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Abstract. In this paper, we study Lipschitz continuity of the solution mappings of regularized
least-squares problems for which the convex regularizers have (Fenchel) conjugates that are C2-cone
reducible. Our approach, by using Robinson’s strong regularity on the dual problem, allows us to
obtain new characterizations of Lipschitz stability that rely solely on first-order information, thus
bypassing the need to explore second-order information (curvature) of the regularizer. We show
that these solution mappings are automatically Lipschitz continuous around the points in question
whenever they are locally single-valued. We leverage our findings to obtain new characterizations
of full stability and tilt stability for a broader class of convex additive-composite problems.
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1. Introduction

Stability (or sensitivity) analysis in optimization is the study of how the optimal solutions (or
the optimal value) of an optimization problem varies as the problem-defining data (parameters)
changes. This field has a rich and longstanding tradition anchored by the pioneering works of
Kojima [17, 18] and Robinson [28, 29, 30], primarily focused on smooth, nonlinear programming
in finite dimensions. The monograph by Bonnans and Shapiro [2] presents the state-of-the-art
treatment for problems with smooth data, in particular, in infinite dimensions. A rich source of
general theory for nonsmooth problems, based on graphical differentiation of set-valued maps, is
provided in the monograph by Dontchev and Rockafellar [9].

Recently, there has been renewed interest in stability analysis for the following nonsmooth, convex
optimization problems which occur ubiquitously in machine learning and statistical estimations:

min
xPX

1

2µ
}Ax´ b}2 ` gpxq, (1)

where A : X Ñ Y is a linear operator between two Euclidean spaces X and Y, b is a vector in Y,
µ ą 0 is the tuning parameter, and g : X Ñ RY t`8u is a closed, proper, convex function (usually
called a regularizer in machine learning). When the triple pA, b, µq are considered parameters, it is
important to study stability of the solution mapping of problem (1) defined by

SpA, b, µq :“ argmin
xPX

"

1

2µ
}Ax´ b}2 ` gpxq

*

. (2)

Specifically, in this paper, we aim to determine the conditions under which the solution mapping
(2) is single-valued and Lipschitz continuous when there are small perturbations in the initial data
pA, b, µq of problem (1).

To the best of our knowledge, there are currently two main approaches for studying the stability
of this solution mapping. The first one employs the toolkit of modern variational analysis à la
Dontchev and Rockafellar [9]; see also the standard texts by Mordukhovich [20], or Rockafellar and
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Wets [27]. Some recent contributions along these lines were made by Berk et al. [3, 4], Gfrerer and
Outrata [14], Hu et al. [15] (which strengthens the qualitative but not the quantitative results of
Berk et al.), Meng et al. [22], Nghia [24], and Vaiter et al. [32]. When the regularizer g is the ℓ1
norm, the problem (1) is known as the Lasso (Least Absolute Shrinkage and Selection Operator)
problem. Berk et al. [3] provide a sufficient condition [3, Assumption 4.3] at which the solution
mapping S is single-valued, Lipschitz continuous and directionally differentiable around a fixed
triple pĀ, b̄, µ̄q. This condition appeared in [23, 34] as a sufficient condition for the uniqueness of a
given solution to the Lasso problem. The approach in [3] relies on the well-known Mordukhovich
criterion [20, Theorem 4.18] for metric regularity and available second-order information of the
ℓ1 norm. On the other hand, in the recent paper [24], Nghia proposed a different approach via
Robinson’s generalized implicit function theorem [28] and tilt stability [25] for more general functions
g, including popular regularizers such as the ℓ1 norm, the ℓ1{ℓ2 norm, and the nuclear norm. It is
revealed in [24, Theorem 3.7] that the aforementioned sufficient condition in [3] is also necessary
for the Lipschitz stability of the solution mapping (2) for the Lasso problem. Some recent papers
[15, 22] obtain impressive results about Lipschitz continuity of the set-valued solution mapping (2)
with fixed operator A relative to its domain when g is the ℓ1 norm. Their Lipschitz stability is
different from ours in this paper and their approaches strongly rely on the polyhedral structure
of the ℓ1 norm and its subdifferential mapping. When regularizer g is partly smooth, Vaiter et al
[32, Theorem 1] proves a strong result that SpĀ, ¨, µ̄q is continuously differentiable around b̄ when
x̄ “ SpĀ, b̄, µ̄q is a strong minimizer of the corresponding problem, but they have to assume that b̄
does not belong to a transition space. The latter condition seems to be involved and recently [24,
Example 3.14] provides a simple example at which the solution mapping S is Lipschitz continuous,
but it is not continuously differentiable.

The second approach, spearheaded by Bolte et al. [6], is to rewrite the optimality conditions
as a (locally) Lipschitz equation, say, by using proximal operators, and to employ the machinery
of implicit differentiation with conservative Jacobians [5]. The conservative Jacobians here serve
as a versatile tool which, among other things, bypasses the failure of the chain rule for Clarke
Jacobians. The ideas mentioned here can be extended to (maximally) monotone inclusions (which
are not necessarily optimality conditions of a convex optimization problem) [7].

In this paper, we mainly study Lipschitz stability of solution mapping (2) with a fresh approach
via strong regularity [28] via the dual problem. Strong regularity was introduced by Robinson in the
landmark paper [28] for generalized equations with applications to nonlinear programming to study
Lipschitz stability of the Lagrange system. Robinson’s strong regularity can be characterized by the
well-known Linear Independence Constraint Qualification and the Strong Second-Order Sufficient
Condition for nonlinear programming; see, e.g., [28, 2, 16, 9] for more historic discussions and its
immense applications to optimization theory and algorithms. In [21, Theorem 5.6], Mordukhovich,
Nghia and Rockafellar give full characterizations of strong regularity for more general parametric
constrained optimization problems in the following setting:

min
uPU

φpu, pq subject to Gpu, pq P Θ, (3)

with Euclidean spaces U,V,P (P being the parameter space), a closed and convex set Θ Ă V,
and twice continuously differentiable cost function φ : U ˆ P Ñ R and constrained mapping G :
U ˆ P Ñ V. It is worth noting here that [21] crucially assumes that the constrained set Θ is
C2-reducible in the sense of [2, Definition 3.135] that allows them to cover some previous works on
the strong regularity for non-polyhedral settings such as the second-order cone programming [1]
and the semidefinite programming [33]. Their characterizations are based on the so-called Partial
Constraint Nondegeneracy and the Generalized Strong Second-Order Sufficient Condition that will
be recalled in our Subsection 2.3.
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A simple, but important observation of our paper is that the solution mapping (2) is, indeed,
the mapping of (partial) Lagrange multipliers of the following constrained problem

min
py,tqPYˆR

µ

2
}y}2 ´ xb, yy ` t subject to pA˚y, tq P epi g˚, (4)

where epi g˚ stands for the epigraph of the Fenchel conjugate function of g. This problem is in the
format of (3) and equivalent to the Fenchel-Rockafellar dual of problem (1)

min
yPY

µ

2
}y}2 ´ xb, yy ` g˚pA˚yq.

This unveils the connection between the strong regularity of problem (4) and the Lipschitz stability
of solution mapping (2) of problem (1). As mentioned above, in order to apply [21, Theorem 5.6],
we need to suppose that the constrained set of problem (4), i.e, the epigraph of the conjugate
function g˚, is C2-cone reducible. This assumption is not restrictive: it automatically holds for
many important regularizers in optimization such as the ℓ1 norm, the ℓ1{ℓ2 norm, the nuclear
norm, and many more spectral functions [10] and support functions; see also our Remark 3.6.

While applying the theory of strong regularity in [21] to the dual problem (4), we observe that
the Generalized Second-Order Sufficient Condition holds automatically and the Partial Constraint
Nondegeneracy can be simplified with first-order information on the regularizer g. This significantly
distinguishes our paper from [3, 24, 32] that directly work on the primal problem and needs more
advanced second-order computation on the regularizer. In particular, we show that the solution
mapping S is single-valued and Lipschitz continuous around a fixed triple pĀ, b̄, µ̄q P LpX,Yq ˆYˆ

R`` of initial data for x̄ P SpĀ, b̄, µ̄q if and only if

ker ĀX par Bg˚pz̄q “ t0u with z̄ :“ ´
1

µ̄
Ā˚pĀx̄´ b̄q,

where par Bg˚pz̄q denotes the parallel subspace of the subdifferential set Bg˚pz̄q. This characteriza-
tion recovers some similar results obtained in [3, 24] for special cases of regularizers such as the
ℓ1 norm, the ℓ1{ℓ2 norm, and the nuclear norm. Although our technique relies on second-order
variation analysis, our condition above does not need any second-order information of g.

Another key aspect of our paper studies characterizations of tilt stability [25] and full stabil-
ity [19], both of which also relate to Lipschitz stability of the solution mapping of the following
optimization problem

min
xPX

fpx, pq ` gpxq, (5)

where f : X ˆ P Ñ R is a twice continuously differentiable function that is convex with respect to
x P X. This problem is more general than (1) at which the basic parameter p is considered as the
triple parameter pA, b, µq. In our framework, full stability, as introduced by Poliquin, Levy, and
Rockafellar [19], mainly analyzes Lipschitz continuity of the (local) optimal solution mapping of

min
xPX

fpx, pq ` gpxq ´ xv, xy , (6)

with respect to both basic parameter p P P and tilt (linear) parameter v P X; while tilt stability
is a particular case when the basic perturbation p is fixed. Both tilt stability and full stability are
characterized by using different advanced nonsmooth second-order structures that may be difficult
to compute [14, 19, 21, 24, 25]. In Section 4, by using our results on Lipschitz stability, we achieve
a new pointwise characterization for both full stability and tilt stability of problem (5). Unlike
other characterizations of full stability and tilt stability, our pointwise condition uses first-order
information of the function g. Specifically, we show that x̄ P X is a full (or tilt) stable optimal
solution of problem (5) for parameter p̄ P P if and only if ´∇xfpx̄, p̄q P Bgpx̄q and

ker∇2
xxfpx̄, p̄q X par Bg˚p´∇xfpx̄, p̄qq “ t0u;
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see our Theorem 4.4 for further details. This condition still needs second-order information of
the function f , but is easy to compute, as f is twice differentiable. The crucial part of this
condition is that we do not need to calculate any second-order structures for the nonsmooth function
g. Consequently, it is also a sufficient condition for Lipschitz stability of the solution mapping
of problem (5). However, unlike the regularized least-squares problem (1), this condition is not
necessary for the aforementioned Lipschitz stability of problem (5).

Notation: Throughout the paper, LpX,Yq is the space of all linear operators from the Euclidean
space X to the Euclidean space Y. For A P LpX,Yq, we denote its adjoint by A˚, its kernel (or
null space) by kerA and its range by rgeA. For a Fréchet differentiable map G : X Ñ Y, we write
JGpxq P Y ˆ X as the Jacobian matrix of G at x P X. When Y “ R, we have JGpxq “ ∇Gpxq˚

for any x P X.

2. Preliminaries

Let X be a Euclidean space, i.e., a finite-dimensional real vector space with inner product denoted
by x¨, ¨y. The (Euclidean) norm on X induced by the ambient inner product is denoted by } ¨ }. The
closed ball in X with center x P X and radius r ą 0 is denoted by Brpxq.

2.1. Tools from convex analysis. For a function f : X Ñ RY t`8u, its epigraph is the set given
by epi f :“ tpx, αq P X ˆ R | fpxq ď αu while its domain is the set dom f :“ tx P X | fpxq ă `8u.
We call f proper if dom f is nonempty. We say that f is convex if epi f is convex, and we call it
closed or lower semicontinuous (lsc) if epi f is closed. The (Fenchel) conjugate of a proper f is the
function f˚ : X Ñ R Y t`8u, given by f˚pyq “ supyPXtxy, xy ´ fpxqu. Its subdifferential at x̄ P X
is the set Bfpx̄q “ ty P X | fpx̄q ` xy, x´ x̄y ď fpxq @x P Xu. When f is closed, proper, convex,
throughout the paper we use the following relation frequently:

v P Bfpxq ðñ x P Bf˚pvq.

For a convex set Ω Ă X, its relative interior is given by

ri Ω :“ tx P Ω | D ϵ ą 0 : Bϵpxq X aff Ω Ă Ωu , (7)

where aff Ω is the affine hull of Ω. The conical hull of Ω is cone Ω :“ R`Ω, the smallest (convex)
cone containing Ω. The span of Ω is denoted spanΩ. The parallel subspace of Ω is defined, for any
x P Ω, by

parΩ :“ span pΩ ´ xq. (8)

Note that parΩ “ aff Ω ´ aff Ω “ aff Ω ´ x for any x P Ω. Thus for any x P ri Ω, we have

parΩ “ cone pΩ ´ xq. (9)

The lineality space of Ω, denoted by linΩ, is the largest subspace in Ω. Moreover, the horizon cone
of Ω is

Ω8 :“ tv P X | D txk P Ωu, ttku Ó 0 : tkxk Ñ v u , (10)

which is a closed cone, and convex as Ω is. In particular, for a convex function f and ȳ P Bfpx̄q,
we have

Bfpx̄q8 Ă conepBfpx̄q ´ ȳq, (11)

cf. [27, Theorem 3.6]. The normal cone of Ω at x̄ is

NΩpx̄q “ ty P X | xy, x´ x̄y ď 0 @x P Ωu , (12)

which is the subdifferential of the (convex) indicator function δΩ of Ω at x̄, which is defined by
δΩpxq “ 0 if x P Ω and δΩpxq “ `8 otherwise. The following result, which is useful to our study,
links many of the above mentioned objects.
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Proposition 2.1. Let f : X Ñ RY t`8u be a closed, proper, convex function and x̄ P X such that
Bfpx̄q ‰ H. Then

X ˆ t0u X spanNepi f px̄, fpx̄qq “ par Bfpx̄q ˆ t0u.

Proof. First, observe by [27, Theorem 8.9] that

Nepi f px̄, fpx̄qq “ tσpv,´1q | v P Bfpx̄q, σ ą 0u
ď

Bfpx̄q8 ˆ t0u. (13)

Now, let pv, 0q P X ˆ t0u X spanNepi f px̄, fpx̄qq. In view of (13), we find scalars λ1, . . . , λr P R,
µ1, . . . , µs P R, and vectors v1, . . . , vr P Bfpx̄q, w1, . . . , ws P Bfpv̄q8 such that

pv, 0q “

r
ÿ

i“1

λipvi,´1q `

s
ÿ

j“1

µjpwj , 0q.

It follows that
řr

i“1 λi “ 0, i.e., λr “ ´
řr´1

i“1 λi. With the previous identity, we thus obtain

v “

r´1
ÿ

i“1

λipvi ´ vrq `

s
ÿ

j“1

µjwj Ă par Bfpx̄q ` span Bfpx̄q8.

For any ȳ P Bfpx̄q, note from (11) that

span Bfpx̄q8 Ă span pBfpx̄q ´ ȳq “ par Bfpx̄q.

Therefore, v P par Bfpx̄q, which shows the desired inclusion.
Conversely, take pv, 0q P par Bfpx̄qˆt0u. Then there exist v1, . . . , vr P Bfpx̄q and λ1, . . . , λr´1 P R

such that

v “

r´1
ÿ

i“1

λipvi ´ vrq.

Setting λr :“ ´
řr´1

i“1 λi, in view of (13), we find that

pv, 0q “

r
ÿ

i“1

λipvi,´1q P spanNepi f px̄, fpx̄qq.

This concludes the proof. □

2.2. Tools from set-valued analysis. Let S Ă X and x̄ P S. We write xk Ñ
S
x̄ if txku Ñ x̄ and

xk P S for all k P N. The regular normal cone to S at x̄ is the (convex) cone defined by

N̂Spx̄q :“

$

&

%

y P X

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

lim sup
xÑ

S
x̄

xy, x´ x̄y

}x´ x̄}
ď 0

,

.

-

.

It is often expedient to realize that y P N̂Spx̄q if and only if

@ ε ą 0 D δ ą 0 @x P Bδpx̄q X S : xy, x´ x̄y ď ε}x´ x̄}. (14)

The limiting normal cone [20, 27] to S at x̄ P S is defined by

NSpx̄q :“

"

y P X
ˇ

ˇ

ˇ

ˇ

D txku Ñ
S
x̄, tyk P N̂Spxkqu : yk Ñ y

*

, (15)

i.e., it is the outer limit of the regular normal cone. When S is convex, both the regular and the
limiting normal cone reduce to the object in (12). The tangent cone to S at x̄ is defined by

TSpx̄q :“ tw P X | D ttku Ó 0, twku Ñ w : x̄` tkwk P S u . (16)
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Let us recall next the limiting and singular subdifferentials of an extended real-valued (possibly
nonconvex) function f : X Ñ R Y t8u that is lower semicontinuous at some x̄ P dom f ; see, e.g.,
[20, Definition 1.77]. The limiting subdifferential of f at x̄ is defined by

Bfpx̄q :“ ty P X| py,´1q P Nepi f px̄, fpx̄qqu, (17)

which returns the subdifferential of convex analysis defined in Section 2.1 when f is a convex
function. Moreover, the singular subdifferential of f at x̄ is defined by

B8fpx̄q :“ ty P X| py, 0q P Nepi f px̄, fpx̄qqu, (18)

which is the horizon cone of Bfpx̄q when f is convex, cf. [27, Proposition 8.12].
An important tool from set-valued differentiation to our study is the (limiting) coderivative

[20, 27]. Let F : X Ñ Y be a set-valued mapping between two Euclidean spaces. The graph of F is
defined by

gphF :“ tpx, yq P X ˆ Y | y P F pxqu .

The (limiting) coderivative of F at x̄ for ȳ P F px̄q is the set-valued mapping D˚F px̄| ȳq : Y Ñ X
defined by

D˚F px̄| ȳqpwq :“ tz P X | pz,´wq P NgphF px̄, ȳqu . (19)

The set-valued mapping F is said to have a single-valued (and Lipschitz continuous) localization
at x̄ for ȳ (cf. [2, 9, 33, 21, 28]) if there exist open neighborhoods U of x̄ and V of ȳ such that
the localization s : U Ñ V of F with gph s “ gphF X pU ˆ V q is single-valued (and Lipschitz
continuous).

We are interested in single-valued locally Lipschitz continuous functions. To make the transition
from single-valued localizations to actual single-valuedness for convex-valued mapping, the following
result is useful.

Lemma 2.2. Let F : X Ñ Y be a set-valued mapping, and let px̄, ȳq P gphF . Suppose that the set
F pxq is convex when x is around x̄. Then the following are equivalent:

(i) F has a single-valued localization at x̄ for ȳ;
(ii) F is single-valued around x̄.

Proof. [(i)ñ (ii)]: If there exist neighborhoods U of x̄ and V of ȳ such that the localization s : U Ñ V
of F with gph s “ gphF X pU ˆ V q is single-valued, we may suppose w.l.o.g. that F pxq is convex
for any x P U (otherwise shrink the neighborhood). Pick any y P F pxq. As F pxq is convex and
spxq P F pxq, we find some λ P p0, 1q sufficiently small such that spxq ` λpy ´ spxqq P F pxq X V ,
which implies that spxq ` λpy ´ spxqq “ spxq, i.e., y “ spxq. Hence F pxq “ spxq for x P U , which
means F is single-valued around x̄. The opposite implication is straightforward. □

Corollary 2.3. Let h : X ˆ P Ñ R Y t8u be a proper function such that hp¨, pq is convex for all
p P P. Define S : P Ñ X by

Sppq :“ argmin
xPX

hpx, pq.

Let pp̄, x̄q P gphS. Then S has a single-valued (Lipschitz) localization at p̄ for x̄ if and only if S is
single-valued (and locally Lipschitz) around x̄.

Proof. This follows immediately from Lemma 2.2, since S is convex-valued. □

2.3. Tools from parametric optimization. For Euclidean spaces U, V, and P, consider the
following parametric optimization problem

OPTppq : min
uPU

φpu, pq s.t. Gpu, pq P Θ, (20)
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where Θ Ă V is a closed and convex set, and φ : U ˆ P Ñ R and G : U ˆ P Ñ V are twice
continuously differentiable functions. Robinson’s constraint qualification is said to hold for OPT(p̄)
at some ū P U with Gpū, p̄q P Θ (i.e., ū is feasible for OPT(p̄)) if

0 P int pGpū, p̄q ` rgeJuGpū, p̄q ´ Θq. (21)

The Lagrangian of problem OPT(p) is L : U ˆ P ˆ V Ñ R given by

Lpu, p, λq :“ φpu, pq ` xλ, Gpu, pqy for pu, p, λq P U ˆ P ˆ V. (22)

A feasible point u P U is called a stationary point of OPT(p) if there exists a Lagrange multiplier
λ P V satisfying

0 “ ∇uLpu, p, λq and λ P NΘpGpu, pqq. (23)

We define Λpu, pq :“ tλ P V | 0 “ ∇uLpu, p, λq, λ P NΘpGpu, pqqu, the set of all Lagrange multipli-
ers at pu, pq.

Observe that the system (23) can be written as the generalized equation [28]:

GEppq : 0 P

ˆ

∇uφpu, pq ` JuGpu, pq˚λ
´Gpu, pq

˙

`

ˆ

0
N´1

Θ pλq

˙

. (24)

Let H : P Ñ U ˆ V be its solution mapping, i.e., Hppq “ tpu, λq | pu, p, λq satisfies (24)u . Given
p̄ P P and pū, λ̄q P Hpp̄q, it is an immediate question under which conditions H has a single-valued
and Lipschitz continuous localization at p̄ for pū, λ̄q (in the sense of the definition at the end of
the previous section). To answer this question, Robinson [28] came up with an original idea of
considering the linearized generalized equation of (24) below:

δ P

ˆ

0
´Gpū, p̄q

˙

`

ˆ

∇2
uuLpū, p̄, λ̄qpu´ ūq ` JuGpū, p̄q˚pλ´ λ̄q

´JuGpū, p̄qpu´ ūq

˙

`

ˆ

0
N´1

Θ pλq

˙

(25)

with δ P UˆV. Let us set the solution mapping of this generalized equation by K : UˆV Ñ UˆV
with Kpδq “ tpu, λq| pu, λ, δq satisfies (25)u for any δ P U ˆ V. If K has a single-valued and
Lipschitz continuous localization around δ̄ “ 0 for pū, λ̄q, then H also has a single-valued and
Lipschitz continuous localization around p̄ for pū, λ̄q. This is usually referred to as Robinson’s
implicit function theorem; see the original result by Robinson [28, Theorem 2.1], and its extension
[9, Theorem 2B.5] that can be applied directly to our above framework. Lipschitz continuity of the
solution mapping of system (25) is known as Robinson’s strong regularity defined precisely next.

Definition 2.4 (Robinson’s strong regularity). Suppose that pū, λ̄q is a solution of the general-
ized equation GEpp̄q in (24), i.e., ū is a stationary point of problem OPTpp̄q in (20) and λ̄ is
a corresponding Lagrange multiplier from (23). We say that the generalized equation GEpp̄q is
strongly regular at pū, λ̄q if the solution mapping K of the linearized generalized equation (25) has
a single-valued and Lipschitz continuous localization around 0 P U ˆ V for pū, λ̄q P U ˆ V.

Robinson’s strong regularity was introduced in [28] for generalized equations with applications to
nonlinear programming at which U “ Rn, P “ Rd, V “ Rm1`m2 , and Θ “ Rm1

´ ˆ t0m2u Ă Rm1`m2 .
Particularly, Robinson showed in [28, Theorem 4.1] that the well-known Linear Independence Con-
straint Qualification (LICQ) of JuGpū, p̄q and the so-called Strong Second-Order Sufficient Condi-
tion (SSOSC) that is also proposed by Robinson are sufficient for strong regularity of the correspond-
ing generalized equation (24) at pū, λ̄q. If additionally ū is an optimal solution of problem OPTpp̄q

in (20), these two conditions are also necessary for strong regularity; see, e.g., [16, Theorem 8.10]
and also [2, 8, 9] for further historic discussions about strong regularity. For semidefinite program-
ming (SDP), Robinson’s strong regularity is characterized via different conditions including the
so-called constraint nondegeneracy and the SDP-Strong Second-Order Sufficient Condition by Sun
[33]. For more general constrained programming as in (20), it is shown by Mordukhovich, Nghia,
and Rockafellar in [21] that Robinson’s strong regularity is equivalent to the Partial Constraint
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Nondegeneracy, which originated from [29] and the generalized SSOSC recalled later, provided that
the set Θ is C2-cone reducible; see, e.g., [2, Section 3.4.4]. Let us recall these definitions here.

Definition 2.5 (Partial Constraint Nondegeneracy). Let p̄ P P and let ū be feasible for OPTpp̄q,
i.e., Gpū, p̄q P Θ. We say that the point ū is partially nondegenerate for G with respect to Θ if

rgeJuGpū, p̄q ` linTΘpGpū, p̄qq “ V, (26)

where linTΘpGpū, p̄qq is the lineality space of TΘpGpū, p̄qq, the largest subspace in the tangent cone
TΘpGpū, p̄qq.

Remark 2.6 (Constraint nondegeneracy). (a) We note that for the case of nonlinear programming
when U “ Rn, P “ Rd, V “ Rm1`m2, and Θ “ Rm1

´ ˆ t0m2u Ă Rm1`m2, and Gpx̄q P Θ, the
constraint nondegeneracy at ū holds if and only if the linear independence constraint qualification
(LICQ) holds at ū.

(b) A dual formulation of (26) reads

kerJuGpū, p̄q˚
č

spanNΘpGpū, p̄qq “ t0u. (27)

Recall that a cone C Ă X is called pointed if C X p´Cq “ t0u.

Definition 2.7 (C2-cone reducible sets and functions). The set Θ Ă V is said to be C2-cone
reducible at v̄ if there exist a neighborhood V of v̄, a pointed, closed, convex cone C in some
Euclidean space W, and a C2-smooth mapping h : V Ñ W such that hpv̄q “ 0, J hpv̄q P LpV,Wq is
surjective, and that Θ X V “ tv P V | hpvq P Cu.

A closed, proper, convex function f : U Ñ R Y t`8u is called C2-cone reducible at ū P dom f if
its epigraph epi f is C2-cone reducible at pū, fpūqq. We call the function f to be C2-cone reducible,
if it is C2-cone reducible at any point on its domain.

We point out that any set Θ is C2-cone reducible at any v̄ P intΘ, as we may choose a neighbor-
hood V Ă Θ of v̄, W “ t0u, C “ t0u, and hpvq ” 0 in the above definition. Many important convex
sets in optimization are C2-cone reducible including (convex) polyhedra [2, Example 3.139], the
positive semidefinite cone [2, Example 3.140], or the second-order (or Lorentz) cone [1, Lemma 15].
The Cartesian product of many C2-cone reducible convex sets is also C2-cone reducible; see [31,
Proposition 3.1]. Moreover, it is shown in [10, Proposition 10] that many spectral functions including
the nuclear norm and the spectral norm are also C2-cone reducible.

The following result [21, Theorem 5.6] provides a full characterization of Robinson’s strong
regularity for C2-cone reducible programming.

Theorem 2.8 (Characterization of Robinson’s strong regularity). Let ū P U be a stationary point
of problem OPTpp̄q in (20) with λ̄ P Λpū, p̄q. Suppose that the set Θ is C2-cone reducible at Gpū, p̄q

and that Robinson’s constraint qualification (21) holds at ū. Then the following are equivalent:

(i) The generalized equation (24) is strongly regular at pū, λ̄q and ū is a local minimizer of
problem OPTpp̄q;

(ii) ū is partially nondegenerate for G with respect to Θ and the following so-called generalized
strong second-order sufficient condition (GSSOSC) holds

@

w, ∇2
uuLpū, p̄, λ̄qw

D

` inf
!

xz, JuGpū, p̄qwy
ˇ

ˇ z P D˚NΘpGpū, p̄q| λ̄q
`

JuGpū, p̄qw
˘

)

ą 0 (28)

for any w ‰ 0.

In the framework of nonlinear programming, the GSSOSC is exactly the classical SSOSC of Robin-
son [28]. For the case Θ “ Sn`, the cone of of positive semi-definite matrices, it also recovers the
SDP-SSOSC [33]; see [21] for further details and discussions. We point out that verifying GSSOSC
(28) is not trivial due to the lack of explicit calculus for the coderivative of the normal cone map-
ping. In Section 3, however, we will show that GSSOSC holds automatically for the problems in
the center of our study.
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3. Lipschitz stability of least-squares problems with C2-cone reducible dual
regularizes

In this section, we consider the following parametric optimization problem

PpA, b, µq : min
xPX

1

2µ
}Ax´ b}2 ` gpxq, (29)

where X,Y are two Euclidean spaces, A P LpX,Yq, b P Y, µ ą 0 are treated as parameters
and g : X Ñ R Y t`8u is a closed, proper, convex function. Define the solution mapping S :
LpX,Yq ˆ Y ˆ R`` Ñ X of problem (29) by

SpA, b, µq :“ argmin
xPX

"

1

2µ
}Ax´ b}2 ` gpxq

*

. (30)

Our main goal in this section is to study sufficient and necessary conditions for this solution mapping
to be (locally) Lipschitz around some fixed triple pĀ, b̄, µ̄q P LpX,Yq ˆ Y ˆ R``. Given v P X, the
tilt-perturbed problem corresponding to PpA, b, µq reads

QpA, b, µ, vq : min
xPX

1

2µ
}Ax´ b}2 ` gpxq ´ xv, xy . (31)

Its solution mapping pS : LpX,Yq ˆ Y ˆ R`` ˆ X Ñ X is defined by

pSpA, b, µ, vq “ argmin
xPX

"

1

2µ
}Ax´ b}2 ` gpxq ´ xv, xy

*

. (32)

Obviously, QpA, b, µ, 0q and P pA, b, µq are the same problem, and thus pSpA, b, µ, 0q “ SpA, b, µq.
Adding the linear perturbation xv, xy in the problem will be useful for Section 4 where we leverage
our analysis here for more general problems.

Proposition 3.1 (Primal-dual optimality). The (Fenchel-Rockafellar) dual of problem (31) reads

DpA, b, µ, vq : min
yPY

µ

2
}y}2 ´ xb, yy ` g˚pA˚y ` vq. (33)

For pA, b, µ, vq P LpX,Yq ˆ Y ˆ R`` ˆ X, the following are equivalent:

(i) x solves QpA, b, µ, vq and y solves DpA, b, µ, vq;
(ii) A˚y ` v P Bgpxq and ´µy “ Ax´ b;
(iii) x P Bg˚pA˚y ` vq and ´µy “ Ax´ b.

Proof. We apply the duality scheme from [27, Example 11.41] with h “ 1
µ} ¨ }2, k “ g and c “ ´v.

The only thing we have to ensure is that primal and dual optimal value are equal which is guaranteed
as domh “ Y, cf. [27, Theorem 11.39]. □

Note that an equivalent formulation of the dual problem (33) reads

D1pA, b, µ, vq : min
py,tqPYˆR

µ

2
}y}2 ´ xb, yy ` t s.t. pA˚y ` v, tq P epi g˚. (34)

Although the parameter µ is chosen to be positive for problem (29), problem (34) is well-defined
for any µ P R. We will apply the theory laid out for the parametric problem OPTppq in (20) to
problem D1pA, b, µ, vq above with the spaces U “ YˆR, V “ XˆR, P “ LpX,Yq ˆYˆRˆX, the
parameter p “ pA, b, µ, vq P P, the variable u “ py, tq P U, the convex set Θ :“ epi g˚ Ă V, and the
functions

φpu, pq :“
µ

2
}y}2 ´ xb, yy ` t and Gpu, pq :“ pA˚y ` v, tq. (35)

To this end, we first give an appropriate expression for the partial constraint nondegeneracy of
D1pA, b, µ, 0q.
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Lemma 3.2 (Partial constraint nondegeneracy for dual problem). Let ū “ pȳ, t̄q be a solution of
D1pp̄q with fixed p̄ “ pĀ, b̄, µ̄, 0q P P and µ̄ ą 0. Then the following are equivalent:

(i) The partial constraint nondegeneracy holds at pȳ, t̄q for D1pĀ, b̄, µ̄, 0q;
(ii) ker ĀX par Bg˚pĀ˚ȳq “ t0u.

Proof. Set z̄ :“ Ā˚ȳ. In view of Remark 2.6(b) and with the functions in (35), we find that
constraint nondegeneracy holds for D1pp̄q at pȳ, t̄q if and only if

t0u “ ker Āˆ t0u
č

spanNepi g˚pz̄, t̄q. (36)

Now, note that, by optimality, we necessarily have t̄ “ g˚pz̄q. From Proposition 2.1, we know that

X ˆ t0u
č

spanNepi g˚pz̄, t̄q “ par Bg˚pz̄q ˆ t0u.

This yields the desired equivalence. □

The Lagrangian of D1pA, b, µ, vq in the sense of (22) reads

Lpu, p, λq “
µ

2
}y}2 ´ xb, yy ` t` xλ1, A

˚y ` vy ` λ2t (37)

with u “ py, tq P U “ Y ˆ R, p “ pA, b, µ, vq P P, and λ “ pλ1, λ2q P V “ X ˆ R. Consequently,
stationarity conditions for D1pA, b, µ, vq in the sense of (23) read

0 “ µy ´ b`Aλ1, 0 “ 1 ` λ2, pλ1, λ2q P Nepi g˚pA˚y ` v, tq, (38)

which certainly tells us that λ2 “ ´1. Combining (38) and Proposition 3.1 yields the following
result.

Proposition 3.3. For pA, b, µ, vq P LpX,Yq ˆ Y ˆ R`` ˆ X, the following are equivalent:

(i) x solves QpA, b, µ, vq and y solves DpA, b, µ, vq;
(ii) py, g˚pA˚y ` vqq solves D1pA, b, µ, vq and px,´1q is a corresponding Lagrange multiplier of

problem D1pA, b, µ, vq.

Proof. The proof follows from combining Proposition 3.1 and the stationarity conditions in (38)
for D1pA, b, µ, vq. Here, it is worth noting that px,´1q P Nepi g˚pA˚y ` v, g˚pA˚y ` vqq if and only
if x P Bg˚pA˚y ` vq by (13). □

To prove Lipschitz stability of the solution map pS around p̄ “ pĀ, b̄, µ̄, v̄q, in view of Proposition 3.3,
it suffices to show that the solution mapping of the stationarity system (38) is locally Lipschitz (in
the Lagrange multipliers). By the discussion before Definition 2.4, the latter occurs when Robinson’s
strong regularity holds at pū, λ̄q for the dual problem D1pp̄q. By Theorem 2.8, we need that both the
partial constraint nondegeneracy (26) and the generalized strong second-order sufficient condition
(28) are satisfied for the system (38). First we show that the generalized SSOSC (38) is automatic
for the dual problem D1pp̄q.

Proposition 3.4 (Validity of Generalized SSOSC). Let ū “ pȳ, t̄q be a solution of D1pp̄q with
p̄ “ pĀ, b̄, µ̄, 0q and µ̄ ą 0. Suppose that λ̄ “ pλ̄1,´1q is the corresponding Lagrange multiplier at
pȳ, t̄q satisfying (38). Then the Generalized SSOSC (28) for the dual problem D1pp̄q holds in the
sense that

@

w, ∇2
uuLpū, p̄, λ̄qw

D

` inf
␣

xz, JuGpū, p̄qwy | z P D˚NΘpGpū, p̄q, λ̄qpJuGpū, p̄qwq
(

ą 0 (39)

for any w P Uzt0u with all the notations in (35) and (37).

Proof. Note that, by (37), we have

∇2
uuLpū, p̄, λ̄qw “ pµ̄w1, 0q @w “ pw1, w2q P Y ˆ R. (40)
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In particular, ∇2
uuLpū, p̄, λ̄q is positive semidefinite. Moreover, since the normal cone mapping NΘ

is maximally monotone, we have

inf
zPXˆR

␣

xz, JuGpū, p̄qwy | z P D˚NΘpGpū, p̄q| λ̄qpJuGpū, p̄qwq
(

ě 0, (41)

see, e.g., [25, Theorem 3.1]. Therefore, the left-hand side of (39) is nonnegative for any w P U. It
hence suffices to show that, if it is equal to zero, then w “ 0. To this end, let w P U satisfy

@

w, ∇2
uuLpū, p̄, λ̄qw

D

` inf
zPXˆR

␣

xz, JuGpū, p̄qwy | z P D˚NΘpGpū, p̄q| λ̄qpJuGpū, p̄qwq
(

“ 0. (42)

Applying (41) and (40) to (42) yields w1 “ 0. And consequently, we find that

JuGpū, p̄qw “ pA˚w1, w2q “ p0, w2q. (43)

In particular, (42) reduces to

inf
pz1,z2qPXˆR

␣

z2w2| pz1, z2q P D˚NΘpGpū, p̄q| λ̄qp0, w2q
(

“ 0.

It remains to show that w2 “ 0. To this end, pick pz1, z2q P D˚NΘpGpū, p̄q| λ̄qp0, w2q, i.e.,

ppz1, z2q, p0,´w2qq P NgphNΘ
pGpū, p̄q, λ̄q.

By the definition of the normal cone (15), we find sequences pvk, tkq Ñ Gpū, p̄q “ pĀ˚ȳ, t̄q,
pλk1, λ

k
2q Ñ λ̄ “ pλ̄1,´1q, pzk1 , z

k
2 q Ñ pz1, z2q, and pwk

1 , w
k
2q Ñ p0, w2q such that g˚pvkq ď tk,

pλk1, λ
k
2q P NΘpvk, tkq and

´

pzk1 , z
k
2 q, pwk

1 ,´w
k
2q

¯

P N̂gphNΘ

´

pvk, tkq, pλk1, λ
k
2q

¯

.

By the expression of regular normal vectors in (14), for all ϵ ą 0 there exists δ ą 0 such that for
any ppv, tq, pλ1, λ2qq P gphNΘ X Bδppvk, tkq, pλk1, λ

k
2qq:

A

zk1 , v ´ vk
E

` zk2 pt´ tkq `

A

wk
1 , λ1 ´ λk1

E

´wk
2pλ2 ´ λk2q ď ϵ}pv, t, λ1, λ2q ´ pvk, tk, λ

k
1, λ

k
2q}. (44)

As pλk1, λ
k
2q P Nepi g˚pvk, tkq, we get from (12) that

A

λk1, v ´ vk
E

` λk2pt´ tkq ď 0 for all pv, tq P epi g˚.

By choosing pv, tq “ pvk, g˚pvkqq in the above inequality, it follows that λk2pg˚pvkq ´ tkq ď 0. As λk2
is close to ´1 and g˚pvkq ď tk, we have tk “ g˚pvkq.

Let us choose pλ1, λ2q satisfying
λ1
λ2

“
λk1
λk2

and such that pλ1, λ2q P Bδpλk1, λ
k
2q. It follows from

formula (13) (which is applicable as tk “ g˚pvkq) that

λ1
´λ2

“
λk1

´λk2
P Bg˚pvkq.

This implies that pλ1, λ2q P Nepi g˚pvk, tkq, i.e., ppvk, tkq, pλ1, λ2qq P gphNΘ X Bδppvk, tkq, pλk1, λ
k
2qq.

We can thus insert λ1 “ λ2
λk
1

λk
2
and v “ vk, t “ tk in (44) to obtain

λ2 ´ λk2
λk2

A

wk
1 , λ

k
1

E

´ wk
2pλ2 ´ λk2q ď ϵ

„

}λk1}
|λ2 ´ λk2|

|λk2|
` |λ2 ´ λk2|

ȷ

,

which implies that

´wk
2pλ2 ´ λk2q ď ϵ

„

}λk1}
|λ2 ´ λk2|

|λk2|
` |λ2 ´ λk2|

ȷ

`
|λ2 ´ λk2|

|λk2|
¨

ˇ

ˇ

ˇ

A

wk
1 , λ

k
1

Eˇ

ˇ

ˇ
.



12 YING CUI, TIM HOHEISEL, TRAN T. A. NGHIA, AND DEFENG SUN

As λ2 can be chosen around λk2, the above inequality implies

|wk
2 | ď ϵ

„

}λk1}

|λk2|
` 1

ȷ

`
|
@

wk
1 , λ

k
1

D

|

|λk2|
.

Since pλk1, λ
k
2q Ñ pλ̄1,´1q and pwk

1 , w
k
2q Ñ p0, w2q, we get from the above inequality that

|w2| ď ϵp}λ̄1} ` 1q for any ϵ ą 0.

This tells us that w2 “ 0, which verifies the claim at the beginning. □

Combining Lemma 3.2, Proposition 3.3, and Proposition 3.4 with Theorem 2.8, we obtain the
sufficient condition for Lipschitz stability of the solution mapping of parametric problems P pA, b, µq

in (29) and QpA, b, µ, vq in (31) below.

Theorem 3.5. Let x̄ be a solution of P pĀ, b̄, µ̄q for pĀ, b̄, µ̄q P LpX,Yq ˆYˆR`` and suppose that
g˚ is a C2-cone reducible function at z̄ “ 1

µ̄Ā
˚pb̄´ Āx̄q. Assume further that

ker ĀX par Bg˚pz̄q “ t0u. (45)

Then, the solution mapping pS defined in (32) is single-valued and Lipschitz continuous around

pĀ, b̄, µ̄, 0q with pSpĀ, b̄, µ̄, 0q “ x̄. Consequently, the solution mapping S of problem (29) is also
single-valued and Lipschitz continuous around pĀ, b̄, µ̄q with SpĀ, b̄, µ̄q “ x̄.

Proof. Let ȳ be the unique solution of the dual problem DpĀ, b̄, µ̄, 0q in (33). Note from Propo-
sition 3.1 that z̄ “ A˚ȳ. By Lemma 3.2, the partial constraint nondegeneracy holds at pȳ, g˚pz̄qq

for the dual problem D1pĀ, b̄, µ̄, 0q in (34). By Proposition 3.4, the generalized SSOSC for the
dual problem D1pĀ, b̄, µ̄, 0q is also satisfied. Moreover, since g˚ is C2-cone reducible at z̄, its epi-
graph epi g˚ is C2-cone reducible at Gpū, p̄q from (35) with ū “ pȳ, g˚pz̄qq and p̄ “ pĀ, b̄, µ̄, 0q.
We are in the position of applying Theorem 2.8 to the dual problem (34). By the discussion af-
ter Definition 2.4, the Lagrange multiplier mapping Λ of D1pA, b, µ, vq must have a single-valued
and Lipschitz continuous localization around pĀ, b̄, µ̄, 0q for x̄. By Proposition 3.3, ΛpA, b, µ, vq “

pSpA, b, µ, vq ˆ t1u. Thus the solution mapping pS has a single-valued and Lipschitz continuous lo-
calization around pĀ, b̄, µ̄, 0q for x̄. The desired statements now follow from Corollary 2.3 and the

fact that SpA, b, µq “ pSpA, b, µ, 0q. □

Remark 3.6 (The class of C2-cone reducible conjugates). Our main assumption on the regularizer
g in Theorem 3.5 to have a conjugate g˚ that is C2-cone reducible at z̄ appears to be restrictive at
first glance. However, it turns out that many important convex regularizers g satisfy this condition.
We furnish evidence for this by the following list of (important) examples:

(a) (Convex piecewise linear functions) The proper convex function g : X Ñ R Y t8u is called
convex piecewise linear on its domain if dom g can be represented as the union of finitely
many polyhedral sets, relative to each of which gpxq is given by an expression xa, xy ` b for
some a P X and b P R; see, e.g., [27, Definition 2.47]. The Fenchel conjugate of g is also a
piecewise linear function according to [27, Theorem 11.14]. Thus, the epigraph of g˚ is a
polyhedra by [27, Theorem 2.49]. It follows from [2, Example 3.139] that epi g˚ is C2-cone
reducible. This tells us that the conjugate of any proper convex piecewise linear function
is C2-cone reducible.

(b) (Support functions of C2-cone reducible set) Let g be the support function of a closed, convex,
and C2-cone reducible set C Ă X, i.e.,

gpxq “ σCpxq :“ sup txv, xy | v P C u . (46)

Note that g˚ “ δC , the indicator function of C. Hence epi g˚ “ C ˆ R`. Obviously, R`

is polyhedral, hence C2-cone reducible [2, Example 3.139]. Thus, the Cartesian product
C ˆ R` is C2-cone reducible. It follows that g˚ is C2-cone reducible.
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This class of support functions is broad. It includes norm functions that are widely used
as regularizers, see the two following examples.

(c) (ℓ1{ℓ2 norm) Let g be the ℓ1{ℓ2 norm in Rn given by

gpxq “ }x}1,2 :“
ÿ

JPG
}xJ} for any x “ pxJqJPG P Rn, (47)

where G is a partition of t1, 2, . . . , nu withm different groups J P G and }xJ} is the Euclidean

norm at xJ P R|J | for any J P G. We note that this covers the ℓ1 norm by the partition
ttiu | i “ 1, . . . , nu.

Now, define the set C Ă Rn by

C :“
ź

JPG
BJ ,

where BJ is the (Euclidean) unit ball in R|J |. Then it is easy to see that g “ σC . Note

that BJ “ tv P R|J ||hpvq :“ 1 ´ }v}2 P R`u is C2-cone reducible at any v with }v} “ 1, as

hpvq “ 0 and J hpvq : R|J | Ñ R, x ÞÑ ´2vTx is surjective. As discussed after Definition 2.7,
BJ is also C2-cone reducible at any v̄ P intBJ . Thus, it is C2-cone reducible at any v̄ P BJ .
It follows that the Cartesian product C defined above is C2-cone reducible. Consequently,
g˚ “ δC is C2-cone reducible.

(d) (Nuclear norm) Another important regularizer is the nuclear norm }X}˚, the sum of all
singular values of X P Rmˆn (m ď n). Its Fenchel conjugate is also C2-cone reducible; see,
e.g., [10, Proposition 3.2 and Remark 3.4]. This fact can be explained directly and differently
as follows. The nuclear norm can be written as the support function }X}˚ “ σBpXq, where
B “ tZ P Rmˆn| }Z}2 ď 1u is the spectral unit ball in Rmˆn with } ¨ }2 being the spectral
norm. We show next that B is C2-cone reducible at any Z̄ on the boundary of B, i.e.,
}Z̄}2 “ 1. Note that the spectral unit ball is represented by

B “
␣

Z P Rmˆn|GpZq :“ In ´ ZTZ P Sn`
(

, (48)

where In is the n ˆ n identity matrix and Sn` is the set of all positive semidefinite n ˆ n
matrices. As the positive semidefinite cone Sn` is C2-cone reducible [2, Example 3.140],
it suffices to show that Z̄ is nondegenerate for G with respect to Sn` according to [31,
Proposition 3.2], which means

rgeJGpZ̄q ` linTSn`pGpZ̄qq “ Sn, (49)

where Sn is the space of all n ˆ n symmetric matrices. Suppose the Singular Value De-
composition (SVD) of Z̄ is Z̄ “ ŪΣV̄ T , where Ū P Rmˆm and V̄ P Rnˆn are orthogonal
matrices and Σ “

`

Diag pσ1, . . . , σmq 0
˘

has two matrix blocks: the first block of m ˆ m

is the diagonal matrix containing all singular values σ1 ě σ2 . . . ě σm of Z̄ and the second
block is just zero mˆ pn´mq matrix. Note that

JGpZ̄qX “ ´Z̄TX ´XT Z̄ “ ´V̄ ΣT ŪTX ´XT ŪΣV̄ T for any X P Rmˆn. (50)

Since }Z̄}2 “ 1, we have σ1 “ 1. Let p be the multiplicity of σ1 in tσ1, . . . , σmu, i.e.,

1 “ σp ą σp`1 (with σm`1 :“ 0). Choose X “ Ū

ˆ

A 0
0 0

˙

V̄ T for any A P Sp, we derive

from (50) that

JGpZ̄qX “ ´V̄ ΣT

ˆ

A 0
0 0

˙

V̄ T ´ V̄

ˆ

A 0
0 0

˙

ΣV̄ T “ ´2V̄

ˆ

A 0
0 0

˙

V̄ T .
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It follows that

rge JGpZ̄q Ą

"

V̄

ˆ

A 0
0 0

˙

V̄ T | A P Sp
*

. (51)

Moreover, observe further that

TSn`pGpZ̄qq “ TSn`pV̄ pIn ´ ΣTΣqV̄ T q

“ TSn`

¨

˝V̄

¨

˝

0pˆp 0 0
0 Diag p1 ´ σ2p`1, . . . , 1 ´ σ2mq 0
0 0 In´m

˛

‚V̄ T

˛

‚.

By the well-known formula of tangent cone of the positive semidefinite cone [2, Exam-
ple 2.65], we have

TSn`pGpZ̄qq “

"

V̄

ˆ

A B
BT C

˙

V̄ T | A P Sp`, B P Rpˆpn´pq, C P Sn´p

*

.

It follows that

lin TSn`pGpZ̄qq “

"

V̄

ˆ

0 B
BT C

˙

V̄ T | B P Rpˆpn´pq, C P Sn´p

*

,

which together with (51) verifies (49). Thus, Z̄ is nondegenerate for G with respect to Sn`.
The preimage B “ G´1pSn`q is C2-cone reducible at Z̄ due to [31, Proposition 3.2]. As B is
always C2-cone reducible at point in is interior, it is C2-cone reducible at any Z̄ P B. This
explains the fact that the Fenchel conjugate of the nuclear norm is C2-cone reducible. There
are many more spectral functions whose Fenchel conjugates are also C2-cone reducible [10,
Proposition 3.2].

△

We now show that qualification condition (45) is necessary for the solution map SpĀ, ¨, µ̄q in (30)
to be single-valued.

Theorem 3.7 (Necessity of single-valuedness of solution mapping SpĀ, ¨, µ̄q). Suppose that the
solution mapping SpĀ, b, µ̄q in (30) is single-valued around b̄ with x̄ “ SpĀ, b̄, µ̄q. Then, with
z̄ “ 1

µ̄Ā
˚pb̄´ Āx̄q, condition (45) is satisfied.

Proof. Suppose that the solution mapping SpĀ, b, µ̄q in (30) is single-valued around b̄ with x̄ “

SpĀ, b̄, µ̄q. By first-order optimality conditions, we have z̄ P Bgpx̄q, i.e., x̄ P Bg˚pz̄q. Since Bg˚pz̄q is
a closed convex set, we have

cl rri Bg˚pz̄qs “ Bg˚pz̄q, (52)

see, e.g., [26, Theorem 6.3]. It follows that there exists a sequence txk P ri Bg˚pz̄qu Ñ x̄. Therefore,
we find that

bk :“ b̄` Āpxk ´ x̄q Ñ b̄.

Observe that
1

µ̄
Ā˚pbk ´ Āxkq “

1

µ̄
Ā˚pb̄´ Āx̄q “ z̄ P Bgpxkq.

By first-order optimality, we thus infer that xk P SpĀ, bk, µ̄q is the (by assumption) unique solution
of the problem P pĀ, bk, µ̄q for all k P N sufficiently large. By [13, Theorem 3.1], which provides a
full characterization of solution uniqueness for convex optimization problems, we obtain that

ker ĀX conepBg˚pz̄q ´ xkq “ t0u (53)

for all k P N sufficiently large. As xk P ri Bg˚pz̄q, we have cone pBg˚pz̄q ´ xkq “ par Bg˚pz̄q (cf. (9)).
This together with (53) verifies the condition (45). □
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We are now in a position to establish the the main result of this paper, which shows that condition
(45) is not only sufficient for Lipschitz stability of the solution mapping (30) around pĀ, b̄, µ̄q, but
also necessary provided that the function g˚ is C2-cone reducible. Moreover, we show that the
solution mapping S is single-valued and Lipschitz continuous around the point in question if and
only if it is single-valued, i.e., the Lipschitz stability is automatic whenever the mapping is single-
valued. This equivalence is interesting, as the Lipschitz stability is usually not a free property for
single-valued mappings in general.

Theorem 3.8 (Full characterization of Lipschitz stability of solution mapping S). Suppose that
x̄ is an optimal solution of problem P pĀ, b̄, µ̄q and that the function g˚ is C2-cone reducible at
z̄ “ 1

µ̄Ā
˚pb̄´ Āx̄q. Then the following are equivalent:

(i) Condition (45) is satisfied.
(ii) The solution mapping SpA, b, µq in (30) of problem (29) is single-valued and Lipschitz con-

tinuous around pĀ, b̄, µ̄q with x̄ “ SpĀ, b̄, µ̄q.
(iii) The solution mapping SpĀ, ¨, ¨q is single-valued and Lipschitz continuous around pb̄, µ̄q with

x̄ “ SpĀ, b̄, µ̄q.
(iv) The solution mapping SpĀ, ¨, µ̄q is single-valued and Lipschitz continuous around b̄ with

x̄ “ SpĀ, b̄, µ̄q.
(v) The solution mapping S in (30) is single-valued around pĀ, b̄, µ̄q with x̄ “ SpĀ, b̄, µ̄q.
(vi) The solution mapping SpĀ, ¨, ¨q is single-valued around pb̄, µ̄q with x̄ “ SpĀ, b̄, µ̄q.
(vii) The solution mapping SpĀ, ¨, µ̄q is single-valued around b̄ with x̄ “ SpĀ, b̄, µ̄q.

Proof. The implication [(i)ñ(ii)] follows from Theorem 3.5. Implications [(ii)ñ(iii)ñ(iv)ñ(vii)]
are trivial. We also have [(ii)ñ(v)ñ(vi)ñ(vii)]. Moreover, [(vii)ñ(i)] is obtained from Theo-
rem 3.7. □

Theorem 3.8 generalizes the recent results in [24, Theorem 3.12 and Theorem 4.7], which establish
the equivalence between (iii) and (vi) when regularizers g include the ℓ1{ℓ2 norm and the nuclear
norm via a different approach. Note from our Remark 3.6, conjugates of the latter two regularizers
are C2-cone reducible. Moreover, our condition (45) recovers the characterizations of Lipschitz
stability for the solution mapping in (30) used in [24] for these two cases and also the one in
[3, Assumption 4.3] when g is the ℓ1-norm, which appeared in [23, 34] as a sufficient condition
for the Lasso problem. The implication [(vii)ùñ(iv)] in this theorem is also stronger than [11,
Theorem 3.3], which shows that if SpĀ, ¨, µ̄q is single-valued around b̄, then it is continuous when g
is a convex piecewise linear function that is C2-cone reducible; see, e.g., Remark 3.6. Stability of the
solution mapping S with respect to variable b seems to be important in the proof of our Theorem 3.7
and Theorem 3.8. By fixing the parameter b “ b̄, our condition (45) is also sufficient for the Lipschitz
stability of solution mappings Sp¨, b̄, µ̄q, Sp¨, b̄, ¨q, and SpĀ, b̄, ¨q around the corresponding points due
to the implication [(i)ñ(ii)] in Theorem 3.8. Whether it is necessary is an open question.

We close out this section by showing that the Lipschitz stability of the solution mapping of
problem (29) is automatic when x̄ is the unique solution of problem P pĀ, b̄, µ̄q and the so-called
Dual Strict Complementarity Condition is satisfied and granted that g˚ is C2-cone reducible.

Theorem 3.9. Suppose that x̄ is an optimal solution of problem P pĀ, b̄, µ̄q and that the function
g˚ is C2-cone reducible at z̄ “ 1

µ̄Ā
˚pb̄ ´ Āx̄q. Moreover, suppose that the following Dual Strict

Complementarity Condition holds
x̄ P ri Bg˚pz̄q. (54)

Then the solution mapping S in (30) is single-valued and Lipschitz continuous around pĀ, b̄, µ̄q with
SpĀ, b̄, µ̄q “ x̄ if and only if x̄ is the unique solution of problem P pĀ, b̄, µ̄q.

Proof. The direction “ñ” is trivial. To prove the opposite implication, we suppose that x̄ is the
unique solution of problem P pĀ, b̄, µ̄q and that the condition (54) is satisfied. By [13, Theorem 3.1],
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we have

ker ĀX conepBg˚pz̄q ´ x̄q “ t0u with z̄ “ ´
1

µ̄
Ā˚pĀx̄´ b̄q. (55)

As x̄ P ri Bg˚pz̄q by (54), we obtain from (9) that

cone pBg˚pz̄q ´ x̄q “ par Bg˚pz̄q.

This together (55) tells us that condition (45) is satisfied. By Theorem 3.8, the solution mapping
S is single-valued and Lipschitz continuous around pĀ, b̄, µ̄q with SpĀ, b̄, µ̄q “ x̄. □

The above result resembles [24, Corollary 4.8] when g is the nuclear norm and the condition (54)
is replaced by the Strict Complementarity Condition:

v̄ P ri Bgpx̄q. (56)

For the case of nuclear norm, it is shown in [13, Remark 3.7] that (54) and (56) are equivalent. But
at this stage, we do not know their correlation for more general C2-cone reducible functions g˚.

4. Full stability of convex additive-composite problems

In this section, we study the following optimization problem

P̃ pp̄q min
xPX

fpx, p̄q ` gpxq, (57)

where X and P are two Euclidean spaces, f : X ˆ P Ñ R Y t`8u, and g : X Ñ R Y t`8u is closed,
proper, convex. Suppose that x̄ P dom fp¨, p̄q X dom g is an optimal solution of problem (57).
Throughout this section, we assume that

(A) fp¨, p̄q is a convex function;
(B) fp¨, ¨q is twice continuously differentiable around px̄, p̄q.

Define the function φ : X ˆ P Ñ R Y t`8u by

φpx, pq :“ fpx, pq ` gpxq for all px, pq P X ˆ P. (58)

The two-parametric perturbation of problem (57) is constructed by

min
xPX

φpx, pq ´ xv, xy , (59)

with basic perturbation p P P and tilt parameter v P X. This certainly covers the problem (31).
Let us recall the definition of full stability introduced by Levy, Poliquin, and Rockafellar [19],

which is a far-reaching extension of the notion of tilt stability by Poliquin and Rockafellar [25].

Definition 4.1 (Full stability and tilt stability). The point x̄ is called a fully stable optimal solution
of problem (57) if there exists γ ą 0 such that the solution map

Mγpv, pq :“ argmin tφpx, pq ´ xv, xy | x P Bγpx̄qu for pv, pq P X ˆ P (60)

and the mapping

mγpv, pq :“ inf tφpx, pq ´ xv, xy | x P Bγpx̄qu (61)

are single-valued and Lipschitz continuous on some neighborhood of p0, p̄q P XˆP withMγp0, p̄q “ x̄.
The point x̄ is called a tilt stable optimal solution of problem (57) if the mapping Mγp¨, p̄q is

single-valued and Lipschitz continuous on some neighborhood of 0 P X with Mγp0, p̄q “ x̄.

As the function f is twice continuously differentiable around px̄, p̄q and g is closed, proper, convex,
the function φ is continuously prox-regular in x at x̄ for 0, with compatible parameterization by p
at p̄ in the sense of [19, Definition 2.1]. Moreover, we observe that the so-called basic constraint
qualification

p0, qq P B8φpx̄, p̄q ùñ q “ 0 (62)
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is also satisfied, where B8φpx̄, p̄q is the singular subdifferential of the function φ at px̄, p̄q defined
in (18). This is due to the sum rule of the singular subdifferential [20, Proposition 1.107] (see also
[27, Corollary 10.9]), which gives

B8φpx̄, p̄q “ B8gpx̄q ˆ t0u

using assumption (B). According to [19, Proposition 3.5], when the above basic constraint qualifica-
tion is satisfied, the condition in the definition of full stability that mγp¨, ¨q is Lipschitz continuous
on some neighborhood of p0, p̄q P X ˆ P is automatically met, provided that Mγp0, p̄q “ tx̄u. It is
also worth mentioning that the latter condition Mγp0, p̄q “ x̄ means that x̄ is the unique (global)
optimal solution of problem (57), since both functions fp¨, p̄q and gp¨q are convex in our framework.

Let us recall here [19, Theorem 2.3], [21, Theorem 4.4], and [25, Theorem 1.3], which provides
characterizations of full stability and tilt stability via second-order analysis.

Theorem 4.2 (Characterizations of full stability). Suppose that x̄ is an optimal solution of problem
(57). Then x̄ is a fully stable optimal solution of problem (57) if and only if the following two
conditions hold:

(a) inf txz, wy | pz, qq P D˚pBxφqpx̄, p̄| 0qpwqu ą 0 for all w P Xzt0u.
(b) p0, qq P D˚pBxφqpx̄, p̄| 0qp0q ùñ q “ 0.

Moreover, x̄ is a tilt stable optimal solution of problem (57) if and only if

inf txz, wy | z P D˚Bφp̄px̄| 0qpwqu ą 0 for all w P Xzt0u, (63)

where φp̄p¨q :“ φp¨, p̄q.

It is worth mentioning that in the original result of Levy, Poliquin, and Rockafellar [19, The-
orem 2.4], the condition in the above part (a) does not include the “infimum”. This equivalent
“infimum” form coming from [21, Theorem 4.4] is useful for us in this paper at some point.

Note also that Bxφpx, pq “ ∇xfpx, pq ` Bgpxq. It follows from the coderivative sum rule [20,
Theorem 1.62] that

D˚pBxφqpx̄, p̄| 0qpwq “ p∇2
xxfpx̄, p̄q˚w,∇xpfpx̄, p̄q˚wq `D˚Bgpx̄| ´ ∇xfpx̄, p̄qqpwq ˆ t0u. (64)

This tells us that condition (b) in Theorem 4.2 is always true in our setting. Moreover, condition (a)
in Theorem 4.2 turns to

@

∇2
xxfpx̄, p̄qw, w

D

` inftxz, wy | z P D˚Bgpx̄| ´ ∇xfpx̄, p̄qqpwqu ą 0 for all w P Xzt0u, (65)

which is also condition (63) again due to the the sum rule of the coderivative [20, Theorem 1.62]:

D˚Bxφp̄px̄| 0qpwq “ ∇2
xxfpx̄, p̄q˚w `D˚Bgpx̄| ´ ∇xfpx̄, p̄qqpwq.

Hence, both full stability and tilt stability are equivalent for our problem (57) at the optimal
solution x̄ and they are characterized by condition (65).

As fp¨, p̄q is a convex function, ∇2
xxfpx̄, p̄q is a positive semidefinite operator. Its square root op-

erator Ā :“ p∇2
xxfpx̄, p̄qq

1
2 P LpX,Xq with Ā˚Ā “ ∇2

xxfpx̄, p̄q is unique and well-defined. Condition
(65) is equivalent to

}Āw}2 ` inftxz, wy | z P D˚Bg̃px̄| 0qpwqu ą 0 for all w P Xzt0u (66)

with g̃pxq :“ gpxq ` x∇xfpx̄, p̄q, x´ x̄y for any x P X. It follows from Theorem 4.2 that the above
condition is satisfied if and only if x̄ is a tilt stable optimal solution of the following problem

min
xPX

1

2
}Āx´ b̄}2 ` g̃pxq with b̄ :“ Āx̄. (67)

This optimization problem is in the format of (29). The above observation allows us to establish a
simple necessary condition of the tilt stability as below.
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Theorem 4.3 (Necessary condition for tilt stability). Suppose that x̄ is a tilt stable optimal solution
of problem (57). Then we have

ker∇2
xxfpx̄, p̄q X par Bg˚pz̄q “ t0u with z̄ :“ ´∇xfpx̄, p̄q. (68)

Proof. Suppose that x̄ is a tilt stable optimal solution of problem (57). As discussed above, it is also
a tilt stable optimal solution of problem (67). In particular, by first-order optimality conditions,
z̄ P Bgpx̄q, i.e., x̄ P Bg˚pz̄q, thus (68) is well-defined. Therefore, there exists a sequence txk P

ri Bg˚pz̄qu Ñ x̄. Define

vk :“ ∇2
xxfpx̄, p̄qpxk ´ x̄q Ñ 0

and consider the linearly perturbed problem

min
xPX

ψkpxq :“
1

2
}Āx´ b̄}2 ` g̃pxq ´ xvk, xy (69)

As z̄ P Bgpxkq and Ā˚Ā “ ∇2
xxfpx̄, p̄q, we have

Bψkpxkq “ Ā˚pĀxk ´ Āx̄q ` Bgpxkq ´ z̄ ´ vk “ ∇2
xxfpx̄, p̄qpxk ´ x̄q ` Bgpxkq ´ z̄ ´ vk Q 0.

Hence, xk is an optimal solution of problem (69). Since vk Ñ 0 and x̄ is a tilt stable optimal
solution of problem (67), xk is the unique solution of problem (69) (for all k P N sufficiently large).
Define ĝkpxq :“ g̃pxq ´ xvk, xy and obtain from [13, Theorem 3.1] that

ker ĀX conepBĝ˚
k p´vkq ´ xkq “ t0u, (70)

which is indeed the characterization for solution uniqueness of problem (69). Note that

ĝkpxq “ gpxq ´ xz̄, x´ x̄y ´ xvk, xy .

We have Bĝkpxq “ Bgpxq ´ z̄ ´ vk. It follows that Bĝ˚
k p´vkq “ Bg˚pz̄q. Since xk P ri Bg˚pz̄q, we

obtain from (9) that

conepBĝ˚p´vkq ´ xkq “ conepBg˚pz̄q ´ xkq “ par Bg˚pz̄q.

This together with (70) and the fact that ker Ā “ ker∇2
xxfpx̄, p̄q verifies (68). □

When the Fenchel conjugate g˚ is C2-cone reducible, we show next that condition (68) is also
sufficient for full stability and tilt stability of problem (57).

Theorem 4.4 (Characterization of full stability and sufficient condition for Lipschitz stability).
Suppose that x̄ is an optimal solution of problem (57) and that the function g˚ is C2-cone reducible
at z̄ “ ´∇xfpx̄, p̄q P Bgpx̄q. Then the following are equivalent:

(i) x̄ is a fully stable optimal solution of problem (57).
(ii) x̄ is a tilt stable optimal solution of problem (57).
(iii) Condition (68) is satisfied.

Consequently, if additionally fp¨, pq is convex for any p P P around p̄, then the solution mapping

Sppq :“ argmin tfpx, pq ` gpxq| x P Xu (71)

is single-valued and Lipschitz continuous around p̄ with Spp̄q “ x̄ provided that condition (68) is
satisfied.

Proof. Suppose that x̄ is an optimal solution of problem (57). Note that x̄ is also an optimal
solution of problem (67). The equivalence between (i) and (ii) follows the arguments discussed
after Theorem 4.2. Moreover, the implication [(ii)ñ(iii)] is obtained by Theorem 4.3. It remains
to verify [(iii)ñ(ii)]. Indeed, suppose that condition (68) is satisfied and consider the following
linearly perturbed version of (67):

min
xPX

1

2
}Āx´ b̄}2 ` g̃pxq ´ xv, xy (72)



LIPSCHITZ STABILITY OF REGULARIZED LEAST-SQUARES 19

with tilt parameter v P X. As Bg̃˚p0q “ Bg˚pz̄q, condition (68) is equivalent to

ker ĀX par Bg̃˚p0q “ t0u.

Since g˚ is C2-cone reducible at z̄, we infer that g̃˚ “ g˚pp¨q ´ z̄q ´ xz̄, x̄y is C2-cone reducible at
0. Applying Theorem 3.5 to problem (72) tells us that its solution mapping with variable v is
single-valued and Lipschitz continuous around 0, i.e., x̄ is a tilt stable solution of problem (72). By
Theorem 4.2, we have

}Āw}2 ` inftxz, wy | z P D˚Bg̃px̄| 0qpwqu ą 0 for all w P Xzt0u

as in (66). Note also that }Āw}2 “
@

Ā˚Āw, w
D

“
@

∇2
xxfpx̄, p̄qw, w

D

. The above condition is
equivalent to (65), which is exactly the condition (65) or (63). By Theorem 4.2, x̄ is a tilt stable
optimal solution of problem (57), which means (ii) is satisfied.

Finally, suppose that the function fp¨, pq is convex for any p P P around p̄ and condition (68) is
satisfied. Hence, x̄ is a fully stable optimal solution. It follows that there exists some γ ą 0 such
that the mapping

Mγpv, pq :“ argmin tfpx, pq ` gpxq ´ xv, xy | x P Bγpx̄qu

is single-valued and Lipschitz continuous on some neighborhood of p̄ with Mγp0, p̄q “ x̄. This
allows us to find ε ą 0 sufficiently small such that Mγpt0u ˆ Bεpp̄qq Ă intBγpx̄q. Hence, Mγp0, pq

for p P Bεpp̄q is the unique local optimal solution of

min
xPX

fpx, pq ` gpxq.

As the function fp¨, pq is convex for p P Bεpp̄q, Mγp0, pq is also the unique global optimal solution.
As Sppq P Mγp0, pq for p P Bεpp̄q, we have Sppq “ Mγp0, pq. Hence, Sppq is single-valued and
Lipschitz continuous on Bεpp̄q. The proof is completed. □

Let us conclude this section by providing a simple example showing that condition (68) is not
necessary for the Lipschitz stability of the solution mapping Sppq in (71). This essentially highlights
the difference between Theorem 3.8 and Theorem 4.4, where the function f in Theorem 3.8 has a
special structure as a quadratic function.

Example 4.5. Consider the following simple optimization problem

min
xPR

x4p, (73)

where p P R is a parameter around p̄ “ 1, fpx, pq “ x4p, and gpxq “ 0. The solution set Sppq “ t0u

is single-valued and Lipschitz continuous around p̄. At p̄, the solution of problem (73) is x̄ “ 0.
Note that z̄ “ ´∇xfpx̄, p̄q “ 0, g˚pvq “ δ0pvq for v P R, and ∇2

xxfpx̄, p̄q “ 0. It follows that
Bg˚pz̄q “ R and ker∇2

xxfpx̄, p̄q “ R, which implies

ker∇2
xxfpx̄, p̄q X par Bg˚pz̄q “ R.

Conditions (68) fails in this case.

5. Conclusion

In this paper, we provide necessary and sufficient conditions for the Lipschitz stability of the
solution mapping (30) of regularized least-squares optimization problem in the format of (29).
When the Fenchel conjugate of the regularizer g is C2-cone reducible, we show that the Lipschitz
stability of the solution mapping (30) is equivalent to our condition (45). This result recovers the
corresponding findings in [3, 24] when the regularizer g is the ℓ1 norm, the ℓ1{ℓ2 norm, or the
nuclear norm.

One of the open questions we plan to investigate in the future is the computation of the Lipschitz
modulus of the solution mapping when Lipschitz stability occurs. In theory, this Lipschitz modulus
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may be obtained by calculating the coderivative of the solution mapping (30); see, e.g., [20, The-
orem 4.10] and [27, Theorem 9.39]. However, this approach requires some involved computations
of second-order structures of the regularizer g, which can be particularly challenging when g does
not have a polyhedral structure. Finding the Lipschitz modulus without relying on second-order
information of g, as in our approach, remains an open area of research that we wish to continue
exploring.

Another interesting topic that we aim to study is the sensitivity analysis of the solution mapping
(30) under our condition (45). Some initial results in this direction have been established recently
in [3, 4, 5, 6, 7, 32]. However, [24, Example 3.14] provides an example where the solution mapping
(30) is single-valued and Lipschitz continuous but not differentiable when g is the ℓ1{ℓ2 norm.
Identifying the conditions under which the solution mapping is differentiable is one of our ongoing
projects.
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