
Modeling Inviscid Flow with the Point-Vortex Method

Amélie Chiasson David1

Directed Reading Program
1Department of Physics, McGill University

June 22, 2025

1

Contents

1 Introduction 3

2 Preliminaries 4
2.1 The Incompressible Euler Equations . 4
2.2 Vorticity . 8

3 Point-Vortex Method 8
3.1 Derivation . 9
3.2 Convergence to Euler . 11
3.3 Boundary Conditions . 11

4 Computational Methods 14
4.1 Numerical Integration: RK4 . 14
4.2 Solving for the Point-Vortex Velocity . 16
4.3 Point-Vortices in a Circle . 17
4.4 Dual Vortex Initial Condition . 18
4.5 Lamb-Chaplygin Dipole in a Cylindrical Boundary 20
4.6 Future Improvements: Fast Multipole Method . 23

5 Conclusion 23

6 Acknowledgments 23

2

1 Introduction

The Euler equations are among the most well-known systems of partial differential equations
(PDEs), governing the dynamics of inviscid flows—fluids idealized as having no internal friction.
These equations play a fundamental role in modeling a wide range of physical phenomena, from
atmospheric dynamics to aerodynamic simulations, and are central to many areas of applied math-
ematics and natural science.

However, solving the Euler equations numerically presents significant challenges due to their nonlin-
ear and often singular behavior. To manage this complexity, numerical analysts frequently employ
discretization techniques that approximate the continuous system while preserving essential physical
properties. One such approach is the Point-Vortex Method, which models the fluid as a collection of
n discrete vortices. This transforms the original PDE into a system of coupled ordinary differential
equations (ODEs), offering a more tractable and computationally efficient framework for studying
fluid dynamics.

This exploratory paper presents an overview of the Point-Vortex Method in 2D, from derivation
to applied computation. Section 2 covers the preliminaries, offering an intuitive derivation of the
incompressible Euler equations, which are the version of the equations that will be utilized in this
report. It also introduces the concept of vorticity, an essential tool in dealing with the Point-Vortex
Method. Section 3 provides a derivation of this method, as well as a discussion on the convergence
to the actual Euler equations, which turns out to be in the weak sense. Boundary conditions are
detailed at the end of this section via the infamous Green’s functions. Finally, Section 4 goes into
the nitty gritty of the computation, starting from the entirety of R2 to a simple closed cylindrical
domain. Interesting initial conditions, such as a dual vortex system and the Lamb-Chaplygin
dipole, are also presented. This section is concluded with a short discussion on how to reduce the
computational cost of Point-Vortex Methods via Fast Multipole Methods.

This paper also aims to serve as a user-friendly introduction for those beginning to explore numerical
methods for PDEs, offering simplified explanations and computational techniques through the study
of an equation fundamental to our physical world.

Keywords: Fluid, incompressible Euler equations, vorticity, Runge-Kutta Method, Point-Vortex
Method, Vortex, Green’s Functions, Lamb-Chaplygin dipole, Fast Multipole Method.

3

2 Preliminaries

2.1 The Incompressible Euler Equations

The Euler equations are used to study the dynamics of a fluid, assuming no viscosity or thermal
conductivity is in play. In this paper, we will be looking at the incompressible case, which can be
defined as follows: For a homogeneous fluid, the incompressible flows are solutions of the first-order
system of PDEs {

ut + (u · ∇)u = −∇p
div u = 0

(1)

where u(x, t) = (u1, ..., uN) is the velocity field, ut is the time derivative, and p(x, t) is a scalar
pressure due to there being an isotropic normal force exerted by the fluid at every point. We have
also assumed that there is no body force such as gravity.

For clarity, the divergence operator is defined as

div u =

N∑
j=1

∂uj
∂xj

,

the gradient operator as

∇ =

(
∂

∂x1
,
∂

∂x2
, ...,

∂

∂xN

)T

,

and the Laplacian operator as

∆ =
N∑
j=1

∂2

∂x2j
.

Derivation: To derive the incompressible Euler equations, we follow closely from the derivation
provided in Partial Differential Equations: A First Course by Prof. Rustum Choksi [Cho22]. This
will be done in two dimensions, i.e., u = (u1(x, y, t), u2(x, y, t)). We introduce ρ(x, y, t), which is
the mass density with units of mass per length squared. The derivation will arise from two physical
systems: (1) conservation of mass and (2) conservation of linear momentum, which is Newton’s
second law.

(1) Conservation of Mass. Let Ω ∈ R2 be our domain and W ⊆ Ω be where the fluid is located.
The mass of the fluid at time t is given by

mW (t) :=

∫∫
W
ρ(x, y, t)dxdy.

Assuming enough smoothness for ρ(x, y, t) we take a time derivative inside the integrals

dmW (t)

dt
=

∫∫
W
ρt(x, y, t)dxdy.

4

Now, notice that the mass of the fluid can change in time t by either entering or leaving through
the boundary ∂W . This change in mass translates to the following equivalence

∫∫
W
ρt(x, y, t)dxdy = −

∫
∂W

ρu · ndL

where the right-hand side is the net amount of fluid leaving by the boundary since ρu · n is the
fluid flux and n denotes the outer unit normal. dL is the differential since we are performing a line
integral over the closed line boundary. Now, by the Divergence Theorem, we have

∫
∂W

ρu · ndL =

∫∫
W

div(ρu)dxdy

=⇒
∫∫

W
(ρ(x, y, t) + div(ρu))dxdy = 0

The above is true for any piece W . Since dx and dy have not been specified, they are arbitrary1

and hence we can finally write

ρt + div(ρu) = 0 (2)

Equation 2 is what we know as a continuity equation (or transport equation), which describes the
transport of some quantity. Here, that would be the density of the fluid in time. As u(x, y, t) is
unknown, we must find it in what follows.

(2) Conservation of Linear Momentum. Recall that Newton’s Second Law states that the rate
of change of linear momentum must be balanced by the net forces. To compute the rate of change
with respect to time, we must consider not only a time derivative but the material derivative2.
Consider again the part of the fluid in W at time t. Similarly to part (1), we look at the total rate
of change of linear momentum in the x direction, which is given by

d

dt

∫∫
W
ρu1dxdy =

∫∫
W

∂(ρu1)

∂t
dxdy +

∫
W
(ρu1)u · n dL

where we have taken into account the changes in the linear momentum due to fluid entering and
escaping through ∂W with the second term on the right-hand side. Applying the Divergence
Theorem yields

1Or more rigorously by the IPW Theorem (See [Cho22]).
2For those who are not familiar, this basically arises from vector calculus when taking a total derivative of a

vector-valued function. Let A(t) be the acceleration vector at time t and a(x, y, t) be the spatial acceleration. Then

A(t) = a(x(t), y(t), t) and similarly for velocity U(t) = u(x(t), y(t), t). We can finally deduce that A(t) = dU(t)
dt

=
... = ∂u

∂t
+ u · ∇u.

5

∫∫
W

(
∂(ρu1)

∂t
+ div(ρu1u)

)
dxdy (3)

An analogous argument can be made for the y direction, where we would use u2 instead of u1.
Using classic F = ma, we must balance the above with the total net force in the x direction acting
on W . For the fluids that we study here, we can either have body/external forces such as gravity
or internal forces (stress) such as pressure. In this case, we will only consider the latter as we
will remain in the ’ideal fluid’ regime.

Let p(x, y, t) be the scalar function representing the force per unit length. The net pressure force
on W through the boundary ∂W is given by

FW := −
∫
∂W

pu dL. (4)

The Divergence Theorem component-wise on Equation 4 yields

FW = −
∫
∂W

pu dL = −
∫∫

W
∇p dxdy.

Looking at only the x component, we have

Fx
W = −

∫∫
W

∂p

∂x
dxdy. (5)

We now balance Equation 5 with the total rate of change in the linear momentum that was found
prior (3), which gives

∫∫
W

(
∂(ρu1)

∂t
+ div(ρu1u)

)
dxdy = −

∫∫
W

∂p

∂x
dxdy

Since dx and dy are not specified, they are arbitrary, hence, the integrands must be equal, which
means:

∂(ρu1)

∂t
+ div(ρu1u) = −∂p

∂x

ρ

(
∂u1
∂t

+ u · ∇u1
)
+ u1

(
∂ρ

∂t
+ div(ρu)

)
= −∂p

∂x

where, in the second line, we have carried out the full product differentiation. We know that the
second term of the left-hand side of this line is 0 due to conservation of mass, leaving us with

ρ

(
∂u1
∂t

+ u · ∇u1
)

= −∂p
∂x

6

Doing this for the all components (x and y), we finally obtain vector-wise

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p (6)

where Equation 6 is the Euler equation for inviscid fluid flow!

In this paper, we are interested in the incompressible case, meaning that the fluid, which may be a
gas or liquid, can change in shape but not in volume. This volume conservation requirement results
in the continuity equation (2) giving div u = 0, which is due to ρ being constant in time. Setting
ρ = 1 gives us all we need to obtain the form given by Equation 1.

Remark 1. A consequence of incompressibility, dictated by divu = 0, is Liouville’s Theorem,
which states that the volume of phase space is invariant. Recall Hamilton’s equations of motion:

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

where H is the Hamiltonian, qi is the generalized coordinate (usually spacial) and pi is its conjugate
momentum. By direct computation, we can show that divu = 0 implies that the volume of phase
space is preserved. Let H(q,p) ≡ H(z) where z ≡ (q1, ..., qn; p1, ..., pn) ∈ R2n, and

ż = J · ∇H(z)

where ż is the phase space velocity and J is the 2n× 2n symplectic matrix

J =

[
0 1
−1 0

]
with 1 being the n× n identity matrix. Taking the divergence of ż yields

∇ · (ż) = ∇ · (J · ∇H)

=

n∑
i=1

∂

∂qi

(
∂H
∂pi

)
+

∂

∂pi

(
−∂H
∂qi

)
= 0

Simply replace the phase space coordinates by (x, y) to obtain divu = 0.

7

2.2 Vorticity

In order to avoid the use of the physical parameter p(x, y, t), it is useful to define the vorticity of
a fluid as ω = ∇ × u. Informally, this is a measure of the rotation of a fluid since we are taking
the curl of the velocity field. Our goal is now to derive the vorticity version of the Euler equations
in terms of u and ω. We start by taking the curl of both sides of Equation 1

∇×
(
∂u

∂t
+ (u · ∇)u

)
= ∇× (−∇p)

∂(∇× u)

∂t
+∇× ((u · ∇)u) = 0

ωt + (u · ∇)ω − (ω · ∇)u = 0

where in the second line, the curl of the gradient of p(x, y, t) gives zero, and in the third line, we take
the curl of a convection term. Noting that the material derivative is defined as Dω

Dt = ωt+(u ·∇)ω
we get the final form of the vorticitiy equation

Dω

Dt
= (ω · ∇)u. (7)

Physically speaking, the term (u · ∇)ω in the material derivative is known as the advection term,
which describes how the vorticity ω is carried (advected) by the velocity field u, just like how
temperature or dye would be transported in a fluid.

Let’s now look at the 2D case of the vorticity equation, where we will get some nice cancellation
and a simpler form. Let u = (u1(x, y, t), u2(x, y, t), 0) that means the only nonzero term for ω is
ωz =

∂u2
∂x − ∂u1

∂y . Hence, the left-hand side of Equation 7 is clearly zero, and we get

Dω

Dt
= 0

∂ω

∂t
+
∂u1
∂x

ω +
∂u2
∂y

ω = 0

ωt + div(ωu) = 0 (8)

where ω is always perpendicular to the flow in 2D and can therefore be considered as a scalar field.
Equation 8 will be central in Section 3.

3 Point-Vortex Method

The Euler equations are computationally challenging to solve due to their nonlinear nature. Those
interested in computational mathematics often resort to what we call Point-Vortex Methods,

8

which discretize the fluid and apply Euler to each point using the vorticity. This is especially
useful in engineering when looking at the motion of a fluid around a solid body. We begin with a
derivation of this method, then follow with a discussion about its convergence to Euler.

3.1 Derivation

Let n be the number of point vortices making up an inviscid, incompressible fluid in R2 with
positions given by x1(t), ...,xn(t) at time t where xi(t) = (xi(t), yi(t)). The velocity for a fixed
time of each point vortex is then

d

dt
xi(t) = ui(xi(t), t) (9)

which is an easily solvable ODE that yields the position given the initial conditions of u. We must
hence find a way to solve for u via Euler so it can be fed into Equation 9. Recall that div u = 0
which means that we can define what we call the stream function ψ via u = ∇⊥ψ = (ψy,−ψx) 3.
With this new formalism, we now look at the vorticity again:

ω = curl u = curl ∇⊥ψ = −ψyy − ψxx = −∆ψ

This means that to obtain u from ω we must compute (1) −∆ψ = ω and then (2) u = ∇⊥ψ.
With this in hand, it does not seem like we have made our lives any easier. In fact, now we have
to solve a whole Poissonian, which would be computationally tedious. We will come back to this
momentarily. For now, let us define the circulation Γi, which is the strength of the vorticity at each
point, i.e., Γi = ωi(xi(t), t). We are led to approximate the vorticity with

ω(x, t) ≈ ω̃(x, t) =

n∑
i=1

Γi δ(x− xi) (10)

where the Delta function picks out the strength of the vorticity at each point xi(t). Here is where
the magic happens: if you have had experience with PDEs, you may recall the fundamental solution
for the Laplacian in 2D which, in the sense of distributions, is often written as4:

∆G(x;xα) := ∆
1

2π
log|x− xi| = δ(x− xi)

We can hence plug this into Equation 10 and take the ∇⊥ to get:

3For those familiar with differential forms, defining a scalar function ψ from the fact that div u = 0 follows from
Poincaré’s Lemma. Then, by uniqueness of the Poisson problem, we get the stream function ψ.

4Please see p.398-400 of [Cho22] for a great derivation.

9

ω̃(x, t) =

n∑
i=1

Γi ∆
1

2π
log|x− xi| (11)

=⇒ ψ̃(x, t) = −
n∑
i=1

Γi
1

2π
log|x− xi|

u=∇⊥ψ−−−−−→ ẋ = − 1

2π

n∑
β ̸=α

Γα
(yα − yβ)

||xα − xβ||2
(12)

and ẏ =
1

2π

n∑
β ̸=α

Γα
(xα − xβ)

||xα − xβ||2
(13)

The set of Equations 12 and 13 are exactly what we need to solve to get the velocity field u = (ẋ, ẏ)
and evolve our point vortices in time. We hence went from a second-order PDE to two coupled
first-order ODEs, which is much more computationally sound!

Figure 1: Visual of the Delta function going over each point vortex [MM21].

Remark 2. It turns out that the stream function ψ plays a role analogous to the Hamiltonian H
in phase space. As we know, the velocity field can be written as u = ∇⊥ψ, which has the same
structure as Hamilton’s equations:

ẋ =
∂ψ

∂y
, ẏ = −∂ψ

∂x
.

This makes the motion of passive particles in the flow formally identical to trajectories in a Hamil-
tonian system, with the stream function ψ acting as the Hamiltonian. In this sense, streamlines
are level sets of constant energy, and the incompressibility condition ∇ · u = 0 corresponds to the
symplectic structure being preserved. This connection underlies many geometric and conservation
properties of 2D fluid flows.

10

3.2 Convergence to Euler

Following this derivation, a natural question to ask is: Does the Point-Vortex Method converge
to the Euler equations, and if so, in what sense? The answer is nuanced and was rigorously
addressed in a foundational paper by Goodman, Hou, and Lowengrub [GHL90]. In their work,
the authors establish that under appropriate smoothness and spacing conditions, the Point-Vortex
Method indeed converges to the solution of the 2D incompressible Euler equations as the number
of vortices n→ ∞.

The key insight is that if the initial vorticity is smooth and compactly supported, it can be approx-
imated by a discrete measure using delta functions located at the vortex positions (as we did in
Equation 10). Goodman et al. show that when this discretization is constructed carefully, ensur-
ing that the vortex strengths are properly scaled and that the spacing between vortices vanishes
appropriately, the velocity field generated by the point vortices converges in the weak sense to the
true velocity field of the Euler solution.

Importantly, the convergence is shown in the sense of distributional solutions: the empirical vorticity
of the point vortex system converges to a weak solution of the vorticity form of the Euler equations.
This convergence relies on both consistency and stability.

Moreover, they prove that this method is second-order accurate in the vortex spacing, assuming
the initial vorticity is C2. However, the convergence can break down in the presence of singularities
or filamentation in the vorticity, which motivates more refined vortex-blob or regularized vortex
methods in practical simulations.

Thus, while the Point-Vortex Method is a dramatic simplification of the fluid, it retains fidelity to
Euler under suitable assumptions. This result gives theoretical grounding to the practical effective-
ness of vortex methods in fluid dynamics, particularly in inviscid, incompressible regimes.

3.3 Boundary Conditions

We will now deal with n vortices in 2-dimensional domains with solid boundaries. This section
follows closely from the explanations given in The N-Vortex Problem: Analytic Techniques by Paul
K. Newton [New01]. We will stick with closed, simply connected regions, however, this could of
course be generalized to multiply connected or unbounded domains that contain a solid region. Let
Ω ⊂ R2 be a simply connected region where our fluid, made of n point vortices, lives. The condition
imposed at the boundary ∂Ω is that of no fluid penetration, i.e,

u · n = 0
∣∣
∂Ω

(14)

where n is the unit normal to the boundary. This condition can also be written in term of the
stream function ψ. Since

11

u ≡ ∇⊥ψ

n ≡ ∇ψ,

then Equation 14 is immediately satisfied on any constant streamline, which we usually choose to
be zero, i.e., ψ = 0. Equation 14 in terms of the velocity potential u = ∇ϕ becomes a Neumann
condition

n · ∇ϕ ≡ ∂ϕ

∂n
= 0

∣∣
∂Ω
.

It turns out that there exists a Green’s function which we can construct in a domain with boundaries
to help us solve the boundary value problem. In the closed, simply connected domain Ω, the Green’s
function of the first kind GI can be written as

∇2GI(x;xα) + δ||x− xα|| = 0, x ∈ Ω (15)

GI(x;xα) = 0, x ∈ ∂Ω (16)

where the delta function represents the source located at xα ∈ Ω. GI(x,xα) is also known as the
Dirichlet function since it can be used to solve the Dirichlet problem

∇2u = 0, ∈ Ω

u = f, ∈ ∂Ω

using the generalized Poisson formula

u =

∫
∂Ω

∂GI
∂n

dS

where ∂GI/∂n ≡ n · ∇GI is the normal derivative of GI on ∂Ω with n being the outward unit
normal. Constructing GI truly depends on the details of the boundary shape, and is usually
difficult to find.

To begin, we decompose GI into a sum of two parts

GI = G+G
(α)
H

where G is the Green’s function for the unbounded plane, or as we recall from the beginning of this
section, the fundamental solution for the Laplacian

12

G(x;xα) = − 1

2π
log||x− xα||.

Since G alone does not satisfy the boundary condition bestowed by Equation 16, we must add to

it a harmonic function G
(α)
H which has ∇2G

(α)
H = 0 as well as enforce that

G
(α)
H = −G =

1

2π
log||x− xα||, x ∈ ∂Ω

to satisfy the boundary condition (16). Hence, in many cases, in order to solve for the vorticity
given by Equation 11, we must simply replace the term in the sum by GI , i.e,

ω̃ =

n∑
β ̸=α

ΓαGI(x;xα)

and take the∇⊥ of this to get the velocity field. We are therefore required to determine the harmonic

function G
(α)
H . One technique often used is the Method of Images5, where image vortices are placed

outside the domain at strategic locations to account for the normal force from the boundary. For
example, in the case of one point vortex in the upper-half plane at position x1 = (x1, y1), the image
vortex would be placed at the position x∗

1 = (x1,−y1). The harmonic function would simply be
the fundamental solution, however, evaluated at G(x;x∗

1) instead of G(x;x1).

Another example, which we will revisit towards the end of Section 4, is a set of point vortices inside
or outside a circular domain. Consider a point vortex of strength Γ located at position x1 inside a
circular cylinder of radius R centered at xc. We begin by placing an image vortex of strength −Γ
at the inverse point

x∗
1 = xc +

(x1 − xc)R
2

||x1 − xc||2
.

It is easy to show that there is no radial velocity component on the circle boundary, which means
that the boundary condition (14) is satisfied. All that is left is the azimuthal velocity of the vortex,
given by

uθ =
Γ

2π
· ||x1 − xc||
(R2 − ||x1 − xc||2)

One could also switch the roles of x1 and x∗
1 which would be equivalent to to placing the point

vortex outside of the circular cylinder. In both cases, the Green’s function of the first kind is given
by

5Other techniques include using conformal mapping, which can be very useful for more complicated domains (see
Ch 3.3 of [New01]).

13

GI(x;x1) = − 1

2π

[
log||x− x1|| − log

(
R

||x1 − xc||
· 1

||x− x∗
i ||

)]
(17)

≡ G(x;x1) +G
(1)
H (x)

The above equation will be especially useful for actually simulating many point vortices inside a
circular domain, yielding some interesting visuals we will dissect in the next section.

4 Computational Methods

Setting up the computation for the Point-Vortex Method can seem daunting, however, it turns
out that all simplifies quite beautifully. Let n be the number of point vortices and xi = (xi, yi)
be the position array for each point. More specifically, xi = (x1, ..., xn) and yi = (y1, ..., yn) for
i ∈ {1, 2..., n}. Given initial conditions on the positions of the points, we will compute the velocities
using the set of Equations 12 and 13. These velocities will then be plugged into a numerical
integrator, which will be used to evolve the particle’s positions. These steps are repeated for a
given number of iterations and time step.

4.1 Numerical Integration: RK4

What is meant by numerical integration is not so much computing an integral, but solving an
ODE. Here, we look for a method to solve differential equations of the form dx/dt = u(x, t) and
x(t0) = x0. There are many ways to go about this, which often stem from the well-known forward
Euler; however, we will busy ourselves with the Runge Kutta methods, specifically (RK4).

In order to outline this method, we will begin our discussion with the first-order version. When
dealing with numerical integration, we often want to predict the form of the solution by taking a
small step h (in our case, a time step into the future). For RK1, this is accomplished by computing
the Taylor expansion x about t0:

x(t) = x(t0) + x′(t0)t+ x′′(t0)
t2

2
+ ...

x(h) = x(t0) + x′(t0)h+ x′′(t0)
h2

2
+ ...

To first order, we can hence approximate the solution at time step h > 0 to be

x(h) ≈ x∗(h) = x(t0) + k1h

14

where k1 = x′(t0), i.e, the slope or velocity for the Point-Vortex Method. For RK2, we use the
result k1 to generate an approximation at y(t0+h/2), and then determine k2 from this estimation.
This coefficient basically gives us the slope at t0 + h/2. The third-order version follows a similar
scheme to the prior. In the context of our Point-Vortex problem, we are solving for the system of
equations yielding the x and y coordinates of the points given the velocity. Hence, the RK4 scheme
used for n time steps is what follows:

k1 = u(tn,xn)

k2 = u(tn +
h

2
,xn + k1

h

2
)

k3 = u(tn +
h

2
,xn + k2

h

2
)

k4 = u(tn + h,xn + k3h)

More specifically, k1 is the slope at the beginning of the interval (using Euler’s method), k2 is the
slope at the midpoint of the interval, k3 is similar to k2, and k4 is the slope at the end of the
interval (see the left of Figure 2). We now take a weighted average to compute an estimation for
x(tn+1) ≈ xn+1, adding this to the current position xn we are at

xn+1 = xn +
h

6
(k1 + 2k2 + 2k3 + k4).

where the division by 6 is because we are technically adding six slopes together. Note that the fact
that we are using u to calculate every coefficient indicates we will need to call our function that
computes the velocity of our points every time.

It is important to take note that when order is mentioned in Runge-Kutta methods, this makes
reference not to the number of coefficients used, but the order of the error made in approximating
the solution. For RK4, the local truncation error is of O(h5), while the total accumulation error is
of O(h4)6.

Using RK4 is not a requirement. We could have easily used another numerical integration method,
such as midpoint or Euler. However, RK4 comes with its perks; it offers a good tradeoff between
accuracy and step size. As mentioned, the global truncation error is of O(h4), hence it can be
used with a relatively large step h without the computation time being too long. The Point-Vortex
Method is governed by nonlinear ODEs, which are sensitive to small changes, so this is a must for
enhanced precision.

6The local truncation error is the error caused by one iteration, while the total accumulated error is the
global error accumulated after many n number of iterations

15

Figure 2: Left: Visual of the RK4 method. k1, k2, k3 and k4 slopes (in red) are added together as
a weighted average to approximate the solution y(t) at a later time t1 [con25]. Right: Stability
region of RK4 compared to the midpoint method and forward Euler [TY24].

4.2 Solving for the Point-Vortex Velocity

Solving for the velocity of the point vortices turns out to be simple matrix multiplication. The idea
is to reconstruct the form of Equation 12 and 13 into an n×n matrix, making sure that each vortex
does not feel its own contribution. The matrix operation equivalent to this is the following

ẏ1
ẏ2
...
ẏn

 =
1

2π

0 x1−x2

||x1−x2||2 · · · x1−xn
||x1−xn||2

x2−x1
||x2−x1||2 0

...
...

. . .
...

xn−x1
||xn−x1||2 · · · · · · 0

Γ1

Γ2
...
Γn

 =
1

2π
ĀΓ

provided we supply an array of constant Γi’s. The matrix for the ẋi’s will be the same modulo
a minus sign as well, and the xi’s replaced by yi’s. Notice the zeros on the diagonal, accounting
for the null contribution of a point vortex with respect to itself. Additionally, the vector-matrix
multiplication of the Γ into the A does the job of summing up all contributions to a single point’s
velocity.

Constructing the matrix A can be done by creating a first matrix with rows of the form [x1, ..., xn],
transposing this matrix, and then taking the difference between the transposed and normal objects.
Another with the 1/||xα−xβ||2 elements can then be generated with zeros on the diagonal and can

16

be multiplied element-wise into the previous matrix. This is better shown by the operations

(

x1 x2 · · · xn

x1 x2
...

...
. . .

...
x1 · · · · · · xn

T

−

x1 x2 · · · xn

x1 x2
...

...
. . .

...
x1 · · · · · · xn

)×

0 1
||x1−x2||2 · · · 1

||x1−xn||2

1
||x2−x1||2 0

...
...

. . .
...

1
||xn−x1||2 · · · · · · 0

where the × symbol represents element-wise multiplication. The same can be done for ẋ (and in
fact this can be generalized to one big matrix with a 1 × 2 array for each entry). As with any
matrix multiplication in numerics, there is O(n2) computational complexity as we are in the 2D
case of inviscid Euler.

4.3 Point-Vortices in a Circle

A great first test to see if the computation is working and to check the stability is to arrange the
point-vortices in a shape with a predictable position evolution. For this section, we place 8 points
in a circle, as seen in Figure 3, each with the same circulation Γ. We know that at any later time
step, the points should remain constrained to move at a radial distance R = 2 from the circle’s
center, in this case (5, 5). It is then easy to calculate any change in position of the points due to the
numerical methods, by taking the difference |ri − R| where ri is the radial position of each point
from the circle’s center.

Figure 3: Position of a set of 8 point-vortices arranged uniformly in a circle of radius R = 2, evolved
via Euler for t = 14.47s and h = 0.005s.

17

Running the simulation for 14.47s and h = 0.005s yielded a difference of the order 10−13, which
indicates an extremely high degree of numerical accuracy. This level of error is well below the
typical threshold for concern in double-precision floating-point computations (generally around
10−10 and 10−12), and is consistent with the expected precision of the RK4 integrator. It should be
clear that what governs this evolutionary shift in theoretical positioning is the numerical integrator
method, as the method used to calculate the velocities of the points is already a predetermined
approximation.

4.4 Dual Vortex Initial Condition

It is now time to explore more interesting initial conditions, which will certainly yield prettier
images. In this section, we will deal with a dual vortex system7 with Gaussian initial conditions on
the circulations, of the form8

Γi(xi) = −(g(xi − (0.15, 0)−m) + g(xi + (0.15, 0)−m)) (18)

g(xi) =
1

σ
√
2π

exp

(
−1

2

|xi|2

σ2

)
(19)

with σ = 0.07 and m = (0, 0). Figure 4 provides the visual for the initial condition for n =
10 000.

Figure 4: Dual vortex initial conditions. The colors directly map to the strength of the circulation
Γ.

7Not to be confused with the point-vortices which simply refers to our n points.
8This initial condition was strongly inspired by some results from the master’s thesis of William Holman-Bissegger

[Hol24].

18

As the points are time-evolved using the Point-Vortex Method, the Gaussians begin to swirl around
each other (Figure 5), creating streaks reminiscent of the arms of some spiral galaxies. Delaunay
triangulation is applied in order to show a more ”continuum-like” like picture. Certain points can
be observed to have diverged greatly from their central position. This is most likely due to the
Point-Vortex Method being analogous to the Biot-Savart Law: when two point-vortices come in
great proximity, their velocities diverge since we are working with an inverse square law.

Figure 5: Evolution of a dual vortex merger for h = 0.0001 seconds and n = 10 000.

19

As illustrated in the figure above, the Point-Vortex method breaks down at small spatial scales and
requires a significantly large number of vortices to resolve fine-scale features such as turbulence or
vorticity filaments.

4.5 Lamb-Chaplygin Dipole in a Cylindrical Boundary

We now tackle cylindrical boundary conditions computationally, building up from our previous
derivations in Section 3.3. Implementing a solid circular boundary will follow from prior computa-
tional techniques (4.2), along with a few key changes which involve adding the contributions from
image point vortices. The logic here is straight-forward: Recall from Equation 11 that for the
discretized vorticity, we replaced the Delta function by the Laplacian of the Fundamental Solution,
which was then mapped to the stream function ω̃ = −∆ψ̃. We are wishing to accomplish something
similar, this time with a different Green’s function which takes into account the cylindrical bound-
ary, resulting in a modified stream function. Luckily, we have previously presented such a Green’s
function, i.e, Equation 17. Following from the previous computation, we derive our modified stream
function:

ψ̃C(x, t) = −
n∑
i=1

ΓiGI,C(x;xi)

= −
n∑
i=1

Γi
1

2π

[
log||x− xi|| − log

(
R

||xi − xc||
· 1

||x− x∗
i ||

)]
ũ=∇⊥ψ̃−−−−−→ ẋC = − 1

2π

n∑
α ̸=β

Γα
(yα − yβ)

||xα − xβ||2
−

(yα − y∗β)

||xα − x∗
β||2

(20)

and ẏC =
1

2π

n∑
α ̸=β

Γα
(xα − xβ)

||xα − xβ||2
−

(xα − x∗β)

||xα − x∗
β||2

(21)

where the ∗ symbol denotes the image vortices and R, the radius of the cylinder. This modified
form contains the same term as our previous system in R2 added to another term which accounts
for the influence of the image points. This indicates that we must go through the construction of
an additional matrix analogous to the one in Section 4.2 and add the volicity extracted from it to
the normal R2 vortex velocity. Going through all the steps again leads to a final operation of the
form
ẏC,1
ẏC,2
...

ẏC,n

 =
1

2π
(

0 x1−x2

||x1−x2||2 · · · x1−xn
||x1−xn||2

x2−x1
||x2−x1||2 0

...
...

. . .
...

xn−x1
||xn−x1||2 · · · · · · 0

−

0

x1−x∗2
||x1−x∗

2||2
· · · x1−x∗n

||x1−x∗
n||2

x2−x∗1
||x2−x∗

1||2
0

...

...
. . .

...
xn−x∗1

||xn−x∗
1||2

· · · · · · 0

)

Γ1

Γ2
...
Γn

=
1

2π
(A−B)Γ

20

where A is the same matrix as before and B is the matrix accounting for the contributions from
the image vortices. As before, an analogous statement can be made for ẋC .

We are now ready to deal with an interesting example known as the Lamb-Chaplygin dipole in
a cylindrical boundary. This system is a steady, axisymmetric solution of the 2D incompressible
Euler equations describing a pair of counter-rotating vortices that propagate together at constant
speed without changing shape. The stream function associated with this is

ψ =

{
−2UJ1(kr)
kJ0(kR) sin θ, for r < R

U(R
2

r − r) sin θ, for r ≥ R
(22)

where J0 and J1 are the zeroth and first order Bessel functions of the first kind and R is the radius
of the dipole, not to be confused with the radius of the cylinder. It turns out that the vorticity is
linearly related to the stream function via ω = k2ψ where k is the first non-trivial zero of the first
Bessel function of the first kind, which gives kR = 3.8317.... A visual of the initial conditions is
provided in Figure 6.

Figure 6: Left: Flow structure of the Lamb-Chaplygin dipole [con24]. Right: Dipole initial
condition with 10 000 point-vortices.

We will be looking to see the effects of this dipole hitting the wall of the cylindrical boundary.
Figure 7 shows a sample simulation with Rcyl = 3 and n = 1000 point-vortices. Such parameters
were chosen as simulating with more points rendered it visually difficult to decipher the components
of the dipole. The dipole can be seen moving towards the boundary with velocity U , leaving behind
a trail due to numerical artifacts. As it hits the boundary, the dipole splits into two components

21

with positive and negative vorticity. As they go their separate ways, they eventually meet back
and collide again.

Figure 7: Evolution of a Lamb–Chaplygin dipole made up of 1000 point vortices.

22

4.6 Future Improvements: Fast Multipole Method

One major limitation of the Point-Vortex Method is its computational cost, which scales as O(n2)
due to the need to compute pairwise interactions between all n vortices at each time step. This
becomes prohibitively expensive for large systems. A promising avenue for improving the efficiency
of the method is the incorporation of the Fast Multipole Method (FMM), an algorithm originally
developed to accelerate N -body interactions in physics and astronomy. The core idea of FMM is
to approximate the effect of distant groups of vortices using multipole expansions, significantly
reducing the number of direct calculations required. By organizing vortices into a hierarchical tree
structure and computing interactions between clusters rather than individual particles, the overall
complexity can be reduced to nearly O(n). Integrating FMM into the Point-Vortex framework
would allow for the simulation of much larger vortex systems while preserving accuracy, making it
an attractive direction for future development and application to realistic fluid flows.

5 Conclusion

This exploratory paper examined numerical approaches to solving partial differential equations,
focusing on the incompressible Euler equations, which describe the behavior of inviscid fluids. The
Point-Vortex Method was introduced as a powerful tool for reducing this complex PDE system
to a set of coupled ordinary differential equations through the concept of vorticity. By discretiz-
ing the fluid domain, we explored several illustrative systems, including a vortex pair and the
Lamb–Chaplygin dipole, within this framework.

Beyond fluid dynamics, it is worth noting that the Point-Vortex Method can be generalized to
PDEs reducible to the form dx/dt =

∑
i aif(x− xi). In the classical vortex formulation, f(x− xi)

reflects the inverse-square interaction characteristic of point vortices. However, replacing f with
alternative interaction kernels allows this framework to model the collective behavior of other
systems exhibiting self-organization, such as flocks or herds [Gon+24].

6 Acknowledgments

I would like to extend my deepest thanks to my mentor, William Holman-Bissegger, for his invalu-
able guidance and insight into this project, as well as to Mikey and Parker for their support. I
would also like to thank the organizers of this year’s DRP at McGill for providing resources and
organizing the program. While many sources were used in the compilation of this project, much
of its foundational material comes from Paul K. Newton [New01] and C. Mimeau & I Mortazavi
[MM21].

When finalized, the code for this project will be uploaded on GitHub via https://github.com/

ameliechd.

23

https://github.com/ameliechd
https://github.com/ameliechd

References

[GHL90] Jonathan Goodman, Thomas Y. Hou, and John Lowengrub. “Convergence of the point
vortex method for the 2-D Euler equations”. In: Communications on Pure and Applied
Mathematics 43.3 (1990), pp. 415–430.

[New01] Paul K. Newton. The N-Vortex Problem: Analytic Techniques. Springer, 2001.
[MM21] C. Mimeau and I. Mortazavi. “A Review of Vortex Methods and Their Applications:

From Creation to Recent Advances”. In: Fluids (2021). doi: https://doi.org/10.
3390/fluids6020068.

[Cho22] Rustum Choksi. Partial Differential Equations: A First Course. AMS, 2022.
[Gon+24] I. Gonzalez et al. “Emergence of collective behaviours from local Voronoi topological

perception”. In: Royal Society Open Science (2024). doi: https://doi.org/10.1098/
rsos.231537.

[Hol24] William Holman-Bissegger. “A volume-preserving characteristic mapping method for
the 2D incompressible Euler equations”. MA thesis. McGill University, 2024.

[TY24] S. Terakawa and T. Yaguchi. “Modeling Error and Nonuniqueness of the Continuous-
Time Models Learned via Runge–Kutta Methods”. In:Mathematics (2024). doi: https:
//doi.org/10.3390/math12081190.

[con24] Wikipedia contributors. “Lamb–Chaplygin dipole”. In: Wikipedia (Last edited: 2024).
url: https://en.wikipedia.org/wiki/Lamb%E2%80%93Chaplygin_dipole.

[con25] Wikipedia contributors. “Runge–Kutta methods”. In: Wikipedia (Last edited: 2025).
url: https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods.

24

https://doi.org/https://doi.org/10.3390/fluids6020068
https://doi.org/https://doi.org/10.3390/fluids6020068
https://doi.org/https://doi.org/10.1098/rsos.231537
https://doi.org/https://doi.org/10.1098/rsos.231537
https://doi.org/https://doi.org/10.3390/math12081190
https://doi.org/https://doi.org/10.3390/math12081190
https://en.wikipedia.org/wiki/Lamb%E2%80%93Chaplygin_dipole
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods

	Introduction
	Preliminaries
	The Incompressible Euler Equations
	Vorticity

	Point-Vortex Method
	Derivation
	Convergence to Euler
	Boundary Conditions

	Computational Methods
	Numerical Integration: RK4
	Solving for the Point-Vortex Velocity
	Point-Vortices in a Circle
	Dual Vortex Initial Condition
	Lamb-Chaplygin Dipole in a Cylindrical Boundary
	Future Improvements: Fast Multipole Method

	Conclusion
	Acknowledgments

