or right of player 3 (note that 

player 1 already has 
ଵ

ଷ
 utility on his left). So, player 1 has no incentive to move assuming the 

other players keep their positions. 

Now, assume that players 1 and 3 keep their respective positions 𝑥ଵ, 𝑥ଷ. Then, since 

player 2 already has 
ଵ


−

ఊ

ଶ
 utility on his right, he cannot increase his utility by more than 𝜀 by 

moving left of 𝑥ଵ or right of 𝑥ଷ, as 
ଵ


−

ఊ

ଶ
+ 𝜀 >

ଵ

ଷ
. Also, since ∫ 𝑓(𝑡)𝑑𝑡

௫య

௫భ
=

ଵ

ଷ
<

ଵ


−

ఊ

ଶ
+ 𝜀, player 

2 has no incentive to move anywhere else between players 1 and 3. So, player 2 has no incentive 

to move. 

Finally, assume that players 1 and 2 keep their respective positions 𝑥ଵ, 𝑥ଶ. Then, since 

∫ 𝑓(𝑡)𝑑𝑡
௫భ


 and ∫ 𝑓(𝑡)𝑑𝑡

௫మ

௫భ
 are less than 

ଵ

ଶ
+ 𝛾, player 3 has no incentive to move between 

players 1 and 2 or left of player 1. Moreover, since ∫ 𝑓(𝑡)𝑑𝑡
௫మ,య

௫మ
=

ଵ


−

ఊ

ଶ
< 𝜀, player 3 has no 
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incentive to move closer to the right of 𝑥ଶ. So, player 3 also has no incentive to change his 

position. 

So, no player has a way to improve his utility by more than 𝜀 if the other players keep 

their positions, which means that the strategy profile (𝑥ଵ, 𝑥ଶ, 𝑥ଷ) is an 𝜀 =
ଵ


+ 𝛾 equilibrium.  □ 

Proof of Theorem 2: Let 𝐶𝑢𝑡(𝑥) be defined as in the proof of Theorem 1 for 𝑥 ∈ [0,1].  

Then, let 𝑥 = 𝐶𝑢𝑡(


ାଵ
) ∀1 ≤ 𝑖 ≤ 𝑛.  

We claim that this strategy profile is an 𝜀 =
ଵ

ାଵ
 equilibrium. 

First observe that no player has any incentive to go to the left of his left neighbor (if it exists) or 

right of his right neighbor (if it exists), since by design, we have: 

න 𝑓(𝑡)𝑑𝑡
௫భ



= න 𝑓(𝑡)𝑑𝑡
௫మ

௫భ

= ⋯ = න 𝑓(𝑡)𝑑𝑡
ଵ

௫

=
1

𝑛 + 1
= 𝜀 

Also, since ∫ 𝑓(𝑡)𝑑𝑡
௫మ

௫భ
= ∫ 𝑓(𝑡)𝑑𝑡

௫

௫షభ
= 𝜀, players 1 and 𝑛 have no incentive to move closer to 

their neighbor. 

Now, we consider the case of some player 𝑖, with 2 ≤ 𝑖 < 𝑛, moving between his 

neighbors. Assume that such player 𝑖 moves to position 𝑥ᇱ, where 𝑥ିଵ < 𝑥ᇱ < 𝑥ାଵ. WLOG, 

we can assume that 𝑥ᇱ < 𝑥. We denote by 𝑥ᇱ,ାଵ the position of the midpoint of 𝑥ᇱ and 𝑥ାଵ. 

Let 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
௫


, let 𝑆 = (𝑥ଵ, … , 𝑥ିଵ, 𝑥 , 𝑥ାଵ, … , 𝑥) denote the original strategy profile, 

and 𝑆′ = (𝑥ଵ, … , 𝑥ିଵ, 𝑥ᇱ, 𝑥ାଵ, … , 𝑥) denote the new strategy. Then, we have the following: 

𝑈(𝑖; 𝑆ᇱ) − 𝑈(𝑖; 𝑆) = ൣ𝐹൫𝑥ᇲ,ାଵ൯ − 𝐹൫𝑥ିଵ,ᇲ൯൧ − [𝐹(𝑥,ାଵ) − 𝐹(𝑥ିଵ,)]  
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By assumption, 𝑥ᇱ < 𝑥, so 𝐹൫𝑥,ାଵ൯ > 𝐹൫𝑥ᇲ,ାଵ൯, and we have: 

𝑈(𝑖; 𝑆′) − 𝑈(𝑖; 𝑆) < 𝐹(𝑥ିଵ,) − 𝐹൫𝑥ିଵ,ᇲ൯ 

Clearly, 𝐹(𝑥ିଵ,) < 𝐹(𝑥) and 𝐹൫𝑥ିଵ,ᇲ൯ > 𝐹(𝑥ିଵ). 

Thus, it follows that: 

𝑈(𝑖; 𝑆′) − 𝑈(𝑖; 𝑆) < 𝐹(𝑥) − 𝐹(𝑥ିଵ) = 𝜀 

So, no player has any incentive to move anywhere between his neighbors. 

Hence, we have found an 𝜀 =
ଵ

ାଵ
 equilibrium.  □   

 In the next section of the write-up, we will explain what makes the problem of finding an 

equilibrium for 𝜀 <
ଵ

ାଵ
 so challenging. 
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Difficulties of Finding 𝜺-Equilibria 

As we have seen, proving that a strategy profile is an 𝜀-equilibrium requires a lot of 

casework even for simple strategies, as we need to show that no player can improve his utility by 

more than 𝜀 assuming all others maintain their positions. Specifically, when 𝑛 ≥ 3, two main 

difficulties arise: 

i) One must ensure that players 2 up to 𝑛 − 1 have enough utility not to have any incentive 

to move left of player 1 or right of player 𝑛. 

ii) One must also ensure that the players have no incentive to move closer to their neighbors. 

In both proofs, difficulty i) is overcome by setting ∫ 𝑓(𝑡)𝑑𝑡
௫భ


= ∫ 𝑓(𝑡)𝑑𝑡

ଵ

௫
= 𝐴 and 

giving the 𝑛 − 2 middle players at least 𝐴 − 𝜀 utility. Note that for the case 𝑛 = 3, there is only 

one middle player, so by the argument in the proof of Theorem 1, one can always ensure that the 

middle player gets at least 
ଵ

ଶ
− 𝐴 − 𝛾 for any 𝛾 > 0. Then, for 𝑛 = 3, it suffices to have: 

1

2
− 𝐴 > 𝐴 − 𝜀 ⇔ 𝐴 <

1

4
+

1

2
𝜀 

For the proof of Theorem 2, difficulty i) is overcome by setting 𝐴 = 𝜀, so even if the middle 

players get no utility, they will not have an incentive to move left of player 1 or right of player 𝑛.  

  The proof of Theorem 1 overcomes difficulty ii) by ensuring that at least 1 − 𝜀 utility is 

allocated by the strategy. Then, for 𝑛 = 3, it suffices to have: 

2𝐴 + ൬
1

2
− 𝐴 − 𝛾൰ = 1 − 𝜀 ⇔ 𝐴 =

1

2
+ 𝛾 − 𝜀 
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Then, since 𝐴 <
ଵ

ସ
+

ଵ

ଶ
𝜀, it follows that: 

1

2
+ 𝛾 − 𝜀 <

1

4
+

1

2
𝜀 ⇔

3

2
𝜀 >

1

4
+ 𝛾 ⇔ 𝜀 >

1

6
+

2

3
𝛾 

This argument already suggests that for 𝜀 <
ଵ


, one will not be able to find a general strategy to 

find an 𝜀 equilibrium for 𝑛 = 3 players. Note that this is a special case of Theorem 3, which is 

proven by U. Bhaskar and S. Pyne. 

The proof of Theorem 2 overcomes difficulty ii) by ensuring that the area between any 

two players is no more than 𝜀. So, the strategy adopted for the proof of Theorem 2 can only be 

applied when we have: 

2𝐴 + (𝑛 − 1)𝜀 ≥ 1 ⇔ (𝑛 + 1)𝜀 ≥ 1 ⇔ 𝜀 ≥
1

𝑛 + 1
 

So, when 𝜀 <
ଵ

ାଵ
, we need to adopt a different strategy to overcome both difficulties i) and ii). 

In the next section of the write-up, we will present how we attempted to overcome those 

difficulties and get an 𝜀-equilibrium for 𝜀 <
ଵ

ାଵ
.  
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Our Strategy for Finding 𝜺-Equilibria  

 During the semester, we mainly focused on the case of 𝑛 = 4 players, hoping to find a 

pattern and generalize it for all values of 𝑛. However, the case 𝑛 = 4 has already proven itself to 

be quite difficult, and we have not been able to find a strategy profile to find an 𝜀 <
ଵ

ହ
 

equilibrium. As explained in the above section, when 𝑛 ≥ 4, finding a strategy to deal with both 

difficulties i) and ii) when 𝜀 <
ଵ

ାଵ
 is a real challenge. Nonetheless, we will present our train of 

thought, hoping to inspire further work and ideas.  

 The first observation we made is that to meet difficulty i) above, we need the utility of 

each of the middle players to be at least 𝑚𝑎𝑥(∫ 𝑓(𝑥)𝑑𝑥
௫భ


, ∫ 𝑓(𝑥)𝑑𝑥

ଵ

௫
) − 𝜀. Thus, setting 

∫ 𝑓(𝑥)𝑑𝑥
௫భ


= ∫ 𝑓(𝑥)𝑑𝑥

ଵ

௫
 provides us with the most flexibility for our strategy and maintains 

symmetry in the repartition of the unit mass. Moreover, we observed from the proof of Theorem 

2 that by making the utilities between the players no more than 𝜀, no player could ever improve 

his utility by more than 𝜀 by moving closer to his neighbors, thus overcoming difficulty ii).  

 So, for the case 𝑛 = 4, our observations have motivated us to look for an 𝜀 =
ଵ

ହ
− 𝛾 

equilibrium for some 𝛾 > 0 by first setting the areas between the players equal to 𝜀 and setting 

∫ 𝑓(𝑥)𝑑𝑥
௫భ


= ∫ 𝑓(𝑥)𝑑𝑥

ଵ

௫ర
, giving us that: 

 ∫ 𝑓(𝑥)𝑑𝑥
௫భ


= ∫ 𝑓(𝑥)𝑑𝑥

ଵ

௫ర
=

ଵ

ହ
+

ଷ

ଶ
𝛾 

 ∫ 𝑓(𝑥)𝑑𝑥
௫మ

௫భ
= ∫ 𝑓(𝑥)𝑑𝑥

௫య

௫మ
= ∫ 𝑓(𝑥)𝑑𝑥

௫ర

௫య
= 𝜀 =

ଵ

ହ
− 𝛾 
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Note that in the current configuration, we overcome difficulty ii), but we also need players 2 and 

3 to have their utility be at least 
ଵ

ହ
+

ଷ

ଶ
𝛾 − 𝜀 =

ହ

ଶ
𝛾 to deal with difficulty i), which is not 

guaranteed for all distributions by our strategy.  

However, we observed that since ∫ 𝑓(𝑥)𝑑𝑥
௫య

௫మ
=

ଵ

ହ
− 𝛾, one of the utilities ∫ 𝑓(𝑥)𝑑𝑥

௫మ,య

௫మ
 and 

∫ 𝑓(𝑥)𝑑𝑥
௫య

௫మ,య
 must be at least 

ଵ

ଶ
ቀ

ଵ

ହ
− 𝛾ቁ =

ଵ

ଵ
−

ఊ

ଶ
. Namely, at least one of players 2 or 3 already 

has at least 
ଵ

ଵ
−

ఊ

ଶ
 utility. Assume WLOG that ∫ 𝑓(𝑥)𝑑𝑥

௫య

௫మ,య
≥

ଵ

ଵ
−

ఊ

ଶ
, namely, player 3 has at 

least 
ଵ

ଵ
−

ఊ

ଶ
 utility. Then, recall that player 3 needs 

ହ

ଶ
𝛾 utility to have an 𝜀-equilibrium, so it 

suffices to have: 

1

10
−

𝛾

2
≥

5

2
𝛾 ⇔

1

10
≥ 3𝛾 ⇔ 𝛾 ≤

1

30
 

This observation motivates us to focus our attention on the case 𝛾 =
ଵ

ଷ
 (as we want to maximize 

𝛾 to minimize 𝜀). Note that for 𝛾 =
ଵ

ଷ
, we have 𝜀 =

ଵ

ହ
−

ଵ

ଷ
=

ଵ


, and our strategy profile gives us 

the following: 

 ∫ 𝑓(𝑥)𝑑𝑥
௫భ


= ∫ 𝑓(𝑥)𝑑𝑥

ଵ

௫ర
=

ଵ

ସ
 

 ∫ 𝑓(𝑥)𝑑𝑥
௫మ

௫భ
= ∫ 𝑓(𝑥)𝑑𝑥

௫య

௫మ
= ∫ 𝑓(𝑥)𝑑𝑥

௫ర

௫య
=

ଵ


 

Then, WLOG, we can assume that player 3 has at least 
ଵ

ଵଶ
 utility and thus does not have an 

incentive to move left of player 1 or right of player 4. So, we only need to ensure that player 2 

gets 
ଵ

ଵଶ
 utility while making sure that the players do not have an incentive to move closer to each 

other.  
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Note that if indeed player 2 happens to have at least 
ଵ

ଵଶ
 utility for the given function, then 

we have successfully found an 𝜀 =
ଵ


 equilibrium. However, if the current utility of player 2 is 

less than 
ଵ

ଵଶ
, then we need to update the position of player 2 so that he does not have any 

incentive to move left of 𝑥ଵ or right of 𝑥ସ. One way to achieve this is to observe that because the 

current utility of player 2 is less than 
ଵ

ଵଶ
, it follows that ∫ 𝑓(𝑥)𝑑𝑥

௫భ,మ

௫భ
>

ଵ

ଵଶ
, so by the intermediate 

value theorem, ∃𝑧 ∈ (𝑥ଵ, 𝑥ଶ) such that ∫ 𝑓(𝑥)𝑑𝑥
శೣమ

మ
௭

=
ଵ

ଵଶ
. Then, by updating the position of 

player 2 to be 𝑧, we ensure that player 2 has at least 
ଵ

ଵଶ
 utility. But now, the utility between 

players 2 and 3 has become more than 
ଵ


, so we encounter difficulty ii) again. 

And this is where we are stuck in our reasoning. Whenever we try to deal with difficulty 

ii), difficulty i) arises, and when overcoming difficulty i), difficulty ii) becomes an issue. This 

duality explains why this problem is very challenging. We hope nonetheless that our ideas and 

struggles will inspire future researchers and enthusiasts to find an 𝜀 <
ଵ

ାଵ
 equilibrium for 𝑛 ≥ 4, 

or show that such equilibrium does not exist. 
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Conclusion 

For our Winter 2025 DRP project, we have discovered a fascinating game theory problem 

that involves finding an additive 𝜀-Nash equilibrium for any given distribution of voters over the 

interval [0,1] given 𝑛 political parties, so that no party has an incentive to deviate from his 

position. Despite the simplicity of its statement, the problem has proven to be very difficult to 

solve, even for as few as 𝑛 = 4 parties. It remains that the 𝜀 =
ଵ

ାଵ
 equilibrium found by U. 

Bhaskar and S. Pyne is nearly optimal for large values of 𝑛, since for any 𝑛 ≥ 3 and 𝜀 <
ଵ

ାଷ
, 

there exists a distribution of voters such that there is no additive 𝜀-Nash equilibrium. However, 

the fact that one can find an 𝜀 =
ଵ

ାଷ
+ 𝛾 for any 𝛾 > 0 when 𝑛 = 3 leaves open the possibility 

of improving on the 𝜀 =
ଵ

ାଵ
 equilibrium.  
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