
MATH 248: ASSIGNMENT 6: SOLUTIONS

Remark. This document contains solutions to the problems in the sixth assignment. I have

also sprinkled in a few exercises, which I hope you will find engaging.

The problems in this assignment use the following three theorems

Green’s Theorem. Let D be a simple region and let C be its boundary. Suppose

P : D → R and Q : D → R are of class C1. Then∫
C+

P dx+Qdy =

∫
D

Qx − Py dx dy

Where we integrate around the boundary curve with positive orientation.

In the setting of Green’s theorem, any counter-clockwise parametrization of the boundary

curve is positively oriented.

Stokes’ Theorem. Let S be an oriented surface defined by a one-to-one parametrization

Φ : D ⊂ R2 → S, where D is a region to which Green’s theorem applies. Let ∂S denote

the oriented boundary of S and let F be a C1 vector field on S. Then∫
S

curl(F) · dS =

∫
∂S

F · ds

Gauss’ Divergence Theorem. Suppose that W be a closed and bounded region in R3.

Let ∂W be its oriented boundary, and let F be a smooth vector field defined on all of W .

Then ∫
W

div(F) dV =

∫
∂W

(F · n) dS.

Where n is the outer normal to the boundary of W .

From the statement of the Stokes’ theorem it is clear that whenever we wish to apply Stokes’

theorem to a surface S, we will need to have some parametrization of S ready. Additionally,

in the applications of Gauss’s divergence theorem we will need a parametrization of the

boundary of the region W .

Problem 1. Let D be a region for which Green’s Theorem holds. Suppose u is harmonic;

that is,

(1) uxx(x, y) + uyy(x, y) = 0, for all (x, y) ∈ D
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Prove that ∫
∂D

uydx− uxdy = 0

Solution. From the statement of the problem, we know that we can apply Green’s Theorem

to
∫
∂D

uydx− uxdy. We set P = uy and Q = ux. We obtain∫
∂D

uydx− uxdy =

∫
D

−uxx − uyy dx dy = −
∫
D

uxx + uyy dx dy = 0

Where we have set the integral equal to zero since the integrand is zero everywhere in the

disk. This completes the solution. y

Problem 2. Suppose p ∈ D is such that BR(p) ⊂ D, and suppose that u is continuous in

D and satisfies Laplace’s equation (1) on D − {p}. Assume that∫
∂D

uy dx− ux dy = 0

and prove that

u(p) =
1

2πR

∫
∂BR(p)

u ds.

Hint: consider I(ρ) = 1
ρ

∫
∂Bρ(p)

u ds, for 0 < ρ ≤ R, using Green’s Theorem to deduce that
d
dρI(ρ) = 0, and then calculate limρ→0 I(ρ) = 2πu(ρ).

Solution. First we define

I(ρ) =
1

2πρ

∫
∂Bρ(p)

u ds

We should think of the quantity I(ρ) as the average value of u over the circle ∂Bρ(p). Since

we are integrating over a circle, we can write I(ρ) in terms of an iterated integral using polar

coordinates (x, y) = (p1 + ρ cos θ, p2 + ρ sin θ), where p = (p1, p2).

(2) I(ρ) =
1

2πρ

∫ 2π

0

u(p1 + ρ cos θ, p2 + ρ sin θ)ρ dθ =
1

2π

∫ 2π

0

u(p1 + ρ cos θ, p2 + ρ sin θ) dθ

Intuition. Before we continue with the solution, let’s sketch out our strategy so that we

know where we are going. The goal of the problem is to show that I(ρ) = u(p), for all p.

One way to show that a differentiable function f : [0, R]→ R is identically a constant c is

to prove that f ′ is identically zero on (0, R) (so that f is constant) and that f(0) = c.

To prove that I(ρ) = u(p), we will first prove that ρ 7→ I(ρ) is a differentiable function,

that I ′(ρ) = 0 for all ρ > 0, and that I(ρ) is continuous up to ρ = 0 where it satisfies

I(0) = u(p).

It turns out that Green’s function and the fact that∫
∂D

uy dx− ux dy = 0

will play a key role in proving that I ′(ρ) = 0.
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The fact that I(ρ) is differentiable follows from the following theorem, which gives us a

sufficient condition to “bring derivatives” into the integral sign:

Theorem. Let f : [a, b] × [c, d] → R be a differentiable function such that ∂
∂yf(x, y) is

integrable over [a, b]× [c, d]. Then

d

dy

∫ b

a

f(x, y) dx =

∫ b

a

∂

∂y
f(x, y) dx

Proof. First we remark that the fundamental theorem of calculus tells us that for each

pair y1 < y2 in [c, d], we have

f(x, y2)− f(x, y1) =

∫ y2

y1

∂

∂y
f(x, y) dy

and integrating the above equation over [a, b], we obtain∫ b

a

f(x, y2) dx−
∫ b

a

f(x, y1) dx =

∫ b

a

∫ y2

y1

∂

∂y
f(x, y) dy dx

But now, since we assume that ∂
∂yf(x, y) is integrable over [a, b]× [c, d], it is also integrable

over [a, b] × [y1, y2], and so Fubini’s theorem applies and we may switch the order of

integration ∫ b

a

f(x, y2) dx−
∫ b

a

f(x, y1) dx =

∫ y2

y1

∫ b

a

∂

∂y
f(x, y) dx dy

Fixing y1 and differentiating with respect to y2, another application of the fundamental

theorem of calculus implies that

d

dy2

∫ b

a

f(x, y2) dx =

∫ b

a

∂

∂y
f(x, y2) dx

which (after setting y2 = y) is what we wanted to show. �

Applying this theorem to I(ρ) given by (2), we deduce that

(3) I ′(ρ) =
1

2π

∫ 2π

0

ux(p1 + ρ cos θ, p2 + ρ sin θ) cos θ + uy(p1 + ρ cos θ, p2 + ρ sin θ) sin θ dθ

Now we recall the definition of a line integral: if γ : [a, b]→ R2 is a parametrized curve with

components γ(t) = (γ1(t), γ2(t)), then∫
γ

P (x, y) dx+Q(x, y) dy =

∫ b

a

P (γ(t))γ′1(t) +Q(γ(t))γ′2(t) dt

Since the mapping θ 7→ (p1 + ρ cos θ, p2 + ρ sin θ) parametrizes ∂Bρ(p), we can write∫
∂Bρ

P dx+Qdy =

∫ 2π

0

Q(p1 +ρ cos θ, p2 +ρ sin θ) cos θ−P (p1 +ρ cos θ, p2 +ρ sin θ) sin θ dθ
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Applying this to (3), we see that

I ′(ρ) =
1

2π

∫
∂Bρ(p)

ux dy − uy dx

Remark. The key part of this argument is to recognize that ux dy−uy dx is somehow hidden

inside of

ux(p1 + ρ cos θ, p2 + ρ sin θ) cos θ + uy(p1 + ρ cos θ, p2 + ρ sin θ) sin θ dθ

Perhaps this can be made more obvious if we write the preceeding expression as

ux(· · · ) cos θdθ︸ ︷︷ ︸
dy

−uy(· · · ) (− sin θ dθ)︸ ︷︷ ︸
dx

The idea for the rest of the solution can be summarized nicely in a picture:

p ∂Bρ(p)

∂D

In the above figure, ∂D is the (oriented boundary) of the entire region D, ∂Bρ(p) is the

oriented boundary of the disk Bρ(p) of radius ρ centered at p. Let Ω be the shaded region

in the above figure; that is Ω = D − Bρ(p). We want to use Green’s theorem to conclude

that
∫
∂Bρ(p)

ux dy − uy dx = 0. To do this, we note that ux and uy are differentiable inside

of the shaded region Ω (since Ω doesn’t contain the point p, u is harmonic on Ω), and so we

may apply Green’s theorem (with −uy = P and ux = Q). However, note that we need to

have Bρ(p) ⊂ D, or else ∂Ω will not be ∂D − ∂Bρ(p).

∫
Ω

uyy + uxx dx dy =

∫
∂Ω

ux dy − uy dx =

∫
∂D

ux dy − uy dx−
∫
∂Bρ(p)

ux dy − uy dx

Here we have used the fact that ∂Ω = ∂D − ∂Bρ(p), where here the minus sign in front of

∂Bρ(p) denotes the reverse orientation. Since uxx + uyy = 0 inside of Ω, we deduce that∫
∂D

ux dy − uy dx−
∫
∂Bρ(p)

ux dy − uy dx = 0 =⇒ I ′(ρ) =

∫
∂Bρ(p)

ux dy − uy dx = 0

since we assume that
∫
∂D

ux dy − uy dx = 0. Thus we have shown that I(ρ) = constant, as

long as ρ is small enough that Bρ(p) ⊂ D.
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It remains to prove that limρ→0 I(ρ) = u(p), and (by the remarks in the box labelled “Intu-

ition”) it will follow that I(ρ) = u(p) for all ρ. We recall equation (2):

I(ρ) =
1

2π

∫ 2π

0

u(p1 + ρ cos θ, p2 + ρ sin θ) dθ

To show that I(ρ)→ u(p) as ρ→ 0, we need to pick some ε > 0, and then find some δ > 0

such that ρ < δ implies that |I(ρ)− u(p)| < ε. Thus, let us fix some ε > 0.

Since u is continuous at p, there exists a δ such that

(4) |u(p+ x)− u(p)| < ε whenever ‖x‖ < δ

Now choose ρ < δ. Then write

I(ρ)− u(p) =
1

2π

∫ 2π

0

u(p1 + ρ cos θ, p2 + ρ sin θ)− u(p1, p2) dθ

where we have used the fact that u(p1, p2) = 1
2π

∫ 2π

0
u(p1, p2) dθ. Now we take absolute

values of the above equation and use the fact that
∣∣∫ f dθ∣∣ ≤ ∫ |f | dθ to set up an inequality:

|I(ρ)− u(p)| =≤ 1

2π

∫ 2π

0

|u(p1 + ρ cos θ, p2 + ρ sin θ)− u(p1, p2)| dθ

Now since ‖(ρ cos θ, ρ sin θ)‖ = ρ < δ, we can deduce from (4) that

1

2π

∫ 2π

0

|u(p1 + ρ cos θ, p2 + ρ sin θ)− u(p1, p2)| dθ < 1

2π

∫ 2π

0

ε dθ = ε

and so

|I(ρ)− u(p)| < ε whenever ρ < δ.

This proves that limρ→0 I(ρ) → u(p), and since we proved that I ′(ρ) is identically 0 (for

Bρ(p) ⊂ D), we deduce that I(ρ) = u(p) for all ρ small enough that Bρ(p) ⊂ D. This

completes the solution. y

Problem 3. Define B =
{

(x, y) : x2 + y2 ≤ 1
}

, and for all δ > 0, define

Bδ =
{

(x, y) : x2 + y2 ≤ δ
}
.

Suppose f is a continuous function and ‖∇f‖ ≤ 1 on B. Suppose that

fxx + fyy = ex
2+y2 , in B − {0}.

Use the boundedness of ∇f to show that

lim
δ→0

∫
∂Bδ

fy dx− fx dy = 0.

Use this fact and Green’s theorem to evaluate∫
∂B

fy dx− fx dy.
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Solution. This problem is similar to Problem 10. I give a thorough solution to Problem 10,

and so my solution to this problem will be more concise.

Pick some δ ≤ 1; we can rewrite∫
∂Bδ

fydx− fxdy =

∫
∂Bδ

∇f · (−dy, dx)

Now we use the Cauchy-Schwarz inequality, and conclude∣∣∣∣∫
∂Bδ

∇f · (−dy, dx)

∣∣∣∣ ≤ ∫
∂Bδ

‖∇f‖ ds ≤
∫
∂Bδ

ds = 2πδ

Where ds =
√
dx2 + dy2, and where we have used the boundedness of ∇f . Thus we see that

in the limit δ → 0 we have
∫
∂Bδ

fydx− fxdy → 0.

Now pick some 0 < δ < 1, and let Ω denote the region in between Bδ and B:

Ω

We use Green’s Theorem on Ω, and conclude that∫
∂B

fydx− fxdy −
∫
∂Bδ

fydx− fxdy =

∫
∂Ω

fydx− fxdy = −
∫∫

Ω

fxx + fyy dxdy

Where we have chosen the orientation of both ∂B and ∂Bδ to be counterclockwise. Now we

use the fact that we know fxx + fyy = ex
2+y2 , and we obtain∫

∂B

fydx− fxdy =

∫
∂Bδ

fydx− fxdy −
∫∫

Ω

ex
2+y2dxdy

Using polar coordinates, this becomes∫
∂B

fydx− fxdy =

∫
∂Bδ

fydx− fxdy −
∫ 2π

0

∫ 1

δ

er
2

r dr

The integral on the right can be explicitly evaluated∫ 2π

0

∫ 1

δ

exp
(
r2
)
r dr = π

∫ 1

δ

2rer
2

dr = π(e− eδ
2

)

and so we obtain ∫
∂B

fydx− fxdy =

∫
∂Bδ

fydx− fxdy − π(e− eδ
2

)
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Now this is true for all δ, so we can let δ → 0, and then the first term on the right hand side

vanishes, and so we obtain ∫
∂B

fydx− fxdy = −π(e− 1)

This completes the solution. y

Problem 4. Evaluate the integral
∫
S

(∇×F) ·dS, where S is the portion of a sphere defined

by x2 + y2 + z2 = 1, and x+ y + z ≥ 1, and where F = r× (i + j + k), r = xi + yj + zk, by

observing that ∫
∂S

F · dr =

∫
∂Σ

F dr

for any other surface Σ with the same boundary as S. By picking Σ appropriately, the new

surface integral
∫

Σ
(∇× F) · dS may be easy to compute. Show that this is the case if Σ is

taken to be the portion of the plane x+ y + z = 1 inside the circle ∂S.

Solution. First we observe that
∫
∂S

F · dr =
∫
∂Σ

F · dr for any Σ which shares the same

boundary as S. This is obvious because if Σ and S share their boundary, then ∂S and ∂Σ

are equal as curves, and so
∫
∂S

g · dr =
∫
∂Σ

g · dr, for any choice of g.

Next, we apply Stokes’ theorem to the two surface integrals
∫
S

(∇×F) ·dS and
∫

Σ
(∇×F) ·dS

to conclude that

(5)

∫
S

(∇× F) · dS =

∫
∂S

F · dr =

∫
∂Σ

F · dr =

∫
Σ

(∇× F) · dS

We have used Stokes’ theorem in the first and third equality. Equation (5) gives us some

flexibility in computing
∫
S

(∇ × F) · dS. We want to pick a new surface Σ with a simple

parametrization and with the property that ∇× F can be expressed nicely in terms of the

chosen parametrization. Let us consider the following figure representing the region S; we

show next to S a natural choice for Σ.

i + j + k

S

i + j + k

Σ

It is clear from the above figure that if we choose Σ to have the orientation so that its

outer normal points in the direction i + j + k, then Σ and S will the same boundary. In

words, we can describe Σ as the region inside the plane x + y + z = 1 contained inside the

boundary circle of S. The normal vector to the surface Σ is a constant vector field which is

n = (i + j + k)/
√

3 at every point on the surface.
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The rest of the solution is fairly straightforward: we will simply compute
∫

Σ
(∇× F ) · dS.

We now compute ∇× F. Note that F = r× (i + j + k), which is

(xi + yj + zk)× (i + j + k) = (y − z)i + (z − x)j + (x− y)k

Then we compute the curl of this vector field (show this)[
∂

∂x
i +

∂

∂y
j +

∂

∂z
k

]
× [(y − z)i + (z − x)j + (x− y)k] = −2(i + j + k)

Since
∫

Σ
∇× F · dS =

∫
Σ

(∇× F ) · n dS, and n = (i + j + k)/
√

3, we deduce that∫
Σ

(∇× F ) · n dS =

∫
Σ

−2√
3

(i + j + k) · (i + j + k) dS = −2
√

3

∫
Σ

dS = −2
√

3(area of Σ)

Thus our solution will be complete if we can compute the area of Σ. Note that in the above

calculations all we need to know about Σ was that it had a constant outward normal vector

field. There are a few ways we could proceed to compute the area of Σ.

(i) Parametrize Σ in terms of 2-dimensional region S by a smooth function Φ : D → Σ.

Then write ∫
Σ

dS =

∫
D

|Φu × Φv| dS

Where Φu and Φv are the first order derivatives of Φ. In this problem, we will first

parametrize the plane x + y + z = 1 by means of a map Φ : R2 → R3, and then we

will find which points in the domain get mapped to Σ.

(ii) Argue that Σ is really a disk, and use the fact that the area of a disk is πr2, where r

is its radius. This strategy only requires us to find the radius of ∂Σ, which shouldn’t

be too hard.

I prefer the second method, but it is pretty special since it uses the fact that ∂Σ is a circle.

In other problems the second method would not work.

For the first method, consider the linear transformation R3 → R3 defined by the matrix

(u, v, w) 7→ 1√
6

(u, v, w)


1 1 −2
√

3 −
√

3 0
√

2
√

2
√

2


Since the rows of this matrix form an orthonormal basis, this matrix is orthogonal, and so it

preserves the inner product on R3. Note that it maps the u-v plane to the plane orthogonal

to i + j + k passing through the origin. It follows that the map

(u, v) 7→ 1√
6

(u, v)

(
1 1 −2
√

3 −
√

3 0

)
+ p
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parametrizes the plane orthogonal to i + j + k passing through the point p. Since we know

that the plane x+ y + z = 1 passes through the point p = (1/3, 1/3, 1/3), we deduce that

(6) (u, v) 7→ 1√
6

(u, v)

(
1 1 −2
√

3 −
√

3 0

)
+ (1/3, 1/3, 1/3)

Call this map Φ : R2 → R3. Then Φ parametrizes the plane containing Σ. Now we need

to find the region D such that the map defined by (6) maps D onto Σ. We know that Σ is

defined as the set of all points satisfying x + y + z = 1 and x2 + y2 + z2 ≤ 1. Since every

point (x, y, z) in the image of the map defined by (6) satisfies x+ y+ z = 1, we only need to

find those points which satisfy x2 + y2 + z2 ≤ 1. We set up the equation

[
1√
6

(u, v)

(
1 1 −2
√

3 −
√

3 0

)
+ (1/3, 1/3, 1/3)

]
·

 1√
6


1

√
3

1 −
√

3

−2 0


(
u

v

)
+


1/3

1/3

1/3


 ≤ 1

Simplifying, we obtain

(u, v)

(
1 0

0 1

)(
u

v

)
+ 1/3 ≤ 1 =⇒ u2 + v2 ≤ 2

3

Thus we see that the disk D =
{

(x, y) : u2 + v2 ≤ 2/3
}

gets mapped (in a one-to-one fash-

ion) to Σ. Furthermore, since the map we used to parametrize Σ is an orthogonal linear

transformation composed with a translation, it preserves areas (since translations and or-

thgonal transformations preserve areas), and so we conclude that the area of Σ is the area

of D, which is just πr2 = 2π/3. For an alternate argument that the area of Σ is the area of

D, we conclude from our parametrization Φ : D → Σ that∫
Σ

dS =

∫
D

|Φu × Φv| dS

Since Φu = (1/
√

6, 1/
√

6,−2/
√

6) and Φv = (1/
√

2,−1/
√

2, 0) at every point, and they are

orthogonal unit vectors, we deduce that |Φu × Φv| is identically 1. Thus∫
Σ

dS =

∫
D

dS = 2π/3

Now we return to the equation on a previous page to conclude that∫
S

(∇× F ) · n dS =

∫
Σ

(∇× F ) · n dS = −2
√

3

[
2π

3

]
=
−4π√

3

Which is our final answer. I leave the alternate strategy (ii) I proposed as an exercise.
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Exercise. Prove that Σ is indeed a circle by showing that every plane intersects a sphere

in a disk. Prove this first in the case where the plane is normal to the vector k, and

then use a rotation matrix to prove the general case. Find the radius of Σ by finding the

midpoint of Σ. Hint: the midpoint must lie on the line parallel to i + j + k, because both

the sphere and the plane are invariant under rotations about i + j + k.

I include a few more exercises that you can do if you want to practice some of the techniques

used in this solution.

Exercise.

(1) Find a parametrization Φ : R2 → R3 for the plane x − 2z + y = 3. Choose Φ so

that its first order derivatives Φu(u, v) and Φv(u, v) form an orthonormal basis of

the plane x − 2z + y = 3 at each point (u, v). Hint: Let Φ be a map of the form

(u, v) 7→ (u, v)A + t, where A is a matrix and t is a fixed vector. What can you

deduce about the tangent vectors Φu and Φv in terms the matrix A?

(2) Let Ω be a closed and bounded domain in R2, and suppose that the integral
∫

Ω
dS

exists (so that we can define an area for Ω). What is the area of Φ(Ω) in terms of

Ω?

Exercise. Let Φ : R2 → R3 be a map of the form (u, v) 7→ (u, v)A+ t, where A is a 2× 3

matrix and t is a fixed vector in R3. Let Ω be a closed and bounded domain in R2, and

suppose that the integral
∫

Ω
dS exists. What is the area of Φ(Ω) in terms of Ω? Under

what conditions on Ω and Φ is the area of Φ(Ω) equal to 0?

y

Problem 5. For a surface S and a fixed vector v, prove that

2

∫∫
S

v · n dS =

∫
∂S

(v × r) · ds

where r(x, y, z) = (x, y, z).

Solution. The strategy behind this problem is very simple. First it is clear that the vector

field v × r is very smooth (it component functions are linear combinations of x,y, and z),

and so we may apply Stokes’ theorem to write∫
∂S

(v × r) · ds =

∫∫
S

[∇× (v × r)] · n dS.

The rest of the solution will show that

[∇× (v × r)] = 2v

and so we will obtain ∫
∂S

(v × r) · ds = 2

∫∫
S

v · n dS.
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To show that [∇× (v × r)] = 2v is not too hard. We begin with

v × r = (v2z − v3y, v3x− v1z, v1y − v2x)

Then

[∇× (v × r)]1 =
∂

∂y
(v1y − v2x)− ∂

∂z
(v3x− v1z) = 2v1

similar computations show that [∇× (v × r)]2 = 2v2 and [∇× (v × r)]3 = 2v3, so that we

have

[∇× (v × r)] = 2v

and using the remarks at the beginning of the solution, we conclude that∫
∂S

(v × r) · ds = 2

∫∫
S

v · n dS.

y

Problem 6.

(a) Show that F = −r/ ‖r‖3 is the gradient of f(x, y, z) = 1/r, where r =
√
x2 + y2 + z2.

(b) What is the work done by the force F = −r/ ‖r‖3 in moving a particle from a point

r0 ∈ R3 to “∞”, where r(x, y, z) = (x, y, z).

Solution. We want to show that ∇(1/r) = F. This is a straightforward computation: we

know that

∇(1/r) =
∂

∂x

(
1

r

)
i +

∂

∂y

(
1

r

)
j +

∂

∂z

(
1

r

)
k

And now the chain rule for differentiation implies that

∇(1/r) =
∂

∂r

(
1

r

)
∂r

∂x
i +

∂

∂r

(
1

r

)
∂r

∂y
j +

∂

∂r

(
1

r

)
∂r

∂z
k

We compute
∂

∂r

(
1

r

)
= − 1

r2

∂r

∂x
=
x

r

∂r

∂y
=
y

r

∂r

∂z
=
z

r

and so

∇(1/r) =
−r
‖r‖3

since r = xi + yj + zk and ‖r‖ = r.

We note one subtlety: F(x, y, z) = ∇(1/r) for all x, y, z ∈ R3−{0}, and F(x, y, z) is undefined

at (x, y, z) = 0. In fact, it is easy to see that lim(x,y,z)→0 F(x, y, z) diverges, so that the vector

field F(x, y, z) cannot be extended to a vector field on all of R3. Now we move on to part

(b) of the problem. We use the following definition of work of a vector field F along a curve

c:

work of F along c =

∫
c

F · ds

Our strategy is the following: We will prove that work W (r0, r1) done in travelling from

r0 to r1 is independent of the path c used to travel from r0 to r1. Then we will compute
11



W (r0, r1) as a function of r1, and show that the limit limr1→∞W (r0, r1) converges. This

will be our answer for part (b).

Let c : [0, 1]→ R3 − {(0, 0, 0)} and be a curve which has c(0) = r0 and c(0) = r1. Then∫
c

F · ds =

∫ 1

0

F(c(t)) · c′(t) dt

Now we write F as the gradient of f(x, y, z) = 1/r(x, y, z).∫ 1

0

F(c(t)) · c′(t) dt =

∫ 1

0

∇f(c(t)) · c′(t) dt

Then the chain rule tells us that ∇f(c(t)) · c′(t) = d
dtf(c(t)), and so∫

c

F · ds =

∫ 1

0

d

dt
f(c(t)) dt

The fundamental theorem of calculus kicks in, and allows us to conclude that∫
c

F · ds =

∫ 1

0

d

dt
f(c(t)) dt =

1

‖r1‖
− 1

‖r0‖

This proves that W (r0, r1) is independent of the curve c. Furthermore, it is clear that as

‖r1‖ → ∞, we have

lim
r1→∞

W (r0, r1)→ − 1

‖r0‖
Thus the work done by F in moving a particle from r0 to ∞ is −1/ ‖r0‖. Note that this

work is negative, which can be understood physically as the fact that F is attractive (so that

it requires energy to go to ∞). y

Problem 7. Let

F =
−GmMr

‖r‖3

be the gravitational force field defined in R3 − {0}.

(a) Show that div(F) = 0.

(b) Show that F 6= curl(F) for any C1 vector field G on R3 − {0}.

Solution. For simplicity, set GmM = 1 (this does not affect the important parts of this

problem in any way). Let F = (F1, F2, F3). Then

∂

∂x
F1(x, y, z) =

∂

∂x

(
x

(x2 + y2 + z2)3/2

)
=

1

(x2 + y2 + z2)3/2
− 3x2

(x2 + y2 + z2)5/2

Similar results hold for the y and z derivatives (simply replace x by y or z in the above

equation), and we conclude that

∂

∂x
F1 +

∂

∂y
F2 +

∂

∂z
F3 =

3

(x2 + y2 + z2)3/2
− 3(x2 + y2 + z2)

(x2 + y2 + z2)5/2
= 0

Which is what we wanted to show.
12



Part (b) requires a little thought. How can we show that F 6= curl(G), for all possible vector

fields G? One approach is to find a property that every vector field of the form curl(G)

shares, and the show that F doesn’t have this property. One basic property of vector fields

of the form curl(G) is that they can be used in Stokes’ theorem: namely, if S is an oriented

surface with oriented boundary ∂S, then∫∫
S

curl(G) · n dA =

∫
∂S

G · ds

In particular, if S is a surface with no boundary, then∫∫
S

curl(G) · n dA = 0

Thus if we can find some boundaryless surface S such that

(7)

∫∫
S

F · n dA 6= 0

then we will prove that F is not the curl of another vector field G. A natural choice for a

boundaryless surface is the unit-sphere S2 centered at the origin. The outer normal vector

to the surface of S2 is just r:

Remark. The (intuitively obvious) fact that r is the normal vector to S2 can be proved

in a few ways. First, we could consider the parametrization of the sphere

(θ, φ) 7→ (cos θ sinφ, sin θ sinφ, cosφ)

(see the end of this document if this confuses you). Then we could compute the cross

product of the two tangent vectors to this surface, and show that it points in the same

direction as (cos θ sinφ, sin θ sinφ, cosφ). I leave this method as an exercise.

The other way we could prove this fact is by noting that the unit sphere is defined by

the equality 〈r, r〉 = 1. In other words, S2 is the level set of the function f(r) = 〈r, r〉,
and so it follows that n(r) is parallel to the gradient ∇f(r) = 2r. Requiring that n(r) is

normalized yields n(r) = r.

Since F = −r/ ‖r‖3, the surface integral in (7) becomes quite simple:∫∫
S2

F · n dA = −
∫∫

S2

r · r
‖r‖3

dA = −
∫∫

S2

1

‖r‖
dA = −

∫∫
S2

dA = −4π

Where we have used the fact that ‖r‖ ≡ 1 on S2, and the fact that the area of S2 is 4π.

Since −4π 6= 0, this proves that F cannot be the curl of a vector field G. y

Problem 8. Evaluate the surface integral
∫∫
S
F·n dA, where F(x, y, z) = i+j+z(x2+y2)2k,

and S is the surface of the cylinder x2 + y2 ≤ 1, 0 ≤ z ≤ 1.

13



Solution. First lets look at a picture of S, which we write as a union of three pieces

S CBA

In terms of the sets A,B and C, we can write∫
S

F · n dA =

∫
A

F · n dA+

∫
B

F · n dA+

∫
C

F · n dA

Now on A and B, the outer normal vectors are +k and −k, respectively. We conclude that∫
A

F · n dA =

∫
A

z(x2 + y2)2 dA =

∫
A

(x2 + y2)2 dA

Where we have used the fact that z ≡ 1 on A. Parametrizing the disk with polar coordinates

(r, θ) 7→ (r cos θ, r sin θ, 1), we deduce that∫
A

(x2 + y2)2 dA =

∫ 1

0

∫ 2π

0

r4 r dr dθ =
π

3

We do a similar computation for the integral over B.∫
B

F · n dA = −
∫
B

z(x2 + y2)2 dA = 0

Where we have used the fact that z ≡ 0 on B.

Next, we turn to the integral over C. First we observe that the surface of the cylinder is

defined by the equation x2+y2 = 1, which is a level set of the function f(x, y, z) = x2+y2. We

know that the normal vector n(x, y, z) to a level set of a function f is parallel to ∇f(x, y, z).

It follows that the normal vector on C is given by n(x, y, z) = xi + yj. This vector is

normalized since x2 + y2 = 1 on C. Now we plug this into the surface integral over C∫
C

F · n dA =

∫
C

x+ y dA

We parametrize C by the following map [0, 1]×[0, 2π]→ R3, (z, θ) 7→ (cos θ, sin θ, z). The Ja-

cobian of this linear transformation is 1, because the two tangent vectors are (− sin θ, cos θ, 0)

and (0, 0, 1), and since they are orthogonal unit vectors their cross product is also a unit

vector. We deduce∫
C

F · n dA =

∫
C

x+ y dA =

∫ 1

0

∫ 2π

0

cos θ + sin θ dθ, dz = 0

Since
∫ 2π

0
cos θ dθ =

∫ 2π

0
sin θ dθ = 0. Combining all of our results, we conclude∫

S

F · n dA =
π

3
14



There is another way to solve this problem. We invoke Gauss’ Divergence theorem which

states that ∫
S

F · n dA =

∫
Ω

div(F) dV

where Ω is the solid cylinder. We parametrize Ω with cylindrical coordinates

(r, θ, z) 7→ (r cos θ, r sin θ, z) (r, θ, z) ∈ [0, 1]× [0, 2π]× [0, 1]

A simple calculation shows that the Jacobian of this mapping is r. We calculate

div(F) =
∂

∂x
(1) +

∂

∂y
(1) +

∂z(x2 + y2)2

∂z
= (x2 + y2)2

Then, in terms of our cylindrical coordinates, we have∫
Ω

div(F) dV =

∫ 1

0

∫ 2π

0

∫ 1

0

r4r dr dθ dz = 2π

∫ 1

0

r5 dr =
π

3

So both ways to solve the problem give the same answer. y

Exercise. This exercise explores a result we used in Problems 7 and 8. Prove the following:

Theorem. If f : Rn → R is a differentiable function such that f(a) = c and ∇f(a) 6= 0,

then prove that the normal vector n(a) to the (n − 1)-dimensional surface defined by

the equation f(x) = c is parallel to ∇f(a); that is, show that n(a) = λ∇f(a) for some

non-zero λ ∈ R. In the proof, assume the implicit function theorem.

Hints. Use the implicit function theorem to conclude a local parametrization of the surface

f(x) = c. More precisely, use the theorem to show that there are two open sets U ⊂ Rn−1

and V ⊂ Rn such that 0 ∈ U and a ∈ V , and a differentiable map Φ : U → V such that

f(Φ(x1, · · · , xn−1)) = c for all (x1, · · · , xn−1) ∈ U .

and f(0) = a. Furthermore, show that we may assume that the rank of DΦ is n− 1.

(a) Pick δ small enough that (−δ, δ)n−1 ⊂ U . Consider the n− 1 curves γi : (−δ, δ)→ V

defined by γi(t) = Φ(0 + tei).

(b) Since Φ has maximum rank, prove that the tangent vectors
{
γ′1(0), · · · , γ′n−1(0)

}
span

an (n− 1)-dimensional subspace (called the tangent space at a to the surface defined

by f(x) = c).

(c) Prove that n(a) · γ′i(0) = 0 for each i = 1 · · · , n− 1. (Here use the fact that the curves

γi remain inside the surface). Deduce that
{
γ′1(0), · · · , γ′n−1(0),n(a)

}
forms a basis

for Rn.

(d) Show that ∇f(a)·γ′i(0) = 0 for each i by considering the rate of change of t 7→ f(γi(t)).

Deduce that we must have ∇f(a) = λn(a) for some λ. Hint: if not then ∇f(a) =

n(a) + v for some v which is orthogonal to every vector in
{
γ′1(0), · · · , γ′n−1(0),n(a)

}
.
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Problem 9. Suppose that F is tangent to the closed surface S = ∂W of a region W . Prove

that ∫∫∫
W

div(F) dV = 0.

Solution. The thing we are trying to prove is certainly plausible: if we accept the interpre-

tation of F as the vector field representing the velocities in a fluid, then
∫∫∫

W
div(F) dV

represents the amount of fluid which diverges from the region W . If F is everywhere tangent

to the surface ∂W , then it is intuitively true that no fluid can flow in or out, so the divergence

should be zero.

Luckily, it is not hard for us to make the preceeding argument more precise. Gauss’ Diver-

gence theorem naturally applies to this problem, and we conclude that∫∫∫
W

div(F) dV =

∫∫
∂W

F · n dV

Since F is tangent to ∂W , it is orthogonal to n, that is, F · n = 0 everywhere on ∂W . Then

it is immediate that ∫∫∫
W

div(F) dV =

∫∫
∂W

F · n dV = 0

which is what we wanted to show. y

Problem 10. Suppose that f is a continuous function in R3 − (0, 0, 0) and suppose that

‖∇f(X)‖ ≤ 1

‖X‖
, fxx(X) + fyy(X) + fzz(X) =

1

‖X‖2
, for all X ∈ R3 − (0, 0, 0).

Denote Br =
{
‖X‖2 ≤ r2

}
for r > 0. Show that

lim
r→0

∫
∂Br

∇f · dS = 0.

Use this and the Divergence Theorem to evaluate∫
∂B1

∇f · dS = 4π.

Solution. The rough outline for my solution is:

(i) Prove that limr→0

∫
∂Br
∇f · dS = 0.

(ii) Use the divergence theorem to conclude that∫
∂B1

∇f · dS −
∫
∂Br

∇f · dS =

∫∫
B1−Br

div(∇f) dV

Since ∂B1 ∪ ∂Br is the boundary of B1 − Br and the outer normal of B1 − Br on ∂Br is

actually the inner normal of Br on ∂Br (which explains the minus sign in the second term
16



above). The figure below shows the region B1 −Br in blue:

(iii) Use part (i) to take the limit r → 0 in part (ii) to conclude that

(8)

∫
∂B1

∇f · dS =

∫
B1

∆f dV

where ∆f = fxx + fyy + fzz.

(iv) Use the fact that ∆f(X) = 1/ ‖X‖2 to evaluate the integral (8).

The first part of our solution is showing that limr→0

∫
∂Br
∇f · dS = 0. We will use the fact

that ‖∇f(X)‖ ≤ 1/ ‖X‖.

Intuition. Why does limr→0

∫
∂Br
∇f · dS = 0 follow from ‖∇f(X)‖ ≤ 1/ ‖X‖? The

surface area of the ball of radius r is ∼ r2. and the absolute value of the integrand is

bounded above by 1/r. Thus the integral is at least ∼ r, and so when r → 0 the integral

vanishes. We prove this more rigourously below.

We first approximate∣∣∣∣∫
∂Br

∇f(X) · dS
∣∣∣∣ ≤ ∫

∂Br

|∇f(X) · n| dS ≤
∫
∂Br

‖∇f(X)‖ ‖n‖ dS =

∫
∂Br

‖∇f(X)‖ dS

Where we have used the fact that
∣∣∫ f dV ∣∣ ≤ ∫ |f | dV in the first inequality, and we have

used the Cauchy-Schwarz inequality in the second inequality. In the final equality, we have

used the fact that ‖n‖ = 1. Since

‖∇f(X)‖ ≤ 1

‖X‖

and ‖X‖ = r on ∂Br, we deduce that for all X ∈ ∂Br we have ‖∇f(X)‖ ≤ 1/r and thus∫
∂Br

‖∇f(X)‖ dS ≤
∫
∂Br

1

r
dS =

1

r

∫
∂Br

dS =
1

r

[
4πr2

]
= 4πr

Where we have used the fact that the surface area of a sphere is 4πr2. Combining all of

these estimates, we deduce that

0 ≤
∣∣∣∣∫
∂Br

∇f(X) · dS
∣∣∣∣ ≤ 4πr

and so when we take r → 0, we must have limr→0

∫
∂Br
∇f(X) · dS = 0 by the “squeeze

theorem.” This completes the first part of our solution.
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For the second part, we refer to the discussion in (ii) at the beginning of the solution and to

the divergence theorem to write

(9)

∫∫
B1−Br

div(∇f) dV =

∫
∂B1

∇f · dS−
∫
∂Br

∇f · dS

Using the fact that div(∇f(X)) = 1/ ‖X‖2 (since div(∇f(X)) = ∆f(X)), we can write the

left hand side as ∫∫
B1−Br

1

‖X‖2
dV

Now we use spherical coordinates to evaluate this integral, writing it as an iterated integral∫ 1

r

∫ π

0

∫ 2π

0

1

ρ2

[
ρ2 sinφ

]
dθ dφ dρ =

∫ 1

r

1 dρ

∫ π

0

∫ 2π

0

sinφdθ dφ = 4π [1− r]

I trust that the reader is familiar with spherical coordinates (if not, see the end of this

document). Plugging this result back into (9) we conclude that

4π [1− r] =

∫
∂B1

∇f · dS−
∫
∂Br

∇f · dS

Now when we take r → 0 the second term on the right vanishes (we proved this in the first

part of the solution!) so

4π =

∫
∂B1

∇f · dS

as we wanted to show. y

Attention. On the next page I include information about spherical coordinates, in case

the reader wants to refresh his/her knowledge of them.
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Spherical coordinates. I include this box since spherical coordinates are used multiple

times in this assignment.

A particular parametrization which frequently occurs is the parametrization of the sphere

and the ball known as spherical coordinates. For completeness, this parametrization of the

sphere S2 is a map Φ : [0, 2π]× [0, π]→ S2 defined by

Φ(θ, φ) = (sinφ cos θ, sinφ sin θ, cosφ)

The following figure might help visualize what this parametrization “looks like”

(2π, 0)

(2π, π)
(0, π)

(0, 0)

Φ

Using this parametrization, we can use the change of variables formula for parametrized

surfaces to rewrite a surface integral
∫
S2 f dS as∫

S2

f dS =

∫ π

0

∫ 2π

0

f(Φ(θ, φ)) |Φθ(θ, φ)× Φφ(θ, φ)| dθ dφ

A simple calculation shows us that

|Φθ(θ, φ)× Φφ(θ, φ)| = |sinφ| = sinφ,

where we are allowed to remove the absolute value signs since sinφ ≥ 0 when φ ∈ [0, π].

A simple adjustment turns this parametrization into a parametrization Σ : [0, 1]× [0, 2π]×
[0, π]→ B1 of the unit ball. Namely,

Σ(ρ, θ, φ) = (ρ cos θ sinφ, ρ sin θ sinφ, ρ cosφ)

Using this formula, we can use another change of variables theorem to rewrite the integral∫
B1 f dV as ∫

B1

f dS =

∫ 1

0

∫ 2π

0

∫ π

0

f(Σ(ρ, θ, φ)) |detDΣ(ρ, θ, φ)| dφ dθ dρ

A simple calculation shows that |detDΣ(ρ, θ, φ)| = ρ2 sinφ.

We note one small subtlety. The change of variables formula for integrals is usually stated:

Let A and B be bounded domains in Rn, if Σ : A → B is a smooth one-to-one and onto

function (that is it is a smooth bijection) and f : B → R is an integrable function, then∫
B

f dV =

∫
A

f ◦ Σ |detDΣ| dV

The parametrization we use for the unit ball is not one-to-one (show this) and so, a priori,

we cannot apply the change of variables theorem. The next exercise treats this subtlety.
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Exercise. Let Σ : [0, 1] × [0, 2π] × [0, π] → B1 be the parametrization of the unit ball

defined on the previous page.

(a) Prove that if we restrict Σ to the domain (0, 1]×(0, 2π)×(0, π), then it is a one-to-one

function. Furthermore, prove that detDΣ is strictly positive on this set.

(b) Let A = Σ((0, 1]× (0, 2π)× (0, π)). Then A ⊂ B1. Try to imagine what this subset

looks like.

(c) Prove that if f is any integrable function defined on the unit ball then∫
A

f dV =

∫
B1

f dV

To do this, assume that
∫
B1
f dV =

∫
B1−A f dV +

∫
A
f dV , and show that B1 − A

can be covered by open rectangles of arbitrarily small volume, so that
∫
B1−A f = 0

for all integrable f .

(d) Apply the following change of variables theorem (and Fubini’s theorem to get the

iterated integral!) to deduce that∫
B1

f dV =

∫ 1

0

∫ 2π

0

∫ π

0

f(Σ(ρ, θ, φ))ρ2 sinφ, dφ dθ dρ

Theorem. Let A ⊂ Rn be an open set and Σ : A→ B a continuously differentiable

bijection such that detDΣ(x) 6= 0 for all x ∈ A. If f : B → R is integrable, then∫
B

f dV =

∫
A

(f ◦ Σ) |det Σ| dV

Attention. On the next page I include a somewhat challenging exercise for those students

who are interested.
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Exercise. The goal of this exercise is to strengthen the statement of Green’s theorem.

Prove the following:

Theorem. Let Ω ⊂ R2 be a bounded region with oriented boundary ∂Ω; suppose that

Green’s theorem applies to Ω. Suppose there is a continuously differentiable bijection

Φ : Ω → Λ, with detDΦ > 0. Suppose further that Φ|∂Ω maps ∂Ω onto ∂Λ. Prove that

Green’s theorem also applies to Λ.

Proof. In the proof, we label points in Ω by coordinates (u, v), we label points in Λ by

coordinates Φ(u, v) = (x(u, v), y(u, v)).

(a) Pick two C1 functions P : Λ→ R and Q : Λ→ R. Show that∫
∂Λ

P (x, y) dx+Q(x, y) dy =

∫
∂Ω

[P (x, y)xu +Q(x, y)yu] du+ [P (x, y)xv +Q(x, y)yv] dv

(b) Apply Green’s theorem to the pair of functions P (x, y)xu+Q(x, y)yu and P (x, y)xv+

Q(x, y)yv to conclude that the above integral is equal to∫
Ω

∂P (x, y)

∂u
xv +

∂Q(x, y)

∂u
yv −

∂P (x, y)

∂v
xu −

∂Q(x, y)

∂v
yu du dv

(c) Use the chain rule to conclude that the above integral is equal to∫
Ω

[
∂Q(x, y)

∂x
− ∂P (x, y)

∂y

]
(xuyv − xvyu) du dv

(d) Use the fact that detDΦ > 0 and the change of variables formula to conclude that

the above integral is equal to
∫

Λ
∂Q
∂x −

∂P
∂y dx dy, and thus∫

∂Λ

P (x, y) dx+Q(x, y) dy =

∫
Λ

∂Q

∂x
− ∂P

∂y
dx dy

Which is what we want to show.

�

What we are showing here is that Green’s theorem is a property of domains in R2 which

is preserved under diffeomorphisms (a diffeomorphism is a continuously differentiable bi-

jection with a differentiable inverse). This means that if we take any shape Ω and deform

it in a smooth fashion, we do not change the conclusion of Green’s theorem.
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