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Abstract

We study the question as to when the closed convex hull of the graph of a K-convex map equals
its K-epigraph. In particular, we shed light onto the smallest cone K such that a given map has
convex and closed K-epigraph, respectively. We apply our findings to several examples in matrix
space as well as to convex composite functions.
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1 Introduction

Motivation In a recent paper, Burke et al. [8, Corollary 9] show that the closed convex hull of
the set D :=

{
(X, 1

2XX
T ) | X ∈ Rn×m

}
is given by

convD =

{
(X,Y ) ∈ Rn×m × Sn

∣∣∣∣ Y � 1

2
XXT

}
.

Here, ‘�’ is the Löwner partial ordering [12] on the symmetric matrices Sn induced by the positive
semidefinite cone Sn+ via ‘A � B if and only if A−B ∈ Sn+’. At second glance, the set D ⊂ Rn×m×Sn
is simply the graph of the matrix-valued map F : X ∈ Rn×m 7→ 1

2XX
T ∈ Sn; and convD in (1)

then appears to be a ‘generalized epigraph’ of F where the partial ordering on the image space
Sn (induced by Sn+) plays the role of the ordinary ordering of R (induced by R+) for scalar-valued
functions.

More generally, given a map F : E1 → E2 between two (Euclidean) spaces E1 and E2 and a
cone K ⊂ E2, we can order E2 via ‘y ≥K z if and only if y− z ∈ K’. In view of the above identity,
the natural question that arises is the following: When is

conv (gphF ) = {(x, y) | y ≥K F (x)} (1)

valid? Clearly, this can only hold if the set on the right, which will later be called the K-epigraph of
F , is itself closed and convex, in which case we say that F is K-closed and K-convex, respectively,
or closed and convex, with respect to (w.r.t.) K, respectively.

Related work The study of K-convexity has a long tradition in convex analysis and is now
part of many textbooks, e.g. [2,19]: Borwein [3] pursued an ambitious program of extending most of
convex analysis to cone convex functions including conjugacy, subdifferential analysis, and duality,
laying out much of the groundwork. Kusraev and Kutateladze [14] take this idea to an even more
general setting by considering convex operators with values in arbitrary ordered vector spaces.
Pennanen [17] develops a deep theory of generalized differentiation for graph-convex mappings
(these are called convex correspondences in [14]) which contains some results on K-convexity, highly
relevant to our study. One of the most important features of a K-convex map F is the fact
that the composition g ◦ F with a convex function g, which is increasing with respect to the
ordering induced by K, is convex; a fact that has been well observed and utilized widely in the
literature [4–6,10,11,17].
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Road map and contributions We start our study in Section 2 with the necessary tools from
convex and variational analysis. In Section 3, we formally introduce and expand on the central
notions of K-convexity and K-closedness. In particular, in Sections 3.1-3.3 we characterize the
functions which are convex w.r.t. a given subspace, half-space and polyhedral cone, respectively.
In Section 3.4, we elaborate on Pennanen’s characterization of the dual cone of the smallest closed,
necessarily convex (Proposition 11) cone with respect to which a given F is convex. We extend
this in Section 3.5 to study the smallest, necessarily closed and convex (Proposition 11) cone with
respect to which F is convex and closed. Section 4 is fully devoted to the question as to when
(1) holds. Theorem 31 in Section 4.1 provides a characterization for (1), which consitutes one
of the main workhorses for the the rest of Section 4. Section 4.2 is mainly devoted to necessary
conditions for (1). Partly mimicking the scalar case (Theorem 37), in Section 4.2.2 we present
necessary conditions based on affine K-minorization and K-majorization. Section 4.3, in turn,
provides sufficient conditions. Section 4.4 presents different examples of K-convex maps by which
we illustrate the theory developed in Section 3 and, more importantly, Section 4. In particular, we
apply our findings to the following maps:

• F : X ∈ Rn×m 7→ 1
2XX

T ∈ Sn;

• F : X ∈ Sn++ → X−1 ∈ Sn (inverse matrix);

• F : X ∈ Sn 7→ λ(X)1 ∈ Rn (spectral map);

• F : E→ Rm where Fi is convex for all i = 1, . . . ,m (component-wise convex).

Most of the criteria worked out in the previous sections for the validity of (1) are brought to bear
directly or indirectly here.

Section 5 taps into the composite framework alluded to above, where, primarily, we study the
following question: given a vector-valued map F and a (closed, proper) convex function g such
that g ◦ F is convex, does there exist a cone K such that F is K-convex and g is increasing in a
K-related ordering?

Notation: In what follows, E denotes a Euclidean space, i.e. a finite-dimensional real inner product
space with inner product denoted by 〈·, ·〉. Given a set S ⊂ E, we denote its closure, convex hull,
closed convex hull, and convex conical hull by cl S, convS, convS and coneS, respectively. For a
vector u ∈ E, we denote its (convex) conical hull by R+u, and R++u = {λu | λ > 0}. The indicator
function δS : E→ R ∪ {+∞} of S ⊂ E is given by δS(x) = 0 if x ∈ S and δS(x) = +∞ otherwise.

2 Preliminaries

Throughout we make use of the relative topology for convex sets [18, §6]. The relative interior
riC of a convex set C ⊂ E is its interior in the subspace topology induced by its affine hull
aff C := {λx+ (1− λ)y | λ ∈ R, x, y ∈ C }. For a convex set C ⊂ E and (any) x0 ∈ C, the
subspace parallel to C is parC := aff C − x0. For convex sets, we have a handy description of the
affine hull.

Lemma 1. Let C ⊂ E be a convex. Then aff C = {αx− βy | α, β > 0, α− β = 1, x, y ∈ C}.

Proof. Set A := {αx − βy | α, β > 0, α − β = 1, x, y ∈ C}. Thus aff C ⊃ A. Conversely, for
z ∈ aff C, there exist λ ∈ R and x, y ∈ C such that z = λx+ (1− λ)y. If λ ∈ (0, 1), then z ∈ C by
convexity, and hence z = 1 · z − 0 · z ∈ A. If λ > 1, set α := λ > 0, β := λ − 1 > 0, and we get
α − β = 1 and z = αx − βy ∈ A. Finally, if λ < 0, then 1 − λ > 0, and thus (β := λ, α := 1 − λ)
z ∈ A.

Let f : E → R := R ∪ {±∞}. We call f proper if its domain dom f := {x ∈ E | f(x) < +∞}
is nonempty and f doesn’t take the value −∞. We say that f is convex if its epigraph epi f :=
{(x, α) ∈ E× R | f(x) ≤ α} is convex which coincides with the usual definition via a secant condi-
tion

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) ∀x, y ∈ dom f, α ∈ (0, 1),

if f does not take the value −∞. Although pointwise convergence is not a suitable for preservation
of many variational properties, see e.g. [19, Chapter 7], it still preserves convexity in the limit.

Lemma 2. Let {fk : E→ R∪{+∞}} converge pointwise to f : E→ R∪{+∞}, i.e. fk(x)→ f(x)
for all x ∈ E. If fk is convex for all k ∈ N (sufficiently large), then so is f .

1Here λ(X) = (λ1, . . . , λn)T is the vector of eigenvalues of X ∈ Sn in decreasing order.
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Proof. For α ∈ (0, 1) and x, y ∈ E, the convexity of fk yields αfk(x) + (1−α)fk(y) > fk(αx+ (1−
α)y). Passing to the limit k →∞ on both sides gives αf(x) + (1− α)f(y) > f(αx+ (1− α)y).

We call f : E→ R ∪ {+∞} closed or lower semicontinuous (lsc) if epi f is closed. We set

Γ(E) := {f : E→ R ∪ {+∞} | f proper, convex} ,
Γ0(E) := {f ∈ Γ(E) | f closed} .

For f ∈ Γ(E), its closure cl f ∈ Γ0(E) is defined via cl (epi f) = epi (cl f). More generally, given
a convex subset D ⊂ E, we call f D-closed if epi f is closed in the subspace topology induced by
D × R, i.e. f is D-closed if and only if (D × R) ∩ epi f is closed in D × R. On the other hand, we
note that D×R is a metric space, hence closedness is sequential closedness and, in particular, f is
D-closed if and only if

lim inf
k→∞

f(xk) ≥ f(x̄) ∀{xk ∈ D} → x̄ ∈ D.

We define Γ0(D) := {f ∈ Γ(E) | f D-closed} .

Lemma 3. Let f ∈ Γ(E). Then the following are equivalent:

i) f ∈ Γ0(dom f);

ii) f(x) = (cl f)(x) for all x ∈ dom f .

Proof. Since f ∈ Γ0(E), we have

f ∈ Γ0(dom f) ⇐⇒ epi f is closed in dom f × R
⇐⇒ epi f = cl (epi f) ∩ dom f × R
⇐⇒ epi f = epi (cl f) ∩ dom f × R
⇐⇒ f(x) = cl f(x) ∀x ∈ dom f.

Here the first equivalence is simply the definition of Γ0(dom f). The second is due to the fact that
the closed sets in the dom f × R subspace topology are exactly the intersections of closed sets (in
E×R) with dom f ×R. The third one is clear as epi (cl f) = cl (epi f), and the fourth one follows
from elementary considerations.

Remark 4. We point out that f ∈ Γ0(E) implies that f ∈ Γ0(dom f), since the closed set epi f ⊂
E×R intersected with dom f×R is (trivially) closed in the subspace topology induced by dom f×R.
However, the converse statement is not true. Consider for instance δ(0,1) ∈ Γ0((0, 1)) \ Γ0(R), as
(0, 1)× R+ is a closed set in the topology induced by (0, 1)× R, but is not a closed set in R× R.

A nonempty subset K ⊂ E is called a cone if λx ∈ K for all λ ≥ 0 and x ∈ K. If the latter only
holds for all λ > 0, we call K a pre-cone. For instance if K is a convex cone, then riK is a (convex)
pre-cone, use e.g. [18, Corollary 6.6.1]. Combining this with the line segment principle [18, Theorem
6.1] and [18, Theorem 6.3], we find the following result.

Lemma 5. Let K ⊂ E be a convex cone. Then cl K + riK ⊂ riK.

The dual cone of a (pre-)cone K is given by K+ := {v ∈ E2 | ∀u ∈ K : 〈u, v〉 ≥ 0}, and K+ is
referred to as the dual cone. The dual cone is the negative polar cone, i.e. K+ = −K◦. Recall
that convK = (K+)+ =: K++ by the bipolar theorem [19, Corollary 6.21], and that the duality
operation is order reversing. The horizon cone of C ⊂ E is given by C∞ := {u ∈ E | ∃{tk} ↓
0, {xk ∈ C} : limk→∞ tkxk = u}. If C is a nonempty closed, convex set, then C +C∞ = C and for
a cone K, we have K∞ = cl K.

A cone K ⊂ E induces an ordering on E via

y ≥K x :⇐⇒ y − x ∈ K ∀x, y ∈ E.

Lemma 6. If K is a closed and convex cone of E2, then

y ≥K x ⇐⇒ 〈u, x〉 > 〈u, y〉 ∀u ∈ K+.

Proof. By the bipolar theorem [19, Corollary 6.21], we have K++ = K and hence

x >K y ⇐⇒ x− y ∈ K = K++ ⇐⇒ 〈u, x− y〉 > 0 ∀u ∈ K+.
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A cone K ⊂ E is said to be pointed if K ∩ (−K) = {0}. Such a cone induces a partial ordering
when convex.

Lemma 7 (Ordering induced by a pointed cone). Let K ⊂ E be pointed. Then

x = y ⇐⇒ x ≥K y and y ≥K x.

In particular, the relation‘≥K ’ induces partial ordering if K is (pointed and) convex.

Proof. The equivalence is straightforward from pointedness. For a partial ordering, we also need
to see that x ≥K x for all x ∈ E, which is true since 0 ∈ K, and that x ≥K y and y ≥K z implies
x ≥K z, which is true since x− z = x− y + y − z ∈ K, by convexity of the cone.

3 K-convexity and K-closedness

We commence this section with the central definitions of this paper.

Definition 8 (K-epigraphs, K-convexity and K-closedness). Let K ⊂ E2 be a cone and let F : D ⊂
E1 → E2. Then the K-epigraph of F is given by

K-epiF = {(x, y) ∈ D × E2 | F (x) ≤K y } ⊂ E1 × E2. (2)

We say that F is

i) proper if K-epiF 6= ∅ (i.e. D 6= ∅);

ii) K-convex if K-epiF is convex;

iii) K-closed if K-epiF is closed.

For D ⊂ E1 convex and K ⊂ E2 a cone, we point out that F : D → E2 is K-convex if and only if
K is convex and

αF (x) + (1− α)F (y) >K F (αx+ (1− α)y) ∀x, y ∈ D,α ∈ (0, 1).

Moreover, we always have
K-epiF = gphF + {0} ×K. (3)

This has, in particular, the following immediate consequence.

Lemma 9. Let F : D ⊂ E1 → E2 be proper, and K1  K2 ⊂ E2 be cones. Then K1-epiF  
K2-epiF . In particular, there is at most one cone K ⊂ E2 such that K-epiF = conv (gphF ).

In the convex case we can extract the following.

Lemma 10. Let F : D ⊂ E1 → E2 be proper, and let K1 ⊂ K2 ⊂ E2 be convex cones. Then
K2-epiF = K1-epiF + {0} ×K2. In particular, if F is K1-convex, then F is K2-convex.

Proof. This is due to (3) combined with the fact that K1 +K2 = K2 because K1 and K2 are convex
cones.

Given a cone K ⊂ E and its induced ordering, we attach to E a formal largest element +∞• with
respect to that ordering, and set E• := E ∪ {+∞•}. For G : E1 → E•2 its domain is domG :=
{x ∈ E1 : G(x) ∈ E2}. The graph of G is given by gphG := {(x,G(x)) | x ∈ domG}. We adopt
the notions in Definition 8 via the restriction F := G|domG. We record in the next result that
K-closedness and K-convexity requires certain conditions about the underlying cone K.

Proposition 11. Let K ⊂ E2 be a cone, and let F : E1 → E•2 be proper. Then the following hold:

a) If F is K-closed, then K is closed.

b) If F is K-convex, then K is convex.

Proof. a) Let {yk ∈ K} → y and pick x ∈ domF . Then (x, F (x) + yn) ∈ K-epiF for all k ∈ N and
(x, F (x)+yk)→ (x, F (x)+y) ∈ K-epiF as K-epiF is closed. Thus, y ∈ F (x)+y−F (x) = y ∈ K.

b) Let y1, y2 ∈ K,α ∈ (0, 1). For x ∈ domF we hence find (x, F (x) + y1) ∈ K-epiF , and
(x, F (x) + y2) ∈ K-epiF . As K-epiF is a convex, we have (x, F (x) + αy1 + (1− α)y2) ∈ K-epiF ,
and consequently αy1 + (1− α)y2 ∈ K. Thus, K is convex.
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The following proposition shows that a function F : E1 → E•2 is fully determined by its K-epigraph
when K is a pointed cone.

Proposition 12. Let K ⊂ E2 be a pointed cone, and let F,G : E1 → E•2 be proper. Then

K-epiF = K-epiG ⇐⇒ F = G.

Proof. Suppose that K-epiF = K-epiG. In particular, for all x ∈ domF , (x, F (x)) ∈ K-epiF , so
(x, F (x)) ∈ K-epiG, hence x ∈ domG and F (x) >K G(x). Likewise, for all x ∈ domG, we have
x ∈ domF and G(x) >K F (x). Thus domF = domG and for any x ∈ domF = domG we have
F (x) = G(x) by Lemma 7.

Given F : D ⊂ E1 → E2 and u ∈ E2, we define the scalarization 〈u, F 〉 : E1 → R ∪ {+∞} by

〈u, F 〉(x) =

{
〈u, F (x)〉, x ∈ D,
+∞ else.

(4)

We adapt this notion for D = domF if F : E1 → E•2 where E2 is ordered by some cone K. In
this case, note that, for u, v ∈ E1 and α > 0, we have 〈u+ v, F 〉 = 〈u, F 〉 + 〈v, F 〉, 〈αu, F 〉 =
α 〈u, F 〉, and dom 〈u+ v, F 〉 = domα 〈u, F 〉 = domF . Equipped with this concept, the following
proposition gives a characterization of K-epiF (and gphF ) via the epigraphs (and graphs) of
the scalarizations 〈u, F 〉 for u ∈ K+. For u ∈ E2, we use in the following proposition the map
(id, 〈u, ·〉) : (x, y) ∈ E1 × E2 7→ (x, 〈u, y〉).

Proposition 13. Let K ⊂ E2 be a closed and convex cone, and let F : E1 → E•2 be proper. Then:

a) K-epiF =
⋂
u∈K+(id, 〈u, ·〉)−1

(
epi 〈u, F 〉

)
;

b) If K is pointed, then gphF =
⋂
u∈K+(id, 〈u, ·〉)−1

(
gph 〈u, F 〉

)
.

Proof. We deduce from Lemma 6 that

K-epiF = {(x, v) | v ≥K F (x)}
=
{

(x, v)
∣∣ 〈u, v〉 ≥ 〈u, F (x)〉 ∀u ∈ K+

}
=

⋂
u∈K+

(id, 〈u, ·〉)−1
(
epi 〈u, F 〉

)
.

Similarly, if K is pointed, we obtain

gphF = {(x, v) | x ∈ E1, v = F (x)}
= {(x, v) | x ∈ E1, v − F (x) ∈ K ∩ (−K)}

= {(x, v) | x ∈ E1, v ≥K F (x)}
⋂
{(x, v) | x ∈ E1, F (x) ≥K v }

=
⋂

u∈K+

(id, 〈u, ·〉)−1
(
gph 〈u, F 〉

)
.

As an immediate consequence of the latter proposition, one obtains Pennanen’s sufficient condition
for K-closedness [17, Lemma 6.2], which unfortunately excludes functions with domains that are
not closed. We therefore provide the following, stronger version in the next result’s part b) whose
proof is simply a refinement of Pennanen’s proof. Part a) is a refinement of the scalarization
characterization of K-convexity.

Proposition 14. Let K ⊂ E2 be a closed, convex cone, let F : E1 → E•2 be proper. Then:

a) The following are equivalent:

i) 〈u, F 〉 is convex for all u ∈ ri (K+);

ii) 〈u, F 〉 is convex for all u ∈ K+;

iii) F is K-convex.

b) F is K-closed if 〈u, F 〉 is lower semicontinuous for all u ∈ K+ \ {0} and K 6= E2.

In particular, if K 6= E2 and 〈u, F 〉 ∈ Γ0(E1) for all u ∈ K+ \ {0}, then F is K-closed and
K-convex.
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Proof. a) ’i)⇒ ii)’: Let u ∈ K+ \ {0}. Then u is a limit {uk ∈ ri (K+)} → u, and hence 〈u, F 〉 is
a pointwise limit of convex functions 〈uk, F 〉, hence convex by Lemma 2.
’ii)⇒ iii)’: Follows from Proposition 13 a).
’iii)⇒ i)’: Follows from Lemma 6.

b) Assume that F is not K-closed i.e. there exists {(xk, yk) ∈ K-epiF} → (x, y) /∈ K-epiF . Then
x /∈ domF or y − F (x) /∈ K = K++. In the latter case there exists u∗ ∈ K+ such that

〈u∗, y〉 < 〈u∗, F (x)〉 and 〈u∗, yk〉 ≥ 〈u∗, F (xk)〉 ∀k ∈ N. (5)

If x ∈ domF , then necessarily u∗ 6= 0. On other hand, if x /∈ domF , since K+ ) {0} by
assumption, we can choose u∗ 6= 0. All in all, there exists u∗ ∈ K+ \ {0} such that (5) holds. We
hence obtain

〈u∗, F 〉 (x) > 〈u∗, y〉 = lim inf
k→∞

〈u∗, yk〉 ≥ lim inf
k→∞

〈u∗, F 〉 (xk),

and, consequently, 〈u∗, F 〉 is not lsc, which concludes the proof of part b).

We close out this preparatory paragraph with the following useful result.

Lemma 15. Let D ⊂ E1 be nonempty, let F : D → E2, and let (Ki)i∈I be a family of cones of
Ki ⊂ E2. Then (⋂

i∈I
Ki

)
-epiF =

⋂
i∈I

(Ki-epiF ) .

In particular, if F is Ki-closed for all i ∈ I, then F is (∩i∈IKi)-closed. Moreover, if F is Ki-convex
for all i ∈ I then F is (∩i∈IKi)-convex. The latter is an equivalence if Ki is convex for all i ∈ I.

Proof. For any x ∈ domF and y ∈ E2, we have

(x, y) ∈

(⋂
i∈I

Ki

)
-epiF ⇐⇒ y − F (x) ∈

⋂
i∈I

Ki

⇐⇒ ∀i ∈ I : y − F (x) ∈ Ki

⇐⇒ ∀i ∈ I : (x, y) ∈ Ki-epiF

⇐⇒ (x, y) ∈
⋂
i∈I

Ki-epiF .

The addendum follows from the fact that intersection preserves closedness and convexity, and that⋂
i∈I Ki ⊂ Ki, so

⋂
i∈I Ki-convexity implies Ki-convexity for all i ∈ I if these are convex, see

Lemma 10.

3.1 Affine and {0}-convex functions

We extend the notion of affine functions to affine subsets of E, see, e.g., Rockafellar [18, §1] for the
standard case.

Definition 16. Let A ⊂ E be an affine set and let x0 ∈ A. Then a function F : A → E2 is said
to be affine if there exists a linear map L : parA 7→ E2 and a vector b ∈ E2 such that we have
F (x) = L(x− x0) + b for all x ∈ A.

Lemma 17. Let A ⊂ E1 be affine. Then F : A→ E2 is affine if and only if

F (tx+ (1− t)y) = tF (x) + (1− t)F (y) ∀x, y ∈ A, t ∈ (0, 1). (6)

Proof. Assume first that (6) holds. Discriminating the three cases t ∈ [0, 1], t > 1 and t < 0, it is
straightforward to show that, in fact, we have

F (tx+ (1− t)y) = tF (x) + (1− t)F (y) ∀x, y ∈ A, t ∈ R. (7)

Now let x0 ∈ A, i.e. parA = A − x0, and define L : parA → E2 by L(x) := F (x + x0) − F (x0).
Using (7), we find that L(tx + (1 − t)y) = tL(x) + (1 − t)L(y) for all x, y ∈ parA and t ∈ R.
Thus, taking y = 0, as L(0) = 0, gives L(tx) = tL(x) for all x ∈ parA and all t ∈ R. Hence,
L(x+ y) = L( 1

2 (2x) + 1
2 (2y)) = 1

2L(2x) + 1
2L(2y) = L(x) + L(y), for all x, y ∈ parA. This implies

that L is linear. Hence, for all x ∈ A and b := F (x0), we have F (x) = L(x − x0) + b. Thus, F is
affine.
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Conversely, if F is affine, then we can write F = L((·)−x0)+b for some linear map L : parA→
E2, x0 ∈ A and b ∈ E2. Then

F (tx+ (1− t)y) = t(L(x− x0) + b) + (1− t)(L(y − x0) + b) = tF (x) + (1− t)F (y),

for all x, y ∈ A and t ∈ R. In particular, this is true for all t ∈ (0, 1).

Proposition 18. Let D ⊂ E1 be nonempty convex. Then the following are equivalent:

i) F : D → E2 is {0}-convex;

ii) There exists an affine function G : aff D → E2 such that F = G|D;

iii) There exists an affine function H : E1 → E2 such that F = H|D.

Proof. ‘i)⇒ii)’: Assuming that F : D → E2 is {0}-convex and letting z ∈ aff D. By Lemma
1, we can write z = αx − βy, for some α, β > 0, α − β = 1, and x, y ∈ D. Suppose z has two
representations of this form, i.e. z = αx−βy = α′x′−β′y′, with α, β, α′, β′ > 0, α−β = α′−β′ = 1,
and x, y, x′, y′ ∈ D. Then ∆ := α + β′(= α′ + β) = 1 + β + β′ > 0. By convexity of D, we find

that α
∆x + β′

∆ y
′ = α′

∆ x
′ + β

∆y ∈ D. Using the {0}-convexity of F , we have α
∆F (x) + β′

∆F (y′) =
α′

∆F (x′) + β
∆F (y). Multiplying by ∆ and rearranging the above terms, we get

αF (x)− βF (y) = α′F (x′)− β′F (y′).

Therefore, we the function G : aff D → E2, G(z) = αF (x) − βF (y) for z ∈ aff D given by
z = αx− βy, α, β > 0, α− β = 1, x, y ∈ D is well-defined.

Now, let z and z′ in D given by z = αx−βy and z′ = α′x′−βy′, with α, β, α′, β′ > 0, α−β = 1,
α′−β′ = 1, and x, y, x′, y′ ∈ D. Let t ∈ (0, 1) and set p := (1−t)z+tz′, as well as a := (1−t)α+tα′

and b := (1− t)β + tβ′. Then a, b > 0 and a− b = 1.
If b = 0, then β = β′ = 0 and α = α′ = 1, so z = x ∈ D and z′ = x′ ∈ D, and thus, using the {0}-

convexity of F , we have G(p) = F (p) = F ((1−t)z+tz′) = (1−t)F (z)+tF (z′) = (1−t)G(z)+tG(z′).
If b 6= 0, then β 6= 0 or β′ 6= 0, hence a, b > 0. Then, we have

p = a

[
(1− t)α

a
x+

tα′

a
x′
]

︸ ︷︷ ︸
∈D

−b
[

(1− t)β
b

y +
tβ′

b
y′
]

︸ ︷︷ ︸
∈D

.

Using this, and recalling the fact that a, b > 0 and a− b = 1, the definition of G yields

G(p) = aF

(
(1− t)α

a
x+

tα′

a
x′
)
− bF

(
(1− t)β

b
y +

tβ′

b
y′
)
.

As F is {0}-convex, we thus infer

G(p) = a
(1− t)α

a
F (x) + a

tα′

a
F (x′)− b (1− t)β

b
F (y)− b tβ

′

b
F (y′)

= (1− t) [αF (x)− βF (y)]︸ ︷︷ ︸
G(z)

+t [α′F (x′)− β′F (y′)]︸ ︷︷ ︸
G(z′)

= (1− t)G(z) + tG(z′).

All in all, by Lemma 17, G is affine.

‘ii)⇒iii)’: Let U := par (aff D), x̄ ∈ aff D and let L : U → E2 be the linear map given by
L(x) := G(x + x̄) for all x ∈ U . Now define H : E1 → E2 by H(u + u′) = L(u − x̄) for all
u ∈ U, u′ ∈ U⊥. Then H is affine, and H(x) = G(x) = F (x) for all x ∈ D.

‘iii)⇒i)’: If there exists H : E1 → E2 affine such that F = H|D, then Lemma 17 in particular yields
G(tx + (1 − t)y) = tG(x) + (1 − t)G(y) for all t ∈ (0, 1) and x, y ∈ D. Hence F (tx + (1 − t)y) =
tF (x) + (1− t)F (y) for all x, y ∈ D, t ∈ (0, 1), and as D is a convex set, F is {0}-convex.

As a simple corollary we get the following result.

Corollary 19. The {0}-convex functions E1 → E2 are exactly the affine functions.
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3.2 Convexity with respect to a (nontrivial) subspace

Using our study on {0}-convexity above, we are now in a position to investigate the functions
which are convex w.r.t. a given (nontrivial) subspace. To this end, observe that for a sub-
space U ⊂ E, the dual (and the polar) cone of U equal the orthogonal complement U⊥ :=
{u ∈ E | 〈u, y〉 = 0 ∀y ∈ U }.

Lemma 20. Let U ⊂ E2 be a nontrivial subspace and let {e1, . . . , er} be a basis of U⊥. Then for
F : D ⊂ E1 → E2, with D ⊂ E1 convex, the following are equivalent:

i) F is U -convex;

ii) 〈u, F 〉 is {0}-convex for all u ∈ U⊥;

iii) 〈ei, F 〉 is {0}-convex for all i = 1, . . . , r.

Proof. ‘i)⇔ii)’: If F is U -convex and since U⊥ is a subspace, by Proposition 14 we find that both
〈u, F 〉 and 〈−u, F 〉 are convex for every u ∈ U⊥. Therefore, 〈u, F 〉 is {0}-convex for all u ∈ U⊥.
In turn, if 〈u, F 〉 is {0}-convex for all u ∈ U⊥, then in particular 〈u, F 〉 is (R+-)convex for all
u ∈ U⊥, so we can use Proposition 14 to conclude that F is U -convex.

‘ii)⇔iii)’: The implication ii)⇒iii) is trivial. In turn, if iii) holds, let u ∈ U⊥, i.e. u =
∑r
i=1 uiei

for some ui ∈ R. By assumption, 〈ei, F 〉 (i = 1, . . . , r) are {0}-convex. Since 〈u, F 〉 (x) =∑r
i=1 ui 〈ei, F 〉 (x) for all x ∈ domF , we find that 〈u, F 〉 is {0}-convex.

Proposition 21. Let U ⊂ E2 be a nontrivial subspace and let F : D ⊂ E1 → E2 with D convex.
Then F is U -convex if and only if there exists an affine map G : aff D → E2 and a function
H : aff D → U such that G|D +H|D = F .

Proof. Suppose that F is U -convex and let p : E2 → U be the orthogonal projection onto U . Define

H : aff D → U, H(x) :=

{
p(F (x)), x ∈ D,
0, else.

Set Ĝ := F − H|D. By Lemma 20 and Proposition 18, 〈u, F 〉|D is the restriction of an affine

function fu : aff D → R for all u ∈ U⊥. However, as H(x) ∈ U (x ∈ E1), we have
〈
u, Ĝ

〉
= 〈u, F 〉

for all u ∈ U⊥. Now, let {e1, . . . , er} be an orthogonal basis of U⊥. Then Ĝ =
∑r
i=1 f

ei
|Dei. Then

G :=
∑r
i=1 f

eiei : aff D → E2 is affine and F = G|D +H|D.
Conversely, suppose that there exists a function H : aff D → U and an affine map G : aff D → E2

such that F = G|D + H|D. Then for u ∈ U⊥ we have 〈u, F 〉 = 〈u, G〉|D, and thus 〈u, F 〉 is {0}-
convex, as 〈u, G〉 is affine on aff D ⊃ D and D is convex. Thus, by Lemma 20, F is U -convex.

3.3 Convexity with respect to a half-space and polyhedral cones

Every (proper) half-space H ⊂ E that is also a cone is of the form H = {x ∈ E | 〈w, x〉 ≥ 0} for
some w ∈ E \ {0}. Clearly, H is (polyhedral) convex and closed with dual cone H+ = R+w.

Proposition 22. Let w ∈ E2 \ {0} and let H = {y ∈ E2 | 〈w, y〉 > 0} be the associated half-space.
Then for F : D → E2 with D ⊂ E1 (nonempty) convex we have:

a) F is H-convex if and only if 〈w, F 〉 is convex.

b) F is H-closed if and only if 〈w, F 〉 is lower semicontinuous.

Proof. a) By Proposition 14 a), F is H-convex if and only if 〈u, F 〉 is convex for all u ∈ ri (H+) =
R++w. However, 〈tw, F 〉 is convex if and only if 〈w, F 〉 is convex for all t > 0.

b) If 〈w, F 〉 is lower semicontinuous, the conclusion that F is H-closed follows with a similar
argument as in a) from Proposition 14 b) observing that H 6= E2 and H+ \ {0} = R++w.

If 〈w, F 〉 is not lower semicontinuous there exists {xk ∈ domF} → x̄ such that 〈w, F 〉 (xk) →
α ∈ R, and α < 〈w, F 〉 (x̄). Now pick r ∈ (α, 〈w, F 〉 (x̄)) and choose ȳ ∈ E2 such that 〈w, ȳ〉 = r
(which is possible as w 6= 0). Then (xk, ȳ) ∈ H-epiF for all k sufficiently large, and (xk, ȳ) →
(x̄, ȳ) /∈ H-epiF . Hence, H-epiF is not closed then.

Proposition 22 combined with Lemma 15 yields the following result on polyhedral cones.

Corollary 23. Let w1, . . . , wl ∈ E \ {0} and let P =
⋂l
i=1Hi with Hi = {x | 〈wi, x〉 ≥ 0}. Then

for F : D → E2 with D ⊂ E1 (nonempty) convex we have:

8



a) F is P -convex if and only if 〈wi, F 〉 is convex for all i = 1, . . . , l.

b) F is P -closed if 〈wi, F 〉 is lower semicontinuous for all i = 1, . . . , l.

3.4 The smallest closed cone with respect to which F is convex

The following result ensures the existence of a smallest closed cone KF with respect to which F is
convex (hence, KF is also convex by Proposition 11) and characterizes its dual cone.

Proposition 24 (The cone KF and its dual). Let D ⊂ E1 be nonempty and convex and let
F : D → E2. Then the following hold:

a) There exists a smallest closed (and convex) cone KF ⊂ E2 with respect to which F is convex,
i.e if F is K-convex and K is closed and convex, then K ⊃ KF .

b) The dual cone of KF from a) is given by K+
F = {u ∈ E2 | 〈u, F 〉 is convex}.

Proof. a) Define KF as the intersection of all closed and convex cones which respect to which
F is convex. Then KF is nonempty (as F is E2-convex and every cone contains 0), closed and
convex, and, by Lemma 15, F is KF -convex. By construction, there is no smaller cone with these
properties.

b) See [17, Lemma 6.1].

3.5 The smallest (closed) cone with respect to which F is convex and
closed

We now investigate how the situation changes in comparison to the study in Section 3.4 when we
are looking for the smallest (by Proposition 11 necessarily closed and convex) cone with respect to
which a function F is convex and closed. Such cone does not need to exist, simply because a given
function F : E1 → E•2 need not be E2-closed. More concretely, for every cone K ⊂ R, the indicator
F := δ(0,1] has K-epiF = (0, 1]×K, which is not closed.

Proposition 25 (The cone K̂F ). Let D ⊂ E1 be nonempty and convex and let F : D → E2 such
that there exists a (necessarily closed and convex) cone K ⊂ E2 with respect to which F is closed
and convex. Then there exists a smallest closed and convex cone K̂F ⊂ E2 such that F is K̂F -closed
and K̂F -convex.

Proof. Follows readily from Lemma 15.

In the spirit of Proposition 24 b), we want to characterize the dual cone of K̂F (if it exists). To
this end, the following lemma is useful.

Lemma 26. Let F : D ⊂ E1 → E2 with D convex (and nonempty). Then the following hold:

a) The set cl {u ∈ E2 | 〈u, F 〉 ∈ Γ0(E1)} is either empty or a closed convex cone.

b) The set {u ∈ E2 | 〈u, F 〉 ∈ Γ0(D)} is a convex cone (in particular nonempty).

Proof. a) Assume nonemptiness, in which case S := {u ∈ E2 | 〈u, F 〉 ∈ Γ0(E1)} is also nonempty.
Then, clearly, S is convex and, consequently, so is cl S. Moreover, for u ∈ cl S and λ ≥ 0 there
exist {uk ∈ S} → u and {λk > 0} → λ and with λkuk ∈ S, hence λu ∈ cl S, and thus cl S is a
closed convex cone.

b) Set K := {u ∈ E2 | 〈u, F 〉 ∈ Γ0(D)}. We first show that K is a cone. To this end, note that
〈0, F 〉 = δD, whose epigraph D×R+ is clearly closed in the topology induced by D×R. Now, for
u ∈ K and λ > 0 observe that epi 〈λu, F 〉 = L−1

λ (epi 〈u, F 〉) for Lλ : (x, α) 7→ (x, α/λ), which is
then closed as the linear preimage of a closed set in the topology induced by D×R. Therefore, K is a
cone. In order prove that K is convex, it hence suffices to show that K +K ⊂ K, see [19, Exercise
3.7]. To this end, let u, v ∈ K and take {(xk, αk) ∈ epi 〈u+ v, F 〉} → (x, α) ∈ D × R. In
particular, we have (xk, αk − 〈v, F (xk)〉) ∈ epi 〈u, F 〉 for all k ∈ N. Let z := lim infk 〈v, F (xk)〉.
W.l.o.g. z = limk 〈v, F (xk)〉 (otherwise go to subsequence), and by D-closedness of 〈v, F 〉, we
find (x, z) ∈ epi 〈v, F 〉, i.e. 〈v, F (x)〉 ≤ z. Moreover, by D-closedness of 〈u, F 〉 we find that
(x, α − z) ∈ epi 〈u, F 〉, hence α ≥ 〈u, F (x)〉 + z ≥ 〈u, F 〉 (x) + 〈v, F 〉 (x). Therefore, (x, α) ∈
epi 〈u+ v, F 〉.
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Proposition 27 (The dual cone of K̂F ). Let F : D ⊂ E1 → E2 with D nonempty and convex. If
K̂F (in the sense of Proposition 25) exists, we have

K̂+
F = cl {u ∈ E2 | 〈u, F 〉 ∈ Γ0(E1)} = cl {u ∈ E2 | 〈u, F 〉 ∈ Γ0(D)}. (8)

Proof. Set Q := {u ∈ E2 | 〈u, F 〉 ∈ Γ0(E1)} and R := {u ∈ E2 | 〈u, F 〉 ∈ Γ0(D)}. From Remark
4, we deduce that Q ⊂ R. Moreover, use [17, Corollary 7.4(ii)], to find 〈u, F 〉 ∈ Γ0(E1) for all
u ∈ ri (K̂+

F ). Consequently, ri (K̂+
F ) ⊂ Q, hence K̂+

F ⊂ cl Q ⊂ cl R. We thus have

R+ = (cl R)+ ⊂ (cl Q)+ ⊂ K̂F . (9)

We now show that F is R+-convex: To this end, first note that 〈u, F 〉 is convex for all u ∈ R. Any
u ∈ cl R is a limit {uk ∈ R} → u, and therefore 〈u, F 〉 is the pointwise limit of convex functions
〈uk, F 〉 , and hence convex (Lemma 2). Moreover, by Lemma 26 b), R is a convex cone, hence
R++ = cl R. Thus, by Proposition 14 a), F is R+-convex.

We now prove that F is also R+-closed: To this end, let {(xk, yk) ∈ R+-epiF} → (x, y). In
particular, there exists {vk ∈ R+} such that F (xk) + vk = yk for all k ∈ N. Moreover, as R+ ⊂ K̂F

(see (9)) and K̂F -epiF is closed (by definition), we have (x, y) ∈ K̂F -epiF , and consequently,
x ∈ D. Thus we can use the fact that, by definition of R, 〈u, F 〉 is D-closed for all u ∈ R, and
hence

〈u, y〉 = lim
k→∞

〈u, yk〉 = lim
k→∞

〈u, F (xk)〉+ 〈u, vk〉︸ ︷︷ ︸
>0

> lim inf
k→∞

〈u, F 〉 (xk) > 〈u, F 〉 (x)

for all u ∈ R. Now, every u ∈ R++ = cl R is a limit {uk ∈ R} → u with 〈uk, y〉 ≥ 〈uk, F (x)〉,
and hence 〈u, y〉 ≥ 〈u, F (x)〉. As u ∈ R++ was arbitrary, this shows that y ≥R+ F (x), and thus
(x, y) ∈ R+-epiF , which shows that R+-epiF is closed and hence F is R+-closed (and R+-convex
as proved earlier). Since R+ ⊂ (cl Q)+ ⊂ K̂F it follows that K̂F = cl R = cl Q, which concludes
the proof.

The natural question as to when closures in the above result are superfluous is addressed now.

Corollary 28. Let F : D ⊂ E1 → E2 with D nonempty and convex and assume that K̂F exists.
Then:

a) K̂+
F = {u ∈ E2 | 〈u, F 〉 ∈ Γ0(D)} if and only if {u ∈ E2 | 〈u, F 〉 ∈ Γ0(D)} is closed.

b) If, for every sequence {xk ∈ D} → x ∈ D (and every x ∈ D), there exists v ∈ ri (K̂+
F ) such

that {〈v, F 〉 (xk)} does not tend to +∞, then {u ∈ E2 | 〈u, F 〉 ∈ Γ0(D)} is closed.

c) If, for all x ∈ D \ riD, there exists a neighborhood Nx of x, and a continuous K̂F -majorant2

of F on Nx ∩D, then {u ∈ E2 | 〈u, F 〉 ∈ Γ0(D)} is closed.

In particular, K̂+
F = {u ∈ E2 | 〈u, F 〉 ∈ Γ0(D)} if D is relatively open (e.g. affine).

Proof. a) Follows readily from Proposition 27.

b) Denote K = {u ∈ E2 | 〈u, F 〉 ∈ Γ0(D)}, which is a convex cone by Lemma 26 b). By
Proposition 27, K̂+

F = cl K. Consider u ∈ cl K. Then 〈u, F 〉 is convex by Lemma 2 and proper
with dom 〈u, F 〉 = D.

Now let x ∈ D and {xk ∈ D} → x ∈ D. Then, by assumption, there exists v ∈ ri (K̂+
F ) = riK

such that {〈v, F 〉 (xk)} is uniformly bounded away from +∞, hence w.l.o.g. we can assume that
〈v, F 〉 (xk)→ r < +∞. As 〈v, F 〉 ∈ Γ0(D), we have −∞ < 〈v, F 〉 (x) ≤ r < +∞. Using Lemma 5
(and that riK is a pre-cone), we have u + tv ∈ riK, and hence 〈u+ tv, F 〉 ∈ Γ0(D) for all t > 0.
Thus

lim inf
k→∞

〈u, F 〉 (xk) = lim inf
k→∞

〈u+ tv, F 〉 (xk)− t 〈v, F 〉 (xk)

= lim inf
k→∞

〈u+ tv, F 〉 (xk)− tr

> 〈u+ tv, F 〉 (x)− tr.

Letting t→ 0 gives lim infk→∞ 〈u, F 〉 (xk) > 〈u, F 〉 (x), hence 〈u, F 〉 ∈ Γ0(D) as desired.

c) Let {xk ∈ D} → x ∈ D. We will show that 〈v, F 〉 (xk) does not tend to +∞, for any v ∈ ri (K̂+
F ),

which by b) then gives the desired conclusion.

2We refer the reader to Definition 38 for a formal introduction.
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First suppose that x ∈ riD. Let v ∈ ri (K̂+
F ) = ri {u ∈ E2 | 〈u, F 〉 ∈ Γ0(D)}. Then 〈v, F 〉

is convex with dom 〈v, F 〉 = D, and hence 〈v, F 〉|riD is continuous, see e.g. [18, Theorem 10.1].

Now, as {xk ∈ D} → x ∈ riD, for k sufficiently large, we have xk ∈ riD. Therefore, 〈v, F 〉 (xk)→
〈v, F 〉 (x) < +∞ as k →∞, Hence 〈v, F 〉 (xk) does not tend to +∞.

In turn, for x ∈ D \ riD let Gx be the continuous K̂F -majorant of F on Nx ∩ D and let
v ∈ ri (K̂+

F ). Then, as Gx(y) >K F (y) for all y ∈ Nx ∩ D, hence 〈v, Gx〉 (y) > 〈v, F 〉 (y) for all
y ∈ Nx ∩ D. Since {xk ∈ D} → x, we have that xk ∈ Nx ∩ D for k sufficiently large, and thus
〈v, F 〉 (xk) 6 〈v, Gx〉 (xk). However, Gx is continuous, so 〈v, Gx〉 is continuous as well, hence
〈v, Gx〉 (xk)→ 〈v, Gx〉 (x) < +∞, thus 〈v, F 〉 (xk) does not tend to +∞.

We close out this section by clarifying the question as to when KF and K̂F coincide.

Proposition 29 (KF = K̂F ). Let D ⊂ E1 be nonempty and convex and let F : D → E2. Then
KF = K̂F if and only if F is KF -closed.

Proof. By definition of the respective cones, we always have K̂F ⊃ KF . But if F is KF -closed
then, K̂F ⊂ KF , by definition of K̂F , and hence equality holds.

In turn, if F is not KF -closed, then KF 6= K̂F , since F is K̂F -closed by definition.

4 When is conv (gphF ) = K-epiF ?

This section is devoted to our main question as to when the closed convex hull of the graph of a
function equals its K-epigraph.

4.1 A characterization via the horizon cone

We commence this subsection with the central link between the graph and the K-epigraph of a
function. To obtain an elegant proof we briefly tap into Fenchel conjugacy [18]. To this end, realize
that every set S ⊂ E is uniquely determined through its indicator function δS : E → R ∪ {+∞}
which is paired in duality with the support function σS : E → R ∪ {+∞}, σS(x) = supy∈S 〈x, y〉
via the conjugacy relations δ∗S = σS = σconv S , hence σ∗S = δconv S , and thus conv δS = δconv S .

Proposition 30. Let K ⊂ E2 be a closed, convex cone and let F : E1 → E•2 be proper, K-closed
and K-convex. Then

K-epiF = cl
(
conv (gphF ) + {0} ×K

)
.

Proof. We first observe that Using (3) and the set-additivity for support functions we have

σK-epiF = σgphF+{0}×K = σgphF + σ{0}×K = σconv (gphF ) + δE1×K◦ .

Moreover, the assumptions on F imply that K-epiF is closed and convex, and hence

δK-epiF =
(
σconv (gphF ) + δE1×K◦

)∗
= cl

(
δconv (gphF ) � δ{0}×K

)
= δ

cl
(

conv (gphF )+{0}×K
).

Here the second identity uses [18, Theorem 16.4], while the third holds due to the identity δA�δB =
δA+B for any two sets.

Note that Proposition 30 could also be proved without Fenchel conjugacy, using more elementary
facts about closures and convex hulls of sums of sets.

We are now in a position to state our first main theorem.

Theorem 31. Let K ⊂ E2 be a closed convex cone and let F : E1 → E•2 be K-convex and K-closed.
Then

K-epiF = conv (gphF ) ⇐⇒ {0} ×K ⊂ [conv (gphF )]∞.

Proof. Suppose that K-epiF = conv (gphF ). It follows from Proposition 30 that

conv (gphF ) + {0} ×K ⊂ cl
(
conv (gphF ) + {0} ×K

)
= conv (gphF ).

Taking the horizon cone on both sides and using [19, Exercise 3.12], yields {0}×K ⊂ [conv (gphF )]∞.
Now suppose that {0} ×K ⊂ [conv (gphF )]∞. Then

conv (gphF ) + {0} ×K ⊂ conv (gphF ) + [conv (gphF )]∞ = conv (gphF ).
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where the last identity uses e.g. [19, Theorem 3.6]. Therefore, again using Proposition 30, we obtain

K-epiF = cl (conv (gphF ) + {0} ×K) ⊂ conv (gphF ) ⊂ K-epiF .

We will frequently make use of the following trivial observation.

Remark 32. We observe that the closure operation in [conv (gphF )]∞ is superfluous, i.e.

[conv (gphF )]∞ = [conv (gphF )]∞.

We immediately obtain the following sufficient condition.

Corollary 33. Let K ⊂ E2 be a closed, convex cone and let F : E1 → E•2 be K-convex and K-closed
such that {0} ×K ⊂ conv (gphF ). Then K-epiF = conv (gphF ).

Proof. Combine Theorem 31, the fact that {0} ×K is a closed cone, and the fact that the horizon
operation preserves inclusion.

Combining Corollary 33 with Lemma 9 yields the following result.

Corollary 34. Let K be a cone of E2 and let F : E1 → E•2 be proper, and define the closed, convex
cone KF := {u ∈ E2 | (0, u) ∈ [conv (gphF )]∞}. Then

K-epiF = conv (gphF ) ⇐⇒ K = KF = K̂F .

Proof. First, letK = KF = K̂F . By definition ofKF = K we hence have {0}×K ⊂ [conv (gphF )]∞.
From Theorem 31 we thus conclude that K-epiF = conv (gphF ).

In turn, assume that K-epiF = conv (gphF ). Then by Theorem 31 we have K ⊂ KF , and
hence conv (gphF ) = K-epiF ⊂ KF -epiF . In addition, {0}×KF ⊂ [conv (gphF )]∞, by definition
of KF . Hence, using (3) and the horizon property of convex sets, we have

KF -epiF = gphF + {0} ×KF ⊂ conv (gphF ) + [conv (gphF )]∞ = conv (gphF ).

Thus, KF -epiF = conv (gphF ) = K-epiF and hence, by Lemma 9, we already have KF =
K. Moreover, as F is K-convex and K-closed, we have K̂F ⊂ K, thus K̂F -epiF ⊂ K-epiF =
conv (gphF ). Using the fact that conv (gphF ) ⊂ K̂F -epiF (as K̂F -epiF is a closed convex set
containing gphF ), we conclude that K̂F -epiF = K-epiF , hence, again by Lemma 9, K = K̂F .

4.2 Necessary conditions

In this subsection we discuss necessary conditions for conv (gphF ) = K-epiF .

4.2.1 Necessary conditions on the dual cone

Proposition 35. Let K ⊂ E2 be a cone and F : E1 → E•2 proper such that K-epiF = conv (gphF ).
Then K \ {0} ⊂ {u ∈ E2 | epi 〈u, F 〉 = conv (gph 〈u, F 〉)}. In particular, K ⊂ K̂+

F .

Proof. First, note that the conclusions are trivally true for K = {0}. Otherwise let u ∈ K \
{0}. By Theorem 31, we have that (0, u) ∈ [conv (gphF )]∞. By Remark 32 there hence exist
{(xk, yk) ∈ conv (gphF )} and {λk} ↓ 0 such that λk(xk, yk)→ (0, u). With κ := dimE1 × E2 and
Carathéodory’s theorem [18, Theorem 17.1], for i = 1, . . . , κ+ 1, we find sequences {xik ∈ domF}k
and {αik}k such that

∑κ+1
i=1 α

i
k = 1 for all k ∈ N as well as

xk =

κ+1∑
i=1

αikx
i
k and yk =

κ+1∑
i=1

αikF (xik) ∀k ∈ N.

Now let t ≥ 0. Then tk := t λk

‖u‖2 ↓ 0 and

tkxk → 0 and tk

κ+1∑
i=1

αik 〈u, F 〉 (xik) = t
〈λkyk, u〉
‖u‖2

→ t.

Thus, for t ≥ 0, we have (0, t) ∈ [conv (gph 〈u, F 〉)]∞ = [conv (gph 〈u, F 〉)]∞. Hence {0} × R+ ⊂
[conv (gph 〈u, F 〉)]∞, so by Theorem 31, epi 〈u, F 〉 = conv (gph 〈u, F 〉). This shows

K \ {0} ⊂ {u ∈ E2 | epi 〈u, F 〉 = conv (gph 〈u, F 〉)} ⊂ {u ∈ E2 | 〈u, F 〉 ∈ Γ0(E1)},

the first inclusion of which is the first claim of the proposition. The second claim now follows as
K ⊂ cl ({u ∈ E2 | 〈u, F 〉 ∈ Γ0(E1)}) = K̂+

F , by Proposition 27.
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We readily derive the following necessary condition on the dual cone.

Corollary 36. Under the assumptions of Proposition 35, we have K ⊂ K+.

Proof. By Corollary 34, K = K̂F , and by Proposition 35, K ⊂ K̂+
F = K+.

4.2.2 Affine majorization and minorization

For motivational purposes, we start this subsection with the scalar case (K = R+), where the
question whether the closed convex hull of the graph of a function equals its K-epigraph can
be fully answered via affine majorization. The proof relies, in essence, on a standard separation
argument.

Theorem 37 (The scalar case). Let f ∈ Γ0(E). Then epi f = conv (gph f) if and only if f does
not have an affine majorant on its domain.

Proof. Suppose that there exists (x̄, t̄) ∈ epi f\conv (gph f). In particular, x̄ ∈ dom f , and by
strong separation [18, Corollary 11.4.2], there exists (s, α) ∈ E1 × R such that

〈s, x̄〉+ αt̄ > sup
(x,t)∈conv (gph f)

〈s, x〉+ αt. (10)

Choosing (x, t) := (x̄, f(x̄)), we find that α(t̄ − f(x̄)) > 0, and hence, α > 0. It then follows from
(10) with x ∈ dom f and t = f(x) that 〈s/α, x̄− x〉+ t̄ > f(x). Thus f is majorized on its domain
by the affine map x 7→ − 〈s/α, x〉+ 〈s/α, x̄〉+ t̄, which proves one direction.

To prove the converse implication, suppose now that f has an affine majorant on its domain,
i.e. there exists (a, β) ∈ E × R, such that f(x) ≤ 〈a, x〉 + β =: g(x) for all x ∈ dom f . Now pick
x̄ ∈ dom f . Then (x̄, g(x̄)+1) ∈ epi f , and it hence suffices to show that (x̄, g(x̄)+1) 6∈ conv (gphF ).
Assume, by contradiction, that (x̄, g(x̄) + 1) ∈ conv (gphF ). Then with κ := dimE × R, by
Carathéodory’s theorem [18, Theorem 17.1], for i = 1, . . . , κ+ 1 there exist sequences {ti,k ≥ 0}k∈N
and {xki ∈ dom f}k∈N such that

∑κ+1
i=1 ti,k = 1 and

∑κ+1
i=1 ti,k(xki , f(xki )) →k→∞ (x̄, g(x̄) + 1).

Consequently

g(x̄) + 1 = lim
k→∞

κ+1∑
i=1

ti,kf(xki ) ≤ lim
k→∞

κ+1∑
i=1

ti,kg(xki ) = lim
k→∞

〈
a,

κ+1∑
i=1

ti,kx
k
i

〉
+ β = g(x̄),

which is the desired contradiction and thus concludes the proof.

The questions as to what can be said when f in the above result is only proper and convex, but
not necessarily closed is answered as the opening to Section 4.3.

To start our analysis of the vector-valued case we now formally introduce the notion of K-
minorants and -majorants, respectively.

Definition 38 (K-minorants/-majorants). Let K ⊂ E1 be a cone, and let F : E1 → E•2 be proper.
A function G : E1 → E2 is said to be:

• a K-majorant of F on S ⊂ domF if

G(x)− F (x) ∈ K ∀x ∈ S,

• a K-minorant of F on S ⊂ domF if

F (x)−G(x) ∈ K ∀x ∈ S.

For S = domF , we say that G is a K-minorant of F .

Naturally, in view of the scalar case from Theorem 37, we are mainly interested in the case where
G is an affine function.

For a function F : E1 → E•2, we record that, for a pointed, closed, convex cone K 6= {0} such
that K-epiF = conv (gphF ), there cannot exist an affine K-majorant on the domain F .

Proposition 39. Let {0} ( K ⊂ E2 be a closed, convex, pointed cone and let F : E1 → E•2 be
proper. If K-epiF = conv (gphF ), then F cannot have an affine K-majorant on its domain.
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Proof. By assumption, K-epiF = conv (gphF ). Now, pick u ∈ K \ {0} and define f := 〈u, F 〉.
Then, by Proposition 35, epi f = conv (gph f). Now, assume that F has an affine K-majorant
T on domF . As u ∈ K+ (by Corollary 36), it follows that 〈u, T 〉 is an affine majorant of f on
domF = dom f . This contradicts Theorem 37, which proves the desired result.

It is well known that a proper, convex function posseses an affine (R+-)minorant [1, Theorem 9.20].
In the vector-valued setting, we can fall back on this result to get affine K-minorants for proper
K-convex functions when K is a particular polyhedral cone.

Proposition 40. Let K = {x ∈ E2 | 〈bi, x〉 ≥ 0 ∀i = 1, . . . ,m} with b1, . . . , bm linearly indepen-
dent. If F : E1 → E•2 is K-convex and proper, then F has an affine K-minorant.

Proof. It holds that K+ = cone {b1, . . . , bm}, see e.g. [19, Lemma 6.45]. This cone is pointed by
linear independence of {b1, . . . , bm}, hence −K has nonempty interior, see [19, Exercise 6.22]. Now,
in view of Proposition 14 a), for all i = 1, . . . ,m, the functions 〈bi, F 〉 : E1 → R∪{+∞} are proper,
convex and hence, see e.g. [1, Theorem 9.20], there exist (ci, δi) ∈ E1 × R (i = 1, . . . ,m) such that

〈bi, F (x)〉 ≥ 〈ci, x〉+ δi ∀x ∈ E1, i = 1, . . . ,m. (11)

Now, let A : E1 → E2 be linear such that A(bi) = ci for all i = 1, . . . ,m and let w ∈ −intK. Then
〈w, bi〉 < 0 for all i = 1, . . . ,m, cf. [19, Exercise 6.22]. By positive homogeneity (and since intK
is a pre-cone), there hence exists w̄ ∈ −intK with 〈w̄, bi〉 < δi for all i = 1, . . . ,m. Finally, with
L̄ := A∗ it hence follows

〈bi, F (x)〉 ≥ 〈ci, x〉+ δi ≥
〈
bi, L̄(x)

〉
+ 〈w̄, bi〉 ∀x ∈ E1, i = 1, . . . ,m.

Therefore, for all x ∈ domF , we have F (x) − (L̄(x) + w̄) ∈ K, and x 7→ L̄(x) + w̄ is the desired
affine K-minorant.

We point out that, with slightly more effort, the following stronger conclusion of Proposition 40
can be proven: For every x0 ∈ ri (domF ) there exists a linear operator T : E1 → E2 such that
T (x)− T (x0) ≤K F (x)− F (x0) for all x ∈ domF .

4.3 Sufficient conditions

In this subsection we are primarily concerned with sufficient conditions. We start with some
considerations in the scalar case.

Lemma 41. Let f ∈ Γ(E). Then the following hold:

a) conv (gph cl f) = conv (gph f|ri (dom f)).

b) φ : E→ R is an affine majorant of cl f on dom (cl f) if and only if φ is affine majorant of f
on ri (dom f).

c) If f is (dom f)-closed (hence f ∈ Γ0(dom f)), then φ : E → R is an affine majorant of cl f
on dom (cl f) if and only if φ is affine majorant of f on dom f .

Proof. a) As f(x) = cl f(x) for all x ∈ ri (dom f) ( [18, Theorem 7.4]), we have gph f|ri (dom f) ⊂
gph cl f , and hence conv (gph f|ri (dom f)) ⊂ conv (gph f). To prove the converse inclusion let
(x, cl f(x)) ∈ gph cl f . Invoking [18, Theorem 7.5] (and [18, Theorem 6.1]), we find a sequence
{xk ∈ ri (dom f)} → x with f(xk) → cl f(x). Therefore, gph cl f ⊂ cl (gph f|ri (dom f)) ⊂
conv (gph f|ri (dom f)), and hence, the desired inclusion follows by applying the conv -operator on
both sides.

b) If φ is an affine majorant of cl f on dom (cl f), then φ is an affine majorant of cl f on
ri (dom f) ⊂ dom (cl f), and hence an affine majorant of f on ri (dom f), since f and cl f coincide
on ri (dom f). In turn, if φ is an affine majorant of f on ri (dom f), then for all x ∈ dom (cl f),
since ri (dom (cl f)) = ri (dom f) (see [18, Corollary 7.4.1]), by [18, Theorem 7.5] (and [18, Theorem
6.1]), there exists {xk ∈ ri (dom (cl f))} → x with limk f(xk) = cl f(x). However φ(xk) > f(xk)
and φ is continuous so φ(x) > cl f(x), thus φ is an affine majorant of cl f on dom cl f .

c) By Lemma 3, f(x) = cl f(x) for all x ∈ dom f . Therefore, if φ(x) ≥ cl f(x) for all x ∈
dom (cl f) ⊃ dom f , then φ(x) ≥ f(x) for all x ∈ dom f . In turn, if φ is an affine majorant of f on
dom f ⊃ ri (dom f), then b) shows that φ is an affine majorant of cl f on dom (cl f).

We record some immediate consequences of the foregoing result.
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Corollary 42. Let f ∈ Γ(E). Then the following are equivalent:

i) conv (gph f|ri (dom f)) = cl (epi f);

ii) f has no affine majorant on ri (dom f);

iii) {0} × R+ ⊂ [conv (gph f|ri (dom f))]
∞.

Proof. Observe that epi (cl f) = cl (epi f), hence by Lemma 41 a) we have

i) ⇐⇒ conv (gph cl f) = epi (cl f). (12)

’i)⇔ii)’: By Lemma 41 b), we have that ii) is equivalent to saying that cl f has no affine majorant
on its domain. Therefore, the desired equivalence follows with (12) from Theorem 37 applied to
cl f ∈ Γ0(E).

’i)⇔iii)’: Apply Theorem 31 to cl f and use (12).

Corollary 43. Let f ∈ Γ0(dom f). Then the following are equivalent:

i) conv (gph f) = cl (epi f);

ii) f has no affine majorants on its domain;

iii) {0} × R+ ⊂ [conv (gph f)]∞.

Proof. We observe that f ∈ Γ(E) (by definition of Γ0(dom f)), and that f(x) = cl f(x) for all x ∈
dom f , by Lemma 3. In addition, by Lemma 41, we have conv (gph f |ri (dom f)) = conv (gph cl f).
Thus, we have

conv (gph f) ⊂ conv (gph cl f) = conv (gph f |ri (dom f)) ⊂ conv (gph f),

and hence conv (gph f) = conv (gph f |ri (dom f)). Consequently

i) ⇐⇒ conv (gph f|ri (dom f)) = cl (epi f),

and
iii) ⇐⇒ {0} × R+ ⊂ [conv (gph f|ri (dom f))]

∞.

Moreover, with Lemma 41 we find that

ii) ⇐⇒ f has no affine majorant on ri (dom f).

Therefore, the claimed equivalences follow from Corollary 42.

We now establish sufficient conditions in the vector-valued case, building on the results provided
above. We start with the most general result, and then successively tighten the assumptions to
obtain (weaker but) more handy conditions.

Lemma 44. Let K ⊂ E2 be a (nontrivial) closed, convex cone, and let F : E1 → E•2 be proper,
K-closed and K-convex. Assume that the following hold:

i) There is a nonempty set L ⊂ K ∩ rgeF such that coneL = K;

ii) For every u ∈ L, there exists a (nonempty) convex set Cu ⊂ F−1(R+u) such that fu :=
〈u, F 〉+ δCu ∈ Γ0(Cu) and fu has no affine majorant on its domain.

Then K-epiF = conv (gphF ). In particular, K = K̂F .

Proof. Let u ∈ L\{0}, and let us prove that (0, u) ∈ [conv (gphF )]∞. With the set Cu from ii), we
have fu ∈ Γ0(Cu), hence Corollary 43 yields that {0} × R+ ⊂ [conv (gph fu)]∞. As conv (gph fu)
is convex, we hence have (0, t) + conv (gph fu) ⊂ conv (gph fu) for all t ≥ 0.

Now, let (x, r) ∈ conv (gph fu). Then (x, r + t) ∈ conv (gph fu) for all t ≥ 0, and hence, with
κ := dimE× R, we have

x = lim
n→∞

κ+1∑
i=1

αi,nt xi,nt and r + t = lim
n→∞

κ+1∑
i=1

αi,nt 〈u, F 〉 (x
i,n
t )

for certain xi,nt ∈ Cu and αi,nt ≥ 0 (i = 1, . . . , κ + 1) with
∑κ+1
i=1 α

i,n
t = 1 for all n ∈ N. However,

by ii), there exist γnt > 0 (n ∈ N) such that

κ+1∑
i=1

αi,nt F (xi,nt ) = γnt u ∀n ∈ N.
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Thus, as u 6= 0, we find that

γnt =
〈u, γnt u〉
‖u‖2

=
1

‖u‖2

〈
u,

κ+1∑
i=1

αi,nt F (xi,nt )

〉
=

1

‖u‖2
κ+1∑
i=1

αi,nt 〈u, F 〉 (x
i,n
t )→ r + t

‖u‖2
.

Thus, (x, ru+tu
‖u‖2 ) = (x, r+t‖u‖2u) ∈ conv (gphF ) for all t > 0, i.e. (x, r

‖u‖2u)+R+(0, u) ⊂ conv (gphF ).

Thus {0} × R+u = R+(0, u) = [(x, r
|u|2u) + R+(0, u)]∞ ⊂ [conv (gphF )]∞ for every u ∈ L \ {0}.

And consequently, by i), we have {0} ×K = {0} × coneL ⊂ [conv (gphF )]∞. Thus, by Theorem
31, we have K-epiF = conv (gphF ).

We record an immediate consequence.

Proposition 45. Let K 6= {0} be a closed, convex cone such that F : E1 → E•2 is proper, K-
convex and K-closed. Assume that K = cone (b1, . . . , bN ) for b1, . . . , bN ∈ rgeF , and that, for any
i = 1, . . . , N , there exists a nonempty convex set Cbi ⊂ F−1(R+bi) such that, for all i = 1, . . . , N ,
the function fbi := 〈bi, F 〉+ δCbi is Cbi-closed and does not have any affine majorant on Cbi . Then
K-epiF = conv (gphF ).

Proof. Apply Lemma 44, with L = {b1, . . . , bN}.

To wrap up this section we want to provide a simplified version of Lemma 44 with more restrictive,
but less arduous assumptions. To this end, we need the following lemma.

Lemma 46. Let K ⊂ E2 be a closed, convex cone with K ⊂ K+, and let F : E1 → E•2 be proper,
K-convex and K-closed. Then 〈u, F 〉 ∈ Γ0(E1) for all u ∈ riK.

Proof. We observe from [17, Corollary 7.4(ii)] that 〈u, F 〉 ∈ Γ0(E1) for all u ∈ ri (K+). Thus if
riK ⊂ ri (K+) there is nothing to prove.

Hence, we only need to consider the case riK * ri (K+). Since we assume that K ⊂ K+, by
the definition of the relative topology, this can only hold, if aff K  aff (K+). We note that both
of these sets contain 0, and hence are subspaces of E2. In particular, the orthogonal projection
p : E2 → E2 onto aff K (which is ordered by K) is a linear self-adjoint operator. We define
G : E1 → (aff K)• by

G(x) :=

{
p(F (x)), x ∈ domF,

+∞•, else.

Note that for all α ∈ (0, 1) and x, y ∈ domF , we have αF (x)+(1−α)F (y)−F (αx+(1−α)y) ∈ K.
Hence, as K ⊂ aff K and by linearity of p, for all α ∈ (0, 1) and x, y ∈ domF = domG, we have

αF (x) + (1− α)F (y)− F (αx+ (1− α)y) = αG(x) + (1− α)G(y)−G(αx+ (1− α)y).

Therefore, G is K-convex. Moreover, if we denote D := domG and H := F − G : D → aff (K),
then

αH(x) + (1− α)H(y)−H(αx+ (1− α)y) = 0 ∀x, y ∈ D, α ∈ (0, 1).

Hence, H is {0}-convex, and by Proposition 18, there exists an affine function Ĥ : E1 → aff K such
that Ĥ|D = H.

Now, let {(xk, zk) ∈ K-epiG]} → (x, z) ∈ E1 × aff K. Then, for all k ∈ N, xk ∈ domG, and
there exists vk ∈ K such that

zk = G(xk) + vk = F (xk)−H(xk) + vk = F (xk)− Ĥ(xk) + vk.

As Ĥ : E1 → aff K is affine, it is continuous, so Ĥ(xk)→ Ĥ(x), and thus F (xk) + vk → z + Ĥ(x).
Therefore {(xk, F (xk)+vk) ∈ K-epiF} → (x, z+Ĥ(x)). As F is K-closed, we have (x, z+Ĥ(x)) ∈
K-epiF , thus x ∈ domF = domG, Ĥ(x) = H(x), and z+H(x)−F (x) ∈ K, so z−G(x) ∈ K and
(x, z) ∈ K-epiG. This proves that G is K-closed.

Let K ′ be the dual cone of K in aff K. As K ⊂ K+ by assumption, we consequently obtain
K ⊂ K+ ∩ aff K = K ′ ⊂ aff K. Hence, riK ⊂ riK ′. Moreover, as G : E1 → (aff K)• is proper,
K-closed and K-convex, by [17, Corollary 7.4(ii)], we have 〈u, G〉 ∈ Γ0(E1) for all u ∈ riK ′. But
for any u ∈ riK ⊂ aff K, as p is self-adjoint, we have 〈u, G〉 = 〈u, p(F )〉 = 〈u, F 〉. Thus, for any
u ∈ riK we have 〈u, F 〉 ∈ Γ0(E1).
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Proposition 47. Let K ⊂ E2 be a proper, closed, convex cone such that K ⊂ K+ and let F : E1 →
E•2 be proper, K-convex and K-closed with riK ⊂ rgeF . Moreover, assume that, for any u ∈ riK,
there exists a nonempty convex set Cu ⊂ F−1(R+u) such that fu := 〈u, F 〉+ δCu does not have any
affine majorant on its domain. Then, K-epiF = conv (gphF ).

Proof. By Lemma 46, for all u ∈ riK, we have 〈u, F 〉 ∈ Γ0(E1), hence fu ∈ Γ0(Cu). Applying
Lemma 44 with L = riK yields the desired result.

4.4 Examples

In this section we put our findings from the previous sections to the test on various examples of K-
convex functions. Throughout, we equip the matrix space Rn×m with the Frobenius inner product
〈·, ·〉 : Rn×m × Rn×m → R, 〈X, Y 〉 = tr (XTY ). In particular, on the space of symmetric matrices
Sn, the transposition is superfluous.

4.4.1 F : X 7→ 1
2
XXT

We consider the function

F : Rn×m → Sn, F (X) =
1

2
XXT . (13)

It plays a central role in study of matrix-fractional [7–9] and variational Gram functions [10, 13].

Proposition 48. Let F be given by (13). Then the following hold:

a) K̂F = KF = Sn+ = conv (rgeF ). For m ≥ n, the convex hull is superfluous.

b) F is Sn+-closed and -convex.

c) conv (gphF ) = Sn+-epiF .

Proof. a) We know from [10, Lemma 8] that KF = Sn+. But as F is continuous and KF is closed,

we have that F is KF -closed, and hence KF = K̂F , which shows the first identity. For the third,
observe that, clearly Sn+ ⊃ conv (rgeF ). On the other hand for V ∈ Sn+, there exists L ∈ Rn×n such
that 1

2LL
T = V . This already shows that Sn+ = rgeF if m ≥ n (for m > n, 0 columns can be added

to L). If not, we denote the columns of L by `1, . . . , `n and set xi :=
√
n`i for all i = 1, . . . , n, and

Xi := [xi, 0, . . . , 0] ∈ Rn×m. Then

V =
1

2

n∑
i=1

`i`
T
i =

1

2

n∑
i=1

(
xi√
n

)(
xi√
n

)T
=

n∑
i=1

1

n
F (Xi) ∈ conv (rgeF ),

which gives the desired inclusion.

b) Follows from a).

c) We prove that {0}× Sn+ ⊂ conv (gphF ) which then gives the desired result via b) and Corollary
33. To this end, let (0, V ) ∈ {0} × Sn+. Hence, by a), there exist α1, . . . , αr > 0 and X1, . . . Xr ∈
Rn×m such that

∑r
i=1 αi = 1 and V =

∑r
i=1 αiF (Xi). However, F (−Xi) = F (Xi). Hence,

we also have V =
∑r
i=1

αi

2 F (Xi) + αi

2 F (−Xi). As
∑r
i=1

αi

2 Xi + αi

2 (−Xi) = 0, we then have
(0, V ) ∈ conv (gphF ).

4.4.2 The squared matrix mapping

We consider the map
F : Sn → Sn, F (X) = X2. (14)

Proposition 49. Let F be given by (14). Then the following hold:

a) K̂F = KF = Sn+ = rgeF .

b) F is Sn+-closed and -convex.

c) conv (gphF ) = Sn+-epiF .

Proof. a) Using Proposition 24 b) we know that K+
F = {V ∈ Sn | 〈V, F 〉 convex}. Now for any

V ∈ Sn, we have ∇〈V, F 〉 (X) = V X +XV . Therefore, for X,Y ∈ Sn, we find that

〈V, F 〉 (X)− 〈V, F 〉 (Y ) + 〈∇ 〈V, F 〉 (X), Y −X〉 = −tr ((X − Y )V (X − Y )) .
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For 〈V, F 〉 to be convex, by the gradient inequality, it is therefore necessary and sufficient that

tr ((X − Y )V (X − Y )) ≥ 0 ∀X,Y ∈ Sn,

which is equivalent to saying that V � 0. Therefore K+
F = Sn+, and by bipolarity, we obtain

KF = Sn+. Since F is continuous, we have KF = K̂F , and the fact that rgeF = Sn+ is obvious.

b) Follows from a).

c) Use the same reasoning as in the proof of Proposition 48 c).

4.4.3 The inverse matrix mapping

We consider the map
F : Sn++ → Sn, F (X) = X−1. (15)

Proposition 50. Let F be given by (15). Then the following hold:

a) K̂F = KF = Sn+.

b) F is Sn+-convex and -closed.

c) conv (gphF ) = Sn+-epiF .

Proof. a) By Proposition 24 b), we know that K+
F = {V ∈ Sn | 〈V, F 〉 convex}. Now let V ∈ Sn

and observe that ∇〈V, F 〉 (X) = −X−1V X−1 for all X � 0. Therefore, for all X,Y � 0

〈V, F 〉 (X)− 〈V, F 〉 (Y ) + 〈∇ 〈V, F 〉 (X), Y −X〉
= tr (V X−1)− tr (V Y −1)− tr (X−1V X−1(Y −X))

= −tr
(
V [Y −1 − 2X−1 +X−1Y X−1]

)
= −tr

(
[Y −1/2 −X−1Y 1/2]TV [Y −1/2 −X−1Y 1/2]

)
.

For 〈V, F 〉 to be convex, by the gradient inequality, it is therefore necessary and sufficient that

tr
(

[Y −1/2 −X−1Y 1/2]TV [Y −1/2 −X−1Y 1/2]
)
≥ 0 ∀X,Y � 0.

This holds if and only if V � 0.

b) Follows from a).

c) First note that rgeF = Sn++ = riSn+ and that Sn+ is self-dual, i.e. Sn+ = (Sn+)+. Moreover,
for every U ∈ riSn+, we have that CU := F−1(R+U) =

{
X
∣∣ ∃t > 0 : X = 1

tU
−1
}

= R++U
−1

is convex and nonempty. The desired statement will follow from Proposition 47, once we show
that 〈U, F 〉 has no affine majorant on CU . To this end, let Vt = tU−1 ∈ CU for t > 0. Then

〈U, F 〉 (Vt) = ‖U‖2
t . Since 0 < t 7→ 1/t has no affine majorant on R++, then 〈U, F 〉 cannot have an

affine majorant on CU .

4.4.4 Entry-wise convex functions

It is well known [10] that a component-wise convex function D ⊂ E1 → Rn is Rn+-convex. This can
be slightly generalized.

Proposition 51. Let {b1, . . . , bn} ⊂ E2 and let fi ∈ Γ(E1) for all i = 1, . . . , n such that D :=⋂n
i=1 dom fi 6= ∅. Define F : D → E2 by F (x) =

∑n
i=1 fi(x)bi and let K := cone {b1, . . . , bn}. Then

the following hold:

a) F is K-convex.

b) We have K ⊂ K+ if and only if 〈bi, bj〉 ≥ 0 for all i, j = 1, . . . , n.

c) Assume that dom fi = E1 for all i = 1, . . . , n. Then,

I.) F is K-convex and K-closed.

II.) Suppose that K ⊂ K+ and that, for all i = 1, . . . , n, we have Ci :=
⋂
i 6=j argmin fj 6= ∅

and that fi has no affine majorant on Ci. Then K-epiF = conv (gphF ).
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Proof. a) Observe that K+ = {y | 〈bi, y〉 ≥ 0 (i = 1, . . . , n)}. Therefore for all z ∈ K+ we have
〈z, F 〉 =

∑n
i=1 〈bi, z〉 fi ∈ Γ(E1). Hence Proposition 14 yields the desired statement.

b) K is closed and convex, hence, by the bipolar theorem [18, Corollary 6.21], K++ = K.

c) I.) As dom fi = E1, then all fi are continuous. Thus 〈z, F 〉 =
∑n
i=1 〈bi, z〉 fi is convex and

continuous for all z ∈ K+, hence 〈z, F 〉 ∈ Γ0(E1) for all z ∈ K+. Hence Proposition 14 yields the
desired statement.

II.) Define mi := min fi and gi = fi − mi for all i = 1, . . . , n, and set c :=
∑n
i=1mibi . Let

G : D → E2 be defined by G = F − c. Then, for all x ∈ D, we have G(x) =
∑n
i=1 gi(x)bi, and

〈bi, G〉 + δCi = 〈bi, F 〉 + δCi − 〈c, bi〉 ∈ Γ0(Ci), as bi ∈ K ⊂ K+. Now, let x ∈ Ci. Then
for all j 6= i, fj(x) = mj , hence gj(x) = fj(x) − mj = 0. Thus, G(x) = gi(x)bi. Moreover,
gi(x) = fi(x)−mi > mi−mi = 0, thus G(x) ∈ R+{bi}, and so Ci ⊂ G−1(R+{bi}). By Proposition
45, conv (gphG) = K-epiG.

Furthermore, as F = G + c, then gphF = gphG + (0, c), thus conv (gphF ) = conv (gphG) +
(0, c), and K-epiF = K-epiG+ (0, c). We deduce then that conv (gphF ) = K-epiF .

We point out that, with a more refined topological argument in the proof of c), we could replace the
assumption dom fi = E1 by the weaker condition fi ∈ Γ0(E1), but since this result is not essential
to our further study we confine ourselves with the current version.

4.4.5 The spectral function

The spectral function [10,15,17] is the map λ : Sn → Rn, λ(A) = [λ1(A), . . . λn(A)]
T

where λ1(A) ≥
· · · ≥ λn(A) are the ordered eigenvalues of A (with multiplicity). Define the cone

Kn =

{
v ∈ Rn |

k∑
i=1

vi ≥ 0, k = 1, . . . , n− 1,

n∑
i=1

vi = 0

}
. (16)

The following result clarifies the convexity properties of λ w.r.t Kn and shows, based on Proposition
45 and Corollary 36, respectively, that the question whether Kn-epiλ = conv (gphλ) depends on
n.

Proposition 52 (Spectral map). Let Kn be given by (16). Then the following hold:

a) Kn is closed, convex and pointed with K+
n = {w ∈ Rn | w1 ≤ · · · ≤ wn }.

b) λ is Kn-convex and Kn-closed.

c) The following are equivalent:

i) Kn ⊂ K+
n ;

ii) n ≤ 2;

iii) Kn-epiλ = conv (gphλ).

Proof. a) The properties of Kn are straightforward. The formula for K+
n can be found in e.g.

[10, 15,17].

b) See e.g. [10, 15, 17] for Kn-convexity. The Kn-closedness follows because λ is continuous on Sn
and Kn is closed.

c) Consider the following implications:

’i)⇒ii)’: For n > 2 we have [0, . . . , 0, 1,−1]T ∈ Kn \K+
n , see a).

’ii)⇒iii)’: For n = 1 there’s nothing to prove. For n = 2 set b1 := [1;−1]T so that Kn =

cone {b1} and define Cb1 :=

{[
α 0
0 −α

]
| α ∈ R

}
which is a subspace, hence nonempty and

closed, and convex. Then Cb1 ⊂ λ−1(R+b1) and we have 〈b1, λ〉
([

α 0
0 −α

])
= 2|α| for

all α ∈ R. Therefore 〈b1, λ〉 + δCb1 ∈ Γ0(Sn) and has no affine majorant on its domain Cb1 .
Therefore Proposition 45 yields the desired implication.

’iii)⇒i)’: Corollary 36.
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5 Convex convex-composite functions

We start this section with the definition of K-increasing functions.

Definition 53 (K-increasing functions). Let K ⊂ E be a cone. The function g : E → R ∪ {+∞}
is said to be K-increasing if

y ≥K x =⇒ g(y) ≥ g(x) ∀x, y ∈ E.

It is well known and explored extensively in the literature [4–6,10] that, givenK ⊂ E, aK-increasing
function g ∈ Γ(E2) and a K-convex function F : D ⊂ E1 → E2, the composition

g ◦ F : E1 → R ∪ {+∞}, (g ◦ F )(x) :=

{
g(F (x)), x ∈ D,
+∞, else

(17)

is convex (and proper if and only if F (D) ∩ dom g 6= ∅). One of the questions we address in this
section is the following: given g ∈ Γ(E2) and F : D ⊂ E1 → E2 such that g ◦ F is convex, under
which conditions does there exist a (closed) cone K such that F is K-convex and g is K-increasing?

5.1 The horizon cone of a closed, proper, convex function

For a proper function f : E→ R, its horizon function f∞ : E→ R is defined via epi f∞ = (epi f)∞.
The horizon cone hzn f of f is the level set hzn f := {x ∈ E | f∞(x) ≤ 0} . For f ∈ Γ0(E) the
horizon function and horizon cone of f coincide with the respective recession objects [18, Chapter
8]. We summarize some fundamental properties of the horizon cone of a closed, proper, convex
function.

Proposition 54. Let g ∈ Γ0(E). Then the following hold:

a) g∞ is closed, proper, convex and positively homogenous.

b) We have

g∞(u) = sup
t>0

g(x+ tu)− g(x)

t
∀x ∈ dom g.

c) hzn g is a closed convex cone.

d) g is (−hzn g)-increasing.

e) K is a cone with respect to which g is increasing if and only if K ⊂ −hzn g.

Proof. a),b) See [19, Theorem 3.21].

c) From a) and the definition of hzn g.

d) See [10, Lemma 7] or [16, Corollary 3.1].

e) See [16, Proposition 3.2].

The next example shows that the convexity in part b) is essential, which also shows that the horizon
function is not the recession function (see [16]) without convexity.

Example 55. Consider f : R→ R given by

f(x) =


1 + x, x < −1,

0, x ∈ [−1, 1],

1− x, x > 1.

Then f is continuous (hence proper and lsc), but not convex, and it holds that f∞(u) = −|u|.
Moreover, for any u ∈ R, supx∈R,t>0

f(x+tu)−f(x)
t = |u|. Thus f∞(u) 6= supx∈R,t>0

f(x+tu)−f(x)
t .

5.2 The K-increasing case

The next proposition characterizes the situation where there exists a cone with respect which
F : D → E2 is convex and g ∈ Γ0(E2) is increasing. At this, the cone KF , the smallest closed cone
with respect to which F is convex, comes in to play, which ties our study here to our results from
Section 3.

Proposition 56. Let g ∈ Γ0(E2) and F : D → E•2 with D ⊂ E1 convex such that g ◦ F is proper.
Then the following statements are equivalent.
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i) There exists a cone K such that g is K-increasing and F is K-convex;

ii) g is KF -increasing;

iii) KF ⊂ −hzn g;

iv) (hzn g)◦ ⊂ K+
F .

Proof. We only (need to) show that i), ii) and iii) are equivalent. The equivalence of iii) and iv)
follows from (bi)polarization and the fact that both cones in play are closed and convex.

i)⇒ii) : Let K ⊂ E2 such that F is K-convex and g is K-increasing. In particular, by Proposition
54 e), we have K ⊂ −hzn g, and thus F is (−hzn g)-convex and g is (−hzn g)-increasing, by
Proposition 54 d). As (−hzn g) is closed and convex, see Proposition 54 c), by definition of KF we
have KF ⊂ −hzn g. By Proposition 54 e) we find that g is KF -increasing.

ii)⇒iii): From Proposition 54 e).

iii)⇒i): Let K := KF . Clearly, F is K-convex and, by Proposition 54 e), g is K-increasing.

Proposition 56 yields the following concrete example.

Example 57. Consider g : (x, y) ∈ R2 7→ |x| and F : (x, y) ∈ R2 7→ (x2, y). Hence g ∈ Γ0(E2)
and g ◦ F : (x, y) 7→ x2 ∈ Γ0(E1). Using Proposition 24 b), we find that KF = R+ × {0}. How-
ever, (−1, 0) 6KF

(0, 0) and g((−1, 0)) = 1 > 0 = g((0, 0)). Thus, g is not KF -increasing, and
consequently, by Proposition 56, there is no closed cone K such that F is K-convex and g is K-
increasing.

We close out by remarking that, if φ : E1 → R ∪ {+∞} is proper convex, there always exists a
decomposition φ = g ◦ F with g ∈ Γ0(E2), F : E1 → E•2 proper with g KF -increasing: for instance,
define F (x) := (Φ(x), 0, . . . , 0) ∈ E2 with domF = dom Φ, and g(y) = y1. Then, g ∈ Γ0(E2), F is
(R+ × {0} × · · · × {0})-convex and g is (R+ × {0} × · · · × {0})-increasing.

5.3 Beyond K-monotonicity

It was already observed by Pennanen [17] and Burke et al. [10] that, in order to obtain convexity
of the composition g ◦ F in (17), the assumption that g be K-increasing can be weakened to

g(F (x)) ≤ g(y) ∀(x, y) ∈ K-epiF , (18)

in which case we call g increasing w.r.t K-epiF . Concretely, the following result holds.

Proposition 58 ( [10, Proposition 1]). Let K ⊂ E2 be a convex cone such that that F : E1 → E•2
is K-convex and such that g ∈ Γ(E1) is increasing w.r.t K-epiF in the sense of (18). Then g ◦ F
is convex.

The next proposition gives a characterization of the situation where there exists a closed convex
cone K such that g ∈ Γ0(E1) is increasing w.r.t K-epiF and F is K-convex.

Proposition 59. Let g ∈ Γ0(E2) and F : D → E2 for D ⊂ E1 (nonempty convex) such that g ◦ F
is proper. Then there exists a closed (convex) cone K such that g is increasing w.r.t K-epiF (in
the sense of (18)) and F is K-convex if and only if g is increasing w.r.t KF -epiF .

Proof. Suppose that g is increasing w.r.t KF -epiF and set K := KF . Then K is closed and convex
and F is K-convex and g is increasing w.r.t K-epiF (by assumption).

Conversely, suppose now that there exists a closed (convex) cone K such that g is increasing
w.r.t K-epiF and F is K-convex. As K is closed and F is K-convex, we haveKF ⊂ K, by definition
of KF . Therefore KF -epiF = gphF + {0} ×KF ⊂ gphF + {0} ×K = KF -epiF , and thus g is
increasing w.r.t KF -epiF .

It turns out that, in Proposition 58, the assumption that g be increasing w.r.t. to K-epiF can even
be further weakened substituting conv (gphF ) for K-epiF by which, again, ties our considerations
here to our previous study.

Proposition 60. Let D ⊂ E1 be (nonempty) convex, F : D → E2, and let g ∈ Γ(E2) be increasing
w.r.t. conv (gphF ), i.e.

g(F (x)) ≤ g(y) ∀(x, y) ∈ conv (gphF ). (19)

Then g ◦ F is convex.

21



Proof. Let x, y ∈ dom (g ◦ F ) and α ∈ (0, 1). Then (αx + (1 − α)y, αF (x) + (1 − α)F (y)) ∈
conv (gphF ). By (19),and the convexity of g we find

g(F (αx+ (1− α)y)) ≤ g(αF (x) + (1− α)F (y)) ≤ αg(F (x)) + (1− α)g(F (y)).

Hence g ◦ F is convex.
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