
Exploring Turbulence Through the Context of Viscous Fluid Flow at Low
Reynolds Number

MIKEY BAKER

CONTENTS

1. Acknowledgments 1

2. Introduction 2

3. A Physics Student’s Summary of Dynamical Systems 3

4. Statistical Symmetries of Navier-Stokes 7

4.1. Motivation for a Statistical Approach 7

4.2. Navier-Stokes as a Dynamical System 8

5. Fourier Analysis 10

6. Physical Scales of Turbulence 11

6.1. Dissipative Lengths 15

6.2. Inertial Lengths 15

6.3. Larger Lengths 15

7. Conclusion 15

References 17

1. ACKNOWLEDGMENTS

I’m grateful to William Holman-Bissegger for his mentorship and insight over the course of this project. I

know he’s somewhere savouring the $33 he was paid per mentee. I would like to thank Amélie Chiasson
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2. INTRODUCTION

The main objective of this project is to get a handle on the structure of turbulence, guided by the simple

question ”what is turbulence?” It is most natural to study turbulence in the context of fluids, and for simplicity,

fluids in R2, however turbulence is not restricted to that context, and can be studied without reference to fluids.

The incompressible Navier-Stokes equations are equations which are used to model viscous fluid flow, and

are given by

(2.1)

$

&

%

du
dt

` pu ¨ ∇qu “ ´1
ρ
∇p ` ν∇2u ` F

ρ

∇ ¨ u “ 0

where ρ is the density of the fluid, u is the velocity field, p is the pressure scalar field, ν is the viscosity,

and F is a forcing term. This report examines this set of equations largely from the point of view of chaotic

dynamical systems, then provides a qualitative discussion of features of turbulence and its relationship with

symmetries. Before launching into background on dynamical systems, a qualitative physical understanding

of terms in the Navier-Stokes equations is presented here.

The first equation can be thought of in terms of Newton’s second law F “ ma, the acceleration is du
dt

. There

is an arbitrary forcing term F (think of a pump or similar object which can agitate the fluid). The term
´1
ρ
∇p should be thought of as a Lagrange multiplier; pressure is the force which ensures that the constraint

of ∇ ¨ u “ 0 holds for all time. The term ν∇2u is a viscous damping term; it dissipates energy and is most

relevant at small length scales. The reason for the relevance at small scales will be presented more rigorously

later, but for now, consider a particulate model of a fluid. In this model, energy is dissipated as heat through

collisions between particles. This is essentially a very zoomed in model of a fluid to the molecular level.

Finally, the term pu ¨ ∇qu is an advection. The part pu ¨ ∇q acts to advect any quantity which multiplies it;

in this case, the velocity is being advected by the velocity. To fully understand what this means, consider a

infinitesimal fluid element dm, at time t0, this fluid element has position x0 velocity u0. At time t0 ` dt, the

fluid element has moved to x0 ` u0dt, and has velocity u0 ` du0. Hence, one can think of this time stepping

as moving the velocity u0 to a new location in the direction of the fluid flow which is precisely an advection.

The second equation stipulates that the vector field be divergence free. This enforces a continuity equation

which corresponds to the conservation of density. In words, the divergence free condition requires that for

a volume element of space dV “
n

ś

i“1

dxi, the net flow of fluid into dV is zero. Here, n is the number of

dimensions of space.
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From here on out, most of the analysis is sourced from Turbulence by Uriel Frisch [1], with the notable

exception of section five where the main reference is Turbulent Flows by Stephen B. Pope [2]. Figures in

section five are sourced from An Album of Fluid Flow by M. Van Dyke [3].

3. A PHYSICS STUDENT’S SUMMARY OF DYNAMICAL SYSTEMS

It is important to point out that there is a very rigorous definition of a dynamical system, involving probability

measures and carefully circumventing difficult set theory often brought about by the axiom of choice. Here,

I present a (hopefully) more immediately applicable exposition to dynamical systems.

The state of a system ψptq is some representation which includes all of the relevant information about the

system at time t. For example, ψ might include the position and velocity of a ball, or might be a scalar

temperature field. For the purposes of this report, a dynamical system is any system whose state can change

as a function of time. A relationship between the state at time t0 and time t0 ` dt is investigated as a means

of understanding the dynamics. A simple example of such a relationship is the ODE

(3.1)
dψ

dt
“ ψ

In that system, ψpt` dtq “ ψptq `ψptqdt. Therefore, given ψp0q, one can evaluate ψ at any time t. Breaking

this example into these pieces is certainly contrived as this ODE has the solution ψptq “ ψ0e
t, but the point

here is to demonstrate that one can write an explicit form of the system state as a function of the previous

system states. Other dynamical systems will not have such a nice analytic solution.

While there can be many reasons for a dynamical system to have more complicated solutions, one (pertinent)

reason in the case of the Navier-Stokes equations is the presence of chaos. A chaotic system is characterized

by the fact that time evolution of chaotic systems with arbitrarily similar initial conditions can have dissimilar

solutions. Formally, if A is the space of possible states of a chaotic system, let dp¨, ¨q be a distance function

in A, a, b P A and Gt be a time evolution operator which translates a solution apt0q ÞÑ apt0 ` tq then

(3.2) Dε ą 0 Eδ ą 0 : dpapt0q, bpt0qq ă δ ùñ pdpGtpaq, Gtpbqq ă ε

Chaos is a vital part of turbulence, and specifically a notion of turbulent mixing is important. It is worth

exploring these ideas through the example of a seemingly simple discrete dynamical system which has a very

deep structure. Since this system is a discrete dynamical system, we let the time step dt equal one.

(3.3) vt`1 “ 1 ´ 2v2t

This system is clearly deterministic (i.e. given v0, it is immediately clear that vt is unique). Consider now the

change of variables

(3.4) vt “ sinpπxt ´
π

2
q
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Then using the fact that 1 ´ 2 sin2 z “ cosp2zq, it becomes apparent that examining that dynamical system

3.3 is equivalent to the system

(3.5) xt`1 “

$

&

%

2xt if 0 ď xt ď 1
2

2 ´ 2xt if 1
2

ď xt ď 1

This dynamical system is known as the tent map because of the graph of xt`1pxtq.

FIGURE 1. Graph of the tent map with equation given by 3.5

This system is well known to be chaotic, and mixes the interval r0, 1s. To demonstrate the extent to which

the interval is mixed, the first 10 iterations of the tent map on x0 “ 1
e

is given in the table below

Iteration number Tent map on x0 “ 1
e

Tent map on x0 “ 0.5 Tent map on x0 “ 2
13

0 1
e

0.5 2
13

1 0.735758882343 1 4
13

2 0.528482235314 0 8
13

3 0.943035529372 0 10
13

4 0.113928941257 0 6
13

5 0.227857882514 0 12
13

6 0.455715765028 0 2
13

7 0.911431530055 0 4
13

8 0.177136939889 0 8
13

9 0.354273879778 0 10
13

From this example, one should note a few things. First, 0.5 is not an interesting starting point, it maps

immediately into the kernel of the tent map, and since 0 is also in the kernel of the mapping, after two
4



iterations, nothing new happens. For the case of x0 “ 1
e
, we seem to get random values out of iterating the

tent map with (up to 10 iterations) no repetition. Finally, the tent map operated on x0 “ 2
13

does repeat after

six repetitions. To explain why this repetition occurs, consider the operation of the tent map denoted by B on

an input x P r0, 1s where we expand x in binary:

(3.6) x “ 0.α1α2α3 ¨ ¨ ¨ “ pα12
´1

q ` pα22
´2

q ` pα32
´3

q ` . . .

where αi P t0, 1u. Let N be the negation map

(3.7) Npαq “

$

&

%

0 if α “ 1

1 if α “ 0

and Ndpαq denotes N applied d times to α, noticing that N2n “ 1 for n P N. We can now express the action

of the tent map on the interval r0, 1s as a binary shift with negation as follows

(3.8) Bpxq “ 0.pNα1α2qpNα1α3qpNα1α4q . . .

Introducing βt for the sake of notation as follows

(3.9) βt “

t
ÿ

i“1

αi

allows us to succinctly denote the iteration of the tent map as

(3.10) Bt
pxq “ 0.pNβtαt`1qpNβtαt`2qpNβtαt`3q . . .

Having done this groundwork, it is now clear why 1
e

seems never to repeat under the tent map; as an irrational

number, the binary expansion of 1
e

never repeats itself, so the tent map applied on 1
e

will never repeat. On

the other hand, the binary expansion of 2
13

repeats every twelve digits, but when the negation is included, it

actually repeats after only six digits. Finally, 0.510 “ 0.12 so BpBpxqq “ 0. We can now finally fully explore

the way that this representation of the dynamical system is inherently chaotic. Consider x, y P r0, 1s such that

for n P N the binary expansions of x and y are equal for the first n digits. For each shift, the two numbers

get further and further separated. While |x ´ y| ă 2´n, |Bnpxq ´ Bnpyq| ą 1
2
. Further iterations of the tent

map will result in these two numbers no longer having anything to do with one another (they are in separate
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orbits). Hence, arbitrarily close initial conditions are insufficient to ensure arbitrarily similar behavior of

Btpxq and Btpyq @t. Chaos is usually referred to this incredible sensitivity to initial conditions.

This notion of chaos is vital to a study of turbulence, but there is yet one more takeaway from the shift map.

This is the idea of mixing the real line. Consider the intervals I1 “ r0, 1
3
s, I2 “ r1

3
, 2
3
s, and I3 “ r2

3
, 1s.

Iteration number Tent map on I1 Tent map on I2 Tent map on I3
0 r0, 1

3
s r1

3
, 2
3
s r2

3
, 1s

1 r0, 2
3
s r2

3
, 1s r0, 2

3
s

2 r0, 1s r0, 2
3
s r0, 1s

3 r0, 1s r0, 1s r0, 1s

Within three iterations of the tent map on these intervals, they are all spread over the entire domain, and

fully mixed with one another. To illustrate, consider y “ 0.10111001 “ B3pxq which I chose arbitrarily.

Since the shift map by definition loses information, we can consider three different cases of what x may be

to demonstrate that x could come from any one of the intervals Ii. Using the representation of x as

(3.11) x “ 0.pα1α2α3qp10111001q

We can say the following

(3.12)

$

’

’

’

&

’

’

’

%

α1 “ α2 “ α3 “ 0 ùñ x P I1

α1 “ α3 “ 0, α2 “ 1 ùñ x P I2

α1 “ α2 “ α3 “ 1 ùñ x P I3

There are, of course, more possible values of x, but it is clear that in only three iterations of the shift map, the

entire interval of r0, 1s has been mixed. The last item of note on the shift map: after subdividing r0, 1s into n

intervals Ik “ rk´1
n
, k
n

s for 1 ď k ď n, we have

(3.13) @k,Bn
pIkq “ r0, 1s

Having introduced ourselves to chaos and mixing induced by time evolution of a dynamical system through

the lens of the shift map, we can now (finally) leave the shift map in the past.

The last concept required from dynamical systems is the notion of a phase space. A phase space of a system

is the set of all possible physical states of the system in a given parameterization. For a particle in R3, the

phase space is six dimensional, with three momentum axes and three position axes. As a dynamical system

evolves in time, it follows a trajectory through phase space. For a physical dynamical system, that trajectory
6



is unique. Initial conditions to a second order PDE correspond to a point in phase space which determine the

starting point of the trajectory. For the Navier-Stokes equations, the set of possible states for the system is

the set of all divergence free vector fields, and therefore the phase space is infinite dimensional. Analysis is

readily applied to infinite dimensional spaces, but in the context of a mixing, chaotic, nonlinear system such

as the Navier-Stokes equations, pivoting to a probabilistic approach may be more tractable.

4. STATISTICAL SYMMETRIES OF NAVIER-STOKES

4.1. Motivation for a Statistical Approach. Consider a probe placed in a wind tunnel measuring the flow

velocity in the direction of the stream (i.e. in the direction of the mean fluid flow). Subtracting the mean flow

from this measurement reveals the highly fluctuating signal which is unpredictable in detail. This signal is

shown in the following two figures taken from Frisch [1].

FIGURE 2. Fluctuations in velocity in the direction of mean flow as a function of time, starting

at an arbitrary time t0 seconds
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FIGURE 3. Fluctuations in velocity in the direction of mean flow as a function of time, starting

at an arbitrary time t0 ` 4 seconds

There are two signals because two measurements were taken of the same setup; notice that without being

told, there is no way to determine which signal was obtained first. Indeed, this non-determinism indicates

a time-symmetry or reproducibility of the result. Given the nature of the fluctuations about v “ 0, it seems

natural to bin the signal into a histogram as is done below, also from Frisch [1].

FIGURE 4. Histogram of a signal. Note that the signal in this figure is not the same as the

signals presented in 2 or 3.

While the short time scale features seem random, the histogram of the signal is reproducible; it seems then,

that statistical properties of turbulent flow are consistent. Thus, a probabilistic model of the Navier-Stokes

equations seems justified.

4.2. Navier-Stokes as a Dynamical System. Let’s write the Navier-Stokes equations in the form of a dy-

namical system with an initial condition, and apply the tools of dynamical systems to this problem.
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(4.1)

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Btu ` u ¨ ∇u “ ´∇p ` ν∇2u ` f

∇ ¨ u “ 0

upx, t “ 0q “ ω̄

Hpuq “ 0

Here, ω̄ is the initial condition, and H is some operator which ensures that u satisfies any boundary conditions.

It is assumed that Hpω̄q “ 0. Finally, suppose there exists a time translation operatorGt such thatGtpω̄pxqq “

upx, tq. The existence of such an operator is tantamount to assuming the existence of unique solutions to the

Navier-Stokes equations; this is widely believed to be true but is a famous open problem.

By Birkhoff’s Ergodic Theorem, for a random integrable function f ,

(4.2) lim
TÑ8

1

T

T
ż

0

fpz, ω̄qdz “ xfy

Notice that we can write u as a function of t, ω̄ using the Gt operator

(4.3) upt, ω̄q “ Gtω̄

Combining 4.2 and 4.3, along with the observation that u´xuy has nearly gaussian features in time, repre-

sented by g̃ptq, we can write

(4.4) g̃px, T q “ u ´
1

T

T
ż

0

upt, ω̄qdt

It is now time to take a brief physical interlude on the topic of eddies. An eddy is a turbulent feature of a fluid

which often has a large vorticity. Through experiments, it is observed that eddies break apart into smaller

and smaller eddies until they dissipate due to viscous forces. Supposing that the forcing term f acts at large

length scales, the behavior of eddies seems to suggest that energy is pumped in at large scales, transferred

somehow to smaller scales where it is dissipated. This transfer of energy is called the energy cascade, and it

is one of the most important results in turbulence. One main tool used to investigate varying length scales is

the Fourier transform.
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5. FOURIER ANALYSIS

Using the standard notation of ûpk, ω̄q is the fourier transform of upt, ω̄q, we can examine various scales.

(5.1) uă
Kpx, ω̄q “

ż

|k|ďK

eipk¨xqûpk, ω̄qd3k, F ě 0

Invoking 4.2 in the unbounded spacial domain, and the typical definition of kinetic energy as 1
2
mv2, we can

define a cumulative energy spectrum which has units of energy per unit mass as

(5.2) EpKq “
1

2
xpuă

Kpx, ω̄qq
2
y

E is the energy of all motion with on length scales l ą 1
K

, however we still want to isolate the motion of a

given length scale. We are then led to differentiate to get the energy spectrum

(5.3) Epkq “
d

dk
Epkq

In Kolmogoroff’s seminal work, the energy spectrum is expressed as a power law

(5.4) Epkq “ C||k||
´n

The mean square of the velocity increment from position x1 to position x is given by

(5.5) xpupx1
q ´ upxqq

2
y “ 2

ż

R3

p1 ´ eik¨px1´xq
qEpkqd3k 9 |x1

´ x|
n´1

This restricts the possible values of n to 1 ă n ă 3. In fact, through intricate derivation presented in

Kolmogoroff’s 1941 paper, it can be shown with no reference to fluids that the energy spectrum of turblence

is a power law with n “ 5{3. An immediate qualitative consequence of this result is that most of the energy

is in the low frequency modes. The question remains: is it possible to at least get a sense of the math which

determines the energy transferring from one frequency mode to another? The answer lies in Fourier Series.

In order to simplify the notation slightly, let F be the Fourier series operator

(5.6) upx, tq “
ÿ

k“||k||PZ

ûkptqeipk¨xq
“ Fpuq

10



Note also that F is a linear operator. Let S “ Fpf ´ ∇pq. In Fourier space, ∇2 is a diagonal operator.

In order to Fourier transform the entire Navier-Stokes equation, we need to express ∇u and Btu in Fourier

space. The time derivative is simple:

(5.7) FpBtuq “ ´
ÿ

k“||k||PZ

k2ûkptqeipk¨xq

Hence, when considering all of the terms of the Navier-Stokes equations except for the nonlinear term, dif-

ferent length scales are unable to influence one another. The complication comes when considering the

non-linearity pu ¨ ∇qu. Fourier expanding the entire term in high dimensions is best left to computers, so I’ll

present only the one dimensional case, i.e. Fpu ¨ Bxuq. The terms separately are expressed as

(5.8) upx, tq “

8
ÿ

k“1

Akptqeikx and Bxupx, tq “

8
ÿ

k“1

ikAkptqeikx “

8
ÿ

k“1

Bkptqeikx

Using the Cauchy Product formula, we express our non-linear term as

(5.9) u ¨ Bxu “

8
ÿ

k“1

k
ÿ

n“1

AnptqeinxBk´nptqeipk´nqx
“

8
ÿ

k“1

eikx
k

ÿ

n“1

AnptqBk´nptq

While this result seems trivial, we actually have unearthed something quite important; there is a massive

amount of interaction between different length scales. In fact, every length scale is interacting with every

other length scale. This interaction is the mechanism through which energy can cascade from large to small

length scales and then dissipate due to viscous forces.

6. PHYSICAL SCALES OF TURBULENCE

So far, turbulence in fluids has been discussed in a (relatively) vague way. In this section, we’ll dive into the

time, space, velocity, and viscosity scales which allow for turbulence. Note that most of the analysis in this

section comes from the book Turbulent Flows by Stephen B. Pope [2]. This section refers at length to eddies

which, like turbulence, are usually loosely defined. Roughly, an eddy is a turbulent motion with an associated

length scale l, which is somewhat coherent over that length scale. There can be smaller eddies inside the

region occupied by a larger eddy. Rather than describing eddies further with words, the following are images

of eddies. These pictures are taken from An Album of Fluid Flow by M. Van Dyke [3].
11



FIGURE 5. Individual eddies are visible in the lower half of the image as deformed ellipses.

There are eddies in the upper half of the image as well but they are occluded. Image credit to

Dimotakis, Lye & Papantoniou, 1981
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FIGURE 6. A large central eddy is present with smaller eddies around the perimeter. This

image was taken in the presence of convection on a rotating cylinder. Image credit to Fultz et

al. 1959

With slightly more intuition about eddies under our belt, we now turn to the math. Considering a flow of

width δ, Kolmogoroff claimed that turbulence can be found up to scales l ! δ. We then ask: what are the

conditions for turbulence to occur in a fluid? One requirement is that inertial forces are stronger than viscous

ones. This leads to the definition of the Reynolds number, a dimensionless quantity characterized by the ratio

of inertial to viscous forces

(6.1) Re “
||u||L

ν

Here, L is a characteristic length scale. When Re is large, turbulence can (and likely will) occur. Let l be the

size of an eddy, and define U “ ||uplq|| as the characteristic speed of the eddy. Dimensional analysis leads

us to τplq “ l
U the characteristic time scale of the eddy. The largest eddies are on the scale l0 „ L, with

U0 „ Uflow. We can then define the Reynolds number for an eddy to be
13



(6.2) Replq “
Uplq ¨ l

ν

The claim to justify the energy cascade and dissipation happening at small length scales is that as the length

l decreases, the Reynolds number also decreases (i.e. viscous forces dominate for small eddies). Noting that

τplq is (typically) small, we can claim that d
dt

„ 1
τ
. Using the fact that kinetic energy goes as U2, we can find

the rate of change of energy R below

(6.3) R “
dE

dt
“
dpU2q

dt
„

U
τ

“
U3

l

Using these scales, we can discuss Kolmogoroff’s hypothesis of isotropy. He (roughly) postulates that while

the direction and shapes of large scale eddies (of size „ l0) are effected by boundary conditions, the chaotic

transfer to smaller scale eddies loses this influence and therefore small scale eddies are isotropic. For refer-

ence, let lIE « 1
6
l0 then @l ă lIE , eddies of size l are isotropic. This is (or should be) a surprising result. It

says that asymmetric features become symmetric ones. For physics students reading this, you may be tempted

to claim that symmetries are a result of some conserved quantity. In this case, the isotropy is statistical in

nature. Additionally, τIE ! τ0 tells us that the motion of isotropic eddies happens in quasistatic equilibrium

with respect to the motion of large scale features. This means that at each time step, the small eddies are able

to adjust to the relatively slow motion of the large scale features.

Fascinatingly, R « τIE leads to using the dissipation rate in the context of dimensional analysis to define the

Kolmogoroff scales η, Uη, and τη, a length scale, velocity scale, and time scale respectively. They are defined

as follows:

(6.4) η ” p
ν3

R
q
1
4 Uη ” pRνq

1
4 τη ”

c

ν

R

To get a sense of the magnitude of these scales, we can compare them to the length of the largest eddies:

(6.5)
η

l0
„ Re´ 3

4
Uη

U0

„ Re´ 1
4

τη
τ0

„ Re´ 1
2

Noting that we are discussing turbulence in the presence of high Reynolds number, and therefore the Kol-

mogoroff scales are small. Lastly, it is worth noticing that by construction Reη “ 1, for system Reynolds

number sufficiently large, Dl such that η ! l ! l0 with characteristic Reynolds number much larger than

one, meaning that eddies of scale l are not effected by viscous forces. Let lDI “ 60η, then we have split
14



the lengths in which eddies live in three regions l0 ă lEI ă lDI ă η. We can now discuss qualitatively the

behavour of eddies in each of these length scales.

6.1. Dissipative Lengths. Eddies in this length scale are subject to relatively strong viscous forces. This

is the regime in which the non-elastic collisions of particles dissipating energy as heat and sound are most

relevant. This regime has low Reynolds number, and motivated the (until now) mysterious subscript lDI

which denotes the beginning of the dissipation interval (DI). Eddies in this regime have characteristic length

in the interval rη, lDIs. The factor of 60 involved in calculating lDI is a rough estimate from experimental

results, not a derived quantity.

6.2. Inertial Lengths. Eddies in this scale are sufficiently large so as to ignore viscous forces. Their motion

is therefore mostly driven by inertial forces (hence the unimaginative name). Again, we have an inertial

interval (IE) motivating the subscript lIE . This regime is contains the smallest length scales where turbulence

can ’freely’ live without being subject to much dissipation. Eddies whose lengths are in the interval rlIE, lDIs

are in the inertial scale. We will see that energy comes from larger length scales and passes through the

inertial scale before being dissipated at smaller scales.

6.3. Larger Lengths. Eddies and other fluid motions at scales larger than lIE include features such as mean

flow and large eddies. This kind of motion is well characterized by a gust of wind; while there are many

small scale features in this phenomenon, the advection of air on the scale of kilometers certainly falls into

this large scale bucket. Such motion also contains the majority of the energy of the system (this is compatible

with the energy spectrum discussed earlier 5.4 with 1 ă n ă 3.

7. CONCLUSION

Throughout this paper, we have seen turbulence presented through a variety of points of view. First, as

a statistical process through the lens of dynamical systems. We explored examples of mixing and chaos

in a discrete dynamical system, notions of which are present in any discussion of turbulence. Through

experimental results, turbulent flow was then shown to have reproducible time averaging behaviour. This

property was expressed mathematically using ergodic results. Proceeding with Fourier analysis, we saw that

the energy spectrum follows a power law in Fourier space. Fourier expanding the PDE itself showed that the

non-linear term is the contributor to mixing of different energy scales, a process which is also characteristic of

turbulence. Finally, we examined the length scales of eddies, separating the regimes in which turbulent flow

resides, and regimes where energy is dissipated. With all of this in mind, we can find a non-rigorous answer

to the motivating question ’what is turbulence’. Turbulence is a non-linear, chaotic and ergodic motion, in

which the energy of any length scale is dependent on the energies of all other scales, and is most prevalent in

non-dissipative regimes. Additionally, turbulence is isotropic and statistically reproducible over sufficiently

long time scales. The energy spectrum of a turbulent motion follows a power law Epkq9k´ 5
3 . There is, of
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course, much more to be said on the topic than what has been presented in this paper, and I highly recommend

reading the books the information was sourced from.
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