Fundamentals of Convex Analysi

Stability Analysis of regularized least-squares problems

Regularized Least-Squares: Stability Properties and the Maximum Entropy on the Mean Method

Tim Hoheisel

Autumn School on Constrained Optimization and Machine Learning

Trier, October 9-11, 2024.

▲ロト▲御ト▲臣ト▲臣ト 臣 めんぐ

Stability Analysis of regularized least-squares problems

Outline

1 Fundamentals of Convex Analysis

- Convex sets and functions
- Minimization and Convexity
- Subdifferentiation and conjugacy of convex functions
- Proximal operators
- 2 Stability Analysis of regularized least-squares problems
 - Tools from Variational Analysis
 - Application to stability of regularized least-squares

3 The Maximum Entropy on the Mean Method for Linear Inverse Problems

- Measure-theoretic tools
- The MEM framework
- Cramér's function and the MEM functional
- The case where X is compact
- A data-driven approach for the MEM framework
- Beyond compactness of X

Convex sets and functions

1. Fundamentals from Convex Analysis

'What's dead may never die!'

Convex sets and cones

"The great watershed in optimization is not between linearity and nonlinearity, but convexity and nonconvexity." (R.T. Rockafellar, *1935)

 $S \subset \mathbb{E}$ is said to be

- convex if $\lambda S + (1 \lambda)S \subset S$ ($\lambda \in (0, 1)$);
- a cone if $\lambda S \subset S$ ($\lambda \ge 0$).

Note that $K \subset \mathbb{E}$ is a convex cone iff $K + K \subset K$.

Figure: Convex set/non-convex cone

イロト イポト イヨト イヨト

Relative topology and paralell subspaces

Affine set: A set S = U + x with $x \in \mathbb{E}$ and a subspace $U \subset$ is called *affine*. The subspace U is uniquely determined by $U = \operatorname{aff} (S - x) = S - S$.

Affine hull: aff $M := \bigcap \{S \in \mathbb{E} \mid M \subset S, S \text{ affine} \}$.

Relative interior/boundary: $C \subset \mathbb{E}$ convex.

ri C := $\{x \in C \mid \exists \varepsilon > 0 : B_{\varepsilon}(x) \cap \operatorname{aff} C \subset C\}$ $x \in \operatorname{ri} C$ \Leftrightarrow aff $(C - x) = \mathbb{R}_{+}(C - x) =: \operatorname{par} C$ (relative interior) (parallel subspace)

С	aff C	ri C
{ <i>X</i> }	{ <i>x</i> }	{ <i>x</i> }
[x, x']	$\{\lambda x + (1 - \lambda)x' \mid \lambda \in \mathbb{R}\}$	(x, x')
$\overline{B}_{\varepsilon}(x)$	E	$B_{\varepsilon}(x)$

Extended real-valued functions: an epigraphical perspective

Let $f : \mathbb{E} \to \overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}.$

- epi $f := \{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) \le \alpha\}$ (epigraph)
- $\operatorname{epi}_{<} f := \{(x, \alpha) \in \mathbb{E} \times \mathbb{R} \mid f(x) < \alpha\}$ (strict epigraph)
- dom $f := \{x \in \mathbb{E} \mid f(x) < \infty\}$ (domain).
- $\operatorname{lev}_r f := \{x \mid f(x) \le r\}$ (level set)
- \rightarrow f is uniquely determined through epi f!

Figure: Epigraph of $f : \mathbb{R} \to \mathbb{R}$

 $\begin{array}{ll} f \text{ proper } :\Leftrightarrow & -\infty < f \not\equiv +\infty & \Leftrightarrow^{1} & \mathrm{dom} \, f \neq \emptyset \\ f \text{ convex } :\Leftrightarrow & \mathrm{epi} \, f/\mathrm{epi} \,_{<} f \, \mathrm{convex} & \Leftrightarrow^{1} & f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) \, \forall x, y \in \mathbb{E}, \ \lambda \in [0, 1] \\ & \Rightarrow & \mathrm{lev}_{r} f \quad \mathrm{convex} \quad \forall r \in \mathbb{R}. \end{array}$

$$\Gamma := \left\{ f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\} \mid f \text{ proper, convex} \right\}$$

¹Only for $f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$

 Operation
 The Maximum Entropy on the Mean Method for Linear

 000000
 000000

Convex sets and functions

000000

Fundamentals of Convex Analysis

Lower semicontinuity Let $f : \mathbb{E} \to \mathbb{R}$ and $\bar{x} \in \mathbb{E}$. f(x)Lower limit: $\liminf_{x \to \bar{x}} f(x) := \inf \left\{ \alpha \mid \exists x_k \to \bar{x} : f(x_k) \to \alpha \right\}$ Lower semicontinuity: f is said to be *lsc* (or *closed*) at \bar{x} if $\liminf_{x\to \bar{x}} f(x) \ge f(\bar{x}).$ X $\overline{\mathbf{x}}$ $\Gamma_0 := \{f \in \Gamma \mid f \text{ closed}\}$ Figure: f not lsc at \bar{x} **Closure:** $\operatorname{cl} f : \mathbb{E} \to \overline{\mathbb{R}}, \quad (\operatorname{cl} f)(\overline{x}) := \liminf_{x \to \overline{x}} f(x).$ f(x)Facts: epi f f lsc \iff epif closed \iff $f = cl f \iff lev_r f$ closed $(r \in \mathbb{R})$ clf < fFigure: $f: x \mapsto \begin{cases} \frac{1}{x} & x > 0, \\ +\infty, & \text{else.} \end{cases}$

Convexity preserving operations (New from old)

1 Set Operations

For C, C_i $(i \in I) \subset \mathbb{B}, D \subset \mathbb{B}'$ convex, $F : \mathbb{B} \to \mathbb{B}'$ affine the following sets are convex:

- F(C)(affine image) 0 $F^{-1}(D)$ (affine pre-image) 0 C × D (Cartesian product) • $C_1 + C_2$ (Minkowski sum) (Intersection) $\bigcap_{i \in I} C_i$ 0
- Functional operations 2

For $f_i, g : \mathbb{E} \to \overline{\mathbb{R}}$ convex and $F : \mathbb{E}' \to \mathbb{E}$ affine the following functions are convex:

- (Affine pre-composition) $f := g \circ F$: epi $f = T^{-1}(epi g), T : (x, \alpha) \mapsto (F(x), \alpha)$
- (Epi-multiplication) $f := \lambda \star g := \lambda g\left(\frac{1}{\lambda}\right)$: epi $f = \lambda$ epi g
- (Pointwise supremum) $f := \sup_{i \in I} f_i$: epi $f = \bigcap_{i \in I} epi f_i$
- (Moreau envelope) $f: x \mapsto \inf_{u} \{g(u) + \frac{1}{2} ||x u||^2\}$: $\operatorname{epi} f = \operatorname{epi} g + \operatorname{epi} \frac{1}{2} || \cdot ||^2$.

Minimization and Convexity

Coercivity notions and existence of minimizers

- Let $f : \mathbb{E} \to \mathbb{R}$. Then f is called
 - i) <u>coercive</u> if $\lim_{\|x\|\to+\infty} f(x) = +\infty$;
 - ii) <u>supercoercive</u> if $\lim_{\|x\|\to+\infty} \frac{f(x)}{\|x\|} = +\infty$.

Lemma 1 (Level-boundedness = coercivity).

 $f: \mathbb{E} \to \overline{\mathbb{R}}$ is coercive if and only if it is level-bounded, i.e., $lev_{\alpha}f$ is bounded for all $\alpha \in \mathbb{R}$.

Theorem 2 (Existence of minima).

Let $f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$ be proper, lsc and level-bounded. Then $\operatorname{argmin}_{\mathbb{B}} f \neq \emptyset$.

Proof.

Pick {
$$x_k$$
} such that $f(x_k) \to f^* := \inf_{\mathbb{B}} f < \infty$; choose $\alpha \in (f^*, +\infty)$; set $L_\alpha := \{x \mid f(x) \le \alpha\}$.

$$\begin{array}{ll} L_{\alpha} \text{compact}, & x_{k} \in L_{\alpha} \ (k \text{ suff. large}) \end{array} \xrightarrow{Bolzano-Weierstrass} & \exists \overline{x} \in L_{\alpha}, \ \{x_{k}\} \rightarrow_{K} \overline{x} \\ & \Longrightarrow & f(\overline{x}) \overset{f \text{lsc}}{\leq} \liminf_{\substack{x \rightarrow \overline{x} \\ x \rightarrow \overline{x} \ \in argmin \ f.} f(x_{k}) = f^{*} \\ & \Longrightarrow & \overline{x} \in \operatorname{argmin} f. \end{array}$$

Minimization and Convexity

Stronger notions of convexity

- Let $f \in \Gamma$ and $C \subset \text{dom } f$ convex. Then f is said to be
 - a) strictly convex on C if

 $f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y) \quad (x, y, \in C, x \neq y, \ \lambda \in (0, 1)).$

b) strongly convex on C if there exists $\sigma > 0$ such that

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) - \frac{\sigma}{2}\lambda(1 - \lambda)||x - y||^2 \quad (x, y, \in C, \ \lambda \in (0, 1))$$

The scalar $\sigma > 0$ is called *modulus of strong convexity* of *f* (on *C*).

For C = dom f we simply call f strictly and strongly convex, respectively.

Proposition 3.

Let $f \in \Gamma$. Then:

- a) $f \sigma$ -strongly convex $\iff f \frac{\sigma}{2} \| \cdot \|^2$ convex.
- b) f σ -strongly convex \implies f supercoercive and strictly convex.

Guide.

a) Elementary computation.

b) Use the (nontrivial) fact that $f - \frac{\sigma}{2} \|\cdot\|^2$ has an affine minorant $g(x) = \langle v, x \rangle + \beta$ to verify supercoercivity. Strict convexity is straightforward.

Minimization and Convexity

The basic results in convex optimization

Proposition 4.

Let $f \in \Gamma$. Then every local minimizer of f (over \mathbb{E}) is a global minimizer and $\operatorname{argmin} f$ is convex (possibly empty).

Proposition 5 (Uniqueness of minimizers).

Let $f \in \Gamma$ be strictly convex. Then f has at most one minimizer.

Corollary 6 (Minimizing the sum of convex functions).

Let $f, g \in \Gamma_0$ such that dom $f \cap \text{dom } g \neq \emptyset$. Suppose that one of the following holds:

- i) f is supercoercive;
- ii) f is coercive and g is bounded from below.

Then f + g is coercive and has a minimizer (over \mathbb{E}). If f or g is strictly convex, f + g has exactly one minimizer.

Guide.

Observe $f + g \in \Gamma_0$. Now show in either case that f + g is coercive, and apply Theorem 2. The uniqueness result follows immediately from Proposition 5, realizing that $f + g \in \Gamma_0$ is strictly convex if one of the summands is.

5000000000000000000

Minimization and Convexity

Parametric minimization aka infimal projection

Theorem 7 (Infimal projection).

Let $h : \mathbb{E}_1 \times \mathbb{E}_2 \to \mathbb{R} \cup \{+\infty\}$ be convex. Then the optimal value function

$$\varphi: \mathbb{E}_1 \to \overline{\mathbb{R}}, \ \varphi(x) := \inf_{y \in \mathbb{E}_2} h(x, y)$$

is convex. Moreover, the set-valued mapping

$$x \mapsto \operatorname*{argmin}_{y \in \mathbb{B}_2} h(x, y) \subset \mathbb{E}_2.$$

is convex-valued.

Proof.

It can easily be shown that $epi_{<}\varphi = L(epi_{<}h)$ under the linear mapping $L : (x, y, \alpha) \mapsto (x, \alpha)$. The remaining assertion follows immediately from Proposition 4, since $y \mapsto h(x, y)$ is convex for all $x \in \mathbb{E}_1$.

5000000000000000000

ne Maximum Entropy on the Mean 0000 0000 000000 000000 000000

Subdifferentiation and conjugacy of convex functions

The convex subdifferential

Definition 8.

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$. A vector $v \in \mathbb{E}$ is called a *subgradient* of v at \overline{x} if

$$f(x) \ge f(\bar{x}) + \langle v, x - \bar{x} \rangle \quad (x \in \mathbb{E}).$$
⁽¹⁾

We denote by $\partial f(\bar{x})$ the set of all subgradients of f at \bar{x} and call it the *(convex)* subdifferential of f at \bar{x} .

The inequality (1) is referred to as subgradient inequality.

Slogan: "The subgradients of f at \bar{x} are the slopes of affine minorants of f that coincide with f at \bar{x} ".

Figure: Affine minorants at a point of nondifferentiability

Subdifferentiation and conjugacy of convex functions

Examples of subdifferentiation

■ (Indicator function/Normal cone) Let $S \subset \mathbb{E}$.

Indicator function of S:

$$\delta_{\mathcal{S}}: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}, \quad \delta_{\mathcal{S}}(\mathbf{x}) := \begin{cases} 0, & \mathbf{x} \in \mathcal{S}, \\ +\infty, & \text{else.} \end{cases}$$

$$\partial \delta_{S}(\bar{\mathbf{x}}) = \left\{ v \mid \delta_{S}(\mathbf{x}) \ge \delta_{S}(\bar{\mathbf{x}}) + \langle v, \mathbf{x} - \bar{\mathbf{x}} \rangle \ (\mathbf{x} \in \mathbb{E}) \right\}$$
$$= \left\{ v \in \mathbb{E} \mid \langle v, \mathbf{x} - \bar{\mathbf{x}} \rangle \le \mathbf{0} \ (\mathbf{x} \in S) \right\}$$
$$=: \quad N_{S}(\bar{\mathbf{x}}) \quad (\bar{\mathbf{x}} \in S)$$

Figure: Normal cone

• (Euclidean norm) $\|\cdot\| := \sqrt{\langle \cdot, \cdot \rangle}$. Then

$$\partial \| \cdot \| (\bar{x}) = \begin{cases} \left\{ \frac{\bar{x}}{\|\bar{x}\|} \right\} & \text{if } \bar{x} \neq 0, \\ \mathbb{B} & \text{if } \bar{x} = 0. \end{cases}$$

(Empty subdifferential)

$$f: x \in \mathbb{R} \mapsto \begin{cases} -\sqrt{x} & \text{if } x \ge 0, \\ +\infty & \text{else.} \end{cases}$$
$$\partial f(x) = \begin{cases} \left\{ -\frac{1}{2\sqrt{x}} \right\}, & x > 0, \\ 0, & \text{else.} \end{cases}$$

			\mathbf{k}		_			
•	Þ	< Ø	• •	≡×	₹Ē	Þ	ē.	୬୯୯

Subdifferentiation and conjugacy of convex functions

The Fenchel conjugate

For $f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$ let $f^* : \mathbb{E} \to \overline{\mathbb{R}}$ be the function whose epigraph encodes the affine minorants of f:

$$\begin{array}{l} \operatorname{epi} f^* \stackrel{1}{=} \left\{ (v,\beta) \mid \langle v, x \rangle - \beta \leq f(x) \quad (x \in \mathbb{E}) \right\} \\ \Longrightarrow \quad f^*(v) \leq \beta \quad \Longleftrightarrow \quad \sup_{x \in \mathbb{E}} \left\{ \langle v, x \rangle - f(x) \right\} \leq \beta \quad ((v,\beta) \in \mathbb{E} \times \mathbb{R}) \\ \Longrightarrow \quad f^*(v) = \sup_{x \in \mathbb{E}} \left\{ \langle v, x \rangle - f(x) \right\} \quad (v \in \mathbb{E}).$$

$$\end{array}$$

$$(2)$$

Definition 9 (Fenchel conjugate).

Let $f : \mathbb{E} \to \overline{\mathbb{R}}$ proper. The function $f^* : \mathbb{E} \to \overline{\mathbb{R}}$ defined through (2) is called the (Fenchel) conjugate of f. The function $(f^{**}) := (f^*)^*$ is called the biconjugate of f.

Recall: $\Gamma := \{ f : \mathbb{E} \to \overline{\mathbb{R}} \mid f \text{ convex and proper} \}$ and $\Gamma_0 := \{ f \in \Gamma \mid f \text{ closed} \}.$

- f^* closed and convex proper if $f \neq +\infty$ with an affine minorant
- $f = f^{**} proper \iff f \in \Gamma_0$ (Fenchel-Moreau)

$$f^* = (\operatorname{cl} f)^* \quad (f \in \Gamma)$$

■ $f(x) + f^*(y) \ge \langle x, y \rangle$ $(x, y \in \mathbb{E})$ (Fenchel-Young Inequality)

Support functions: A special case of conjugacy

The support function σ_S of $S \subset \mathbb{E}$ (nonempty) is defined by

$$\sigma_{S}: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}, \quad \sigma_{S}(z) := \delta_{S}^{*}(z) = \sup_{x \in S} \langle x, z \rangle.$$

 σ_S is finite-valued if and only if S is bounded (and nonempty)

$$\sigma_{S} = \sigma_{\operatorname{conv} S} = \sigma_{\overline{\operatorname{conv} S}} = \sigma_{\operatorname{cl} S}$$

•
$$\sigma_{S}^{*} = \delta_{\overline{\text{conv}}S}$$

 $\partial \sigma_{S}(x) = \left\{ z \in \overline{\text{conv}} S \mid x \in N_{\overline{\text{conv}}S}(z) \right\}$

• σ_S is a norm if and only if S is symmetric, bounded and $0 \in \text{int } S$.

Example: Let \mathbb{B}_{∞} be the unit ball in the maximum norm. Then

$$\sigma_{\mathbb{B}_{\infty}} = \|\cdot\|_1.$$

・ロト ・四ト ・ヨト ・ヨト

Dual correspondences

'Every property of the primal object ($f \in \Gamma_0$) corresponds to a property of the dual object ($f^* \in \Gamma_0$).'

Proposition 10 (Dual correspondences).

Let $f \in \Gamma_0(\mathbb{E})$. Then:

- (a) inf $f = -f^*(0)$ and $\operatorname{argmin} f = -\partial f^*(0)$.
- (b) f level-bounded $\iff 0 \in int (dom f^*)$.
- f supercoercive $\iff \text{dom} f^* = \mathbb{E}$.
- (d) The following are equivalent:
 - (i) f is essentially strictly convex, i.e. strictly convex on every convex subset of dom ∂f ;
 - (ii) f^* is essentially smooth, *i.e.* ∂f^* is single-valued. In particular, $\partial f^*(x) = \nabla f^*(x)$ for all $x \in \operatorname{dom} \partial f^* = \operatorname{int} (\operatorname{dom} f^*).$

Guide.

These are all 'straightforward' except (d)!

Interplay of conjugation and subdifferentiation

Theorem 11 (Subdifferential and conjugate function).

Let f be lsc. proper. convex. TFAE:

i)
$$y \in \partial f(x)$$
;

ii)
$$f(x) + f^*(y) = \langle x, y \rangle$$
;

iii)
$$x \in \partial f^*(y)$$

In particular, $\partial f^* = (\partial f)^{-1}$.

Proof.

Notice that

$$\begin{array}{lll} y \in \partial f(x) & \longleftrightarrow & f(z) \geq f(x) + \langle y, \, z - x \rangle \quad (z \in \mathbb{E}) \\ & \longleftrightarrow & \langle y, \, x \rangle - f(x) \geq \sup_{z} \{\langle y, \, z \rangle - f(z)\} \\ & \longleftrightarrow & f(x) + f^{*}(y) \leq \langle x, \, y \rangle \\ & \overset{\text{Fenchel-Young}}{\longleftrightarrow} & f(x) + f^{*}(y) = \langle x, \, y \rangle, \end{array}$$

Applying the same reasoning to f^* and noticing that $f^{**} = f$ if $f \in \Gamma_0$, gives the missing equivalence.

・ロト ・四ト ・ヨト・ э

Infimal convolution

Definition 12 (Infimal convolution).

Let $f, g : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$. Then the function

$$f \# g : \mathbb{E} \to \overline{\mathbb{R}}, \quad (f \# g)(x) := \inf_{u \in \mathbb{E}} \{f(u) + g(x - u)\}$$

is called the *infimal convolution* of f and g. We call the infimal convolution $f \neq g$ exact at $x \in \mathbb{B}$ if

$$\underset{u\in\mathbb{B}}{\operatorname{argmin}}\{f(u)+g(x-u)\}\neq\emptyset.$$

We simply call f #g exact if it is exact at every $x \in \text{dom } f #g$.

We always have:

- dom f # q = dom f + dom q;
- f#a = a#f:
- f, g convex, then f # g convex (as $(f \# g)(x) = \inf_y h(x, y)$ with $h: (x, y) \mapsto f(y) + g(x y)$ convex).

Example 13 (Distance functions).

Let $C \subset \mathbb{E}$. Then $d_C := \delta_C \# \| \cdot \|$, i.e.

$$d_C(x) = \inf_{u \in C} \|x - u\|$$

is the distance function of C, which is hence convex if C is a convex.

Subdifferentiation and conjugacy of convex functions

Conjugacy of infimal convolution

Proposition 14 (Conjugacy of inf-convolution).

Let $f, g : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$. Then the following hold:

- a) $(f \# g)^* = f^* + g^*;$
- b) If $f, g \in \Gamma_0$ such that dom $f \cap \text{dom } g \neq \emptyset$, then $(f + g)^* = \text{cl}(f^* \# g^*)$.

Proof.

a) For all $y \in \mathbb{E}$, we have

$$(f \# g)^{*}(y) = \sup_{x} \left\{ \langle x, y \rangle - \inf_{u} \{f(u) + g(x - u)\} \right\}$$

=
$$\sup_{x,u} \left\{ \langle x, y \rangle - f(u) - g(x - u) \right\}$$

=
$$\sup_{x,u} \left\{ \langle \langle u, y \rangle - f(u) \rangle + (\langle x - u, y \rangle - g(x - u)) \right\}$$

=
$$f^{*}(y) + g^{*}(y).$$

b) $(f^* \# g^*)^* \stackrel{a)}{=} f^{**} + g^{**} \stackrel{f.g \in \Gamma_0}{=} f + g \stackrel{olear?}{\in} \Gamma_0$, hence $(f^* \# g^*) \in \Gamma$. \implies cl $(f^* \# g^*) = (f^* \# g^*)^{**} = (f + g)^*$.

~ ~

e Maximum Entropy on the Mean Method for Linear Inverse

Subdifferentiation and conjugacy of convex functions

Drop the closure!

Theorem 15.

Let $f, g \in \Gamma_0$ such that

 $\operatorname{ri}(\operatorname{dom} f) \cap \operatorname{ri}(\operatorname{dom} g) \neq 0 \quad (CQ).$

Then the following hold

- a) ('Attouch-Brézis') (f + g)* = f*#g*, and the infimal convolution is exact, i.e. the infimum in the infimal convolution is attained on dom f*#g*.
- b) (Sum rule) $\partial(f + g) = \partial f + \partial g$.

Proof.

- a) Hard work! See, e.g., Rockafellar (1970) or Bauschke/Combettes (2017).
- b) Only show " \subset ":¹ Let $v \in \partial(f+g)(x)$. By a), $\exists \overline{u} : (f+g)^*(v) = f^*(\overline{u}) + g(v-\overline{u})$. Thus,

$$\begin{array}{ccc} v \in \partial(f+g)(x) & \stackrel{\mathrm{Th.\,1I}}{\longleftrightarrow} & (f+g)(x) + (f+g)^*(v) = \langle v, x \rangle \\ & \longleftrightarrow & f(x) + g(x) + f^*(\bar{u}) + g(v-\bar{u}) = \langle \bar{u}, x \rangle + \langle v - \bar{u}, x \rangle \\ & \stackrel{\mathrm{Fenchel-Young}}{\longleftrightarrow} & \bar{u} \in \partial f(x), v - \bar{u} \in \partial g(x) \\ & \Longrightarrow & v \in \partial f(x) + \partial g(x). \end{array}$$

¹The converse direction always holds!

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ● ● ●

Conjugacy for convex-linear composites

Let $f \in \Gamma$ and $L \in \mathcal{L}(\mathbb{E}, \mathbb{E}')$. Then

$$Lf: \mathbb{E}' \to \overline{\mathbb{R}}, \quad (Lf)(y):= \inf \{f(x) \mid L(x) = y\}$$

is convex²

Proposition 16.

Let $g : \mathbb{E} \to \overline{\mathbb{R}}$ be proper and $L \in \mathcal{L}(\mathbb{E}, \mathbb{E}')$ and $T \in \mathcal{L}(\mathbb{E}', \mathbb{E})$. Then the following hold:

a) $(Lg)^* = g^* \circ L^*$.

b)
$$(g \circ T)^* = \operatorname{cl}(T^*g^*)$$
 if $g \in \Gamma$.

The closure in b) can be dropped and the infimum is attained when finite if $g \in \Gamma_0$ and C)

rge
$$T \cap ri(\operatorname{dom} g) \neq \emptyset$$
. (3)

Guide.

b) From a) and Fenchel-Moreau. a) Straightforward.

c) Observe that $(g \circ T)^*(z) = (\delta_{gph T} + \phi)^*(z, 0)$ for $\phi(x, y) \mapsto g(y)$. Apply Attouch-Brézis to the latter realizing that the (CQ) is equivalent to (3).

²Show that epi Lf = T(epi f) for $T: (x, y) \mapsto (Tx, y)$.

イロト イポト イヨト イヨト

Fenchel-Rockafellar duality

i neorem 17 (Fenchel-Rockatellar duality).	Theorem 17	(Fenchel-Rockafellar duality).	
--	------------	--------------------------------	--

Let $\gamma \in \Gamma(\mathbb{E}_1)$, $\phi \in \Gamma(\mathbb{E}_2)$ and $L \in \mathcal{L}(\mathbb{E}_1, \mathbb{E}_2)$. Define

 $\min_{x\in\mathbb{B}_1}\phi(Lx)+\gamma(x) \quad \text{(primal problem)}$

and

$$\max_{y\in\mathbb{B}_2}-\gamma^*(L^*y)-\phi^*(-y) \quad (\text{dual problem}).$$

Set

$$p := \inf_{x \in \mathbb{E}_1} \{\phi(Lx) + \gamma(x)\}$$
 and $d := \sup_{y \in \mathbb{E}_2} \{-\gamma^*(L^*y) - \phi^*(-y)\}$

The following hold:

- (Weak duality) $p \ge d$. a)
- (Strong duality) p = d if ri $(dom \phi) \cap$ ri $L(dom \gamma) \neq \emptyset$ (CQ). b)
- c) (Primal-dual recovery) If $\gamma \in \Gamma_0$ and $g \in \Gamma_0$ the following are equivalent:
 - i) $\bar{x} \in \partial \gamma^* (L^* \bar{y}), \quad L \bar{x} \in \partial \phi^* (-\bar{y});$ ii) $p = d, \bar{x} \in \operatorname{argmin} \gamma(x) + \phi(Lx), \bar{y} \in \operatorname{argmax} -\gamma^*(L^*y) - \phi^*(-y).$

Subdifferentiation and conjugacy of convex functions

Fenchel-Rockafellar duality for regularized least-squares For $A \in \mathcal{L}(\mathbb{B}_1, \mathbb{B}_2), b \in \mathbb{B}_2, \lambda > 0$ and $g \in \Gamma_0(\mathbb{B}_1)$ consider

$$\min_{x} \frac{1}{2} \|Ax - b\|^2 + \lambda g(x).$$
 (4)

To apply the Fenchel-Rockafellar duality scheme (Theorem 17) set

$$\phi := \frac{1}{2} \| (\cdot) - b \|^2, \quad \gamma := \lambda g, \quad L := A.$$

Since dom $\phi = \mathbb{E}_2$, the qualification condition (CQ) is vacuously satisfied. Moreover

$$\phi^* = rac{1}{2} \|\cdot\|^2 + \langle b, \cdot
angle, \quad \gamma^* = \lambda \star g.$$

Consequently, the dual problem of (4) reads

$$\max_{y} \langle b, y \rangle - \frac{1}{2} ||y||^2 - \lambda \star g^*(A^*y).$$
(5)

 $\mbox{\bf Primal-dual recovery:}$ Assume that \bar{y} is the unique (clear?) solution for the dual problem. Then

$$\bar{x}: \bar{x} \in \partial g^*(A^*\bar{y})$$
 and $b - A\bar{x} = \bar{y}$ solves (4)

Note that, by Proposition 10, $\partial g^*(A^*) = \nabla g^*(A^*\bar{y})$ if g is essentially strictly convex.

Proximal operators

The proximal operator

Let $f \in \Gamma_0$ and $\lambda > 0$. Define the proximal operator of f by

$$\operatorname{prox}_{f}(x) := \operatorname{argmin}_{u} \left\{ f(u) + \frac{1}{2} \|x - u\|^{2} \right\}.$$

Proposition 18 (Proximal operator).

Let $f \in \Gamma_0$, $\lambda > 0$. Then:

a)
$$\operatorname{prox}_f = (I + \partial f)^{-1}$$
; b) prox_f is 1-Lipschitz.

Proof.

a) Optimality conditions.

b) Set
$$u = \text{prox}_f(x)$$
, $v := \text{prox}_f(y)$. Then (via a))

$$\begin{aligned} x - u \in \partial f(u), \ y - v \in \partial f(v) & \stackrel{\text{subgrad. ineq.}}{\Longrightarrow} & \begin{cases} f(v) \geq f(u) + \langle x - u, v - u \rangle, \\ f(u) \geq f(v) + \langle y - v, u - v \rangle, \end{cases} \\ & \stackrel{\text{summ.}}{\Longrightarrow} & 0 \geq \langle y - x + u - v, u - v \rangle \\ & \stackrel{\text{summ.}}{\longleftrightarrow} & \langle x - y, u - v \rangle \geq ||u - v||^2 \\ & \stackrel{\text{CSI}}{\longleftrightarrow} & ||u - v|| \leq ||x - y||. \end{aligned}$$

□ 920

Fundamentals of Convex Analysis

Fundamentals of Convex Analysis Stability Analysis of regularized least-squares problems

The Maximum Entropy on the Mean Method for Linear Inverse Problems

2. Stability Analysis of regularized least-squares problems

▲□▶▲御▶▲臣▶▲臣▶ 臣 めんぐ

The general setting

Consider the optimization problem

where

$$\min_{\mathbf{x}\in\mathbb{R}^n} h(\mathbf{p}, \mathbf{x}) + \varphi(\mathbf{x}) \tag{6}$$

■ $h : \mathbb{R}^{p} \times \mathbb{R}^{n} \to \mathbb{R}$ (locally) smooth and convex in *x*;

• $\varphi : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ closed, proper, convex.

We are interested in the solution map

$$S(p) := \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \{h(p, x) + \varphi(x)\}$$

$$\stackrel{\text{convexity}}{=} \{x \in \mathbb{R}^n \mid 0 \in \nabla_x h(p, x) + \partial \varphi(x)\}$$

(Smooth case) If $\varphi \in C^2$ then the classical implicit function theorem yields:

$$\bar{x} = S(\bar{p}), \nabla^2_{xx}h(\bar{p},\bar{x}) + \nabla^2\varphi(\bar{x}) > 0 \implies \exists U \in \mathcal{N}(\bar{p}) : S \in C^1(U).$$

Question: What to do when φ is not smooth?

< ロ > < 同 > < 回 > < 回 > : < 回 > : < 回 > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □

Set-convergence (by Painlevé-Kuratowski)

Let $\{C^k\}$ with $C^k \subset \mathbb{R}^n$ for all $k \in \mathbb{N}$. We define

(outer limit)

$$\limsup_{k \to \infty} C^k := \left\{ x \mid \exists K \subset \mathbb{N} (\text{infinite}), \{x^k\} \to_{\mathcal{K}} x : x^k \in C^k \quad \forall k \in \mathcal{K} \right\}$$

(inner limit)

$$\liminf_{k\to\infty} C^k := \left\{ x \mid \exists k_0 \in \mathbb{N}, \{x^k\} \to x : x^k \in C^k \quad \forall k \ge k_0 \right\}.$$

・ コ ト ・ 雪 ト ・ ヨ ト ・ 日 ト э

Set-valued maps

For a set-valued map $S : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$, we define:

• dom $S := \{x \in \mathbb{R}^n \mid S(x) \neq \emptyset\}$ (domain);

• gph
$$S := \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^m \mid y \in S(x)\}$$
 (graph);

•
$$S^{-1}: \mathbb{R}^m \rightrightarrows \mathbb{R}^n, \ S^{-1}(y) = \left\{ x \in \mathbb{R}^n \mid y \in S(x) \right\}$$
 (inverse map).

We define the outer limit of S at \bar{x} .

$$\limsup_{x \to \bar{x}} S(x) := \bigcup_{x^k \to \bar{x}} \limsup_{k \to \infty} S(x^k) = \left\{ \bar{v} \mid \exists : x^k \to \bar{x}, v^k \to \bar{v} : v^k \in S(x^k) \forall_k \right\}$$

We call S outer semicontinuous (osc) at $\bar{x} \in \mathbb{R}^n$ if $\lim \sup_{x \to \bar{x}} S(x) \subset S(\bar{x})$. Clearly,

S is osc (everywhere) \iff gph S is closed \iff S⁻¹ is osc (everywhere).

< ロ > < 同 > < 回 > < 回 > : < 回 > : < 回 > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □

Example: The subdifferential operator as a set-valued map

The subdifferential operator ∂f for $f \in \Gamma$ is a set-valued mapping $\partial f : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$.

Proposition 19 (*∂f*).

Let $f \in \Gamma_0$. Then:

- a) ri (dom f) \subset dom $\partial f (\subset$ dom f).
- b) For any $\lambda > 0$, we have

$$\operatorname{gph} \partial f = F_{\lambda}(\mathbb{R}^n)$$
 where $F_{\lambda}(r) = \left(\operatorname{prox}_{\lambda f}(r), \frac{r - \operatorname{prox}_{\lambda f}(r)}{\lambda}\right)$ is Lipschitz.

In particular, $gph \partial f$ is closed.

c)
$$(\partial f)^{-1} = \partial f^*$$
.

d) (Monotonicity) $\langle y - y', x - x' \rangle \ge 0 \quad \forall (x, y), (x', y') \in \operatorname{gph} \partial f$.

Proof.

- a) (Sketch) Prove that $f'(x; \cdot) = \sigma_{\partial f(x)}$ is proper which yields $\partial f(x) \neq \emptyset$ for $x \in ri$ (dom *f*).
- b) Use Proposition 18.
- c) Theorem 11.
- d) Simple application of the subgradient inequality.

Fundamentals of Convex Analysis Stability Analysis of regularized least-squares problems

စိုင္ဂ်ိဳး

Tools from Variational Analysis

Variational Geometry Let $A \subset \mathbb{R}^n$ and $\bar{x} \in A$. We define

- the tangent cone $T_A(\bar{x}) := \text{Lim sup}_{t|0} \frac{A-\bar{x}}{t}$. The following hold:
 - $\begin{array}{ccc} \blacksquare & \text{We have} \\ d \in T_A(\bar{x}) & \longleftrightarrow & \exists \{t_k\} \downarrow 0, \{x_k \in A\} : \frac{x_k \bar{x}}{l_k} \to d \\ & \longleftrightarrow & \exists \{t_k\} \downarrow 0, \{d_k\} \to d : \bar{x} + t_k d_k \in A \ \forall k \end{array}$
 - T_A(x̄) is a closed cone; convex if A is convex.
- the <u>regular normal cone</u> $\hat{N}_A(\bar{x}) = \left\{ v \mid \limsup_{x \to A} \bar{x} \; \frac{\langle v, x \bar{x} \rangle}{||x \bar{x}||} \le 0 \right\}$. The following hold:
 - $\hat{N}_A(\bar{x}) = {}^3T_A(\bar{x})^\circ.$
 - $\hat{N}_A(\bar{x})$ is closed and convex.

the limiting normal cone N_A(x̄) := Lim sup_{x→A} x̄ N̂_A(x). The following hold:

- $N_A(\bar{x})$ is closed.
- $N_A(\bar{x}) = \hat{N}_A(\bar{x}) = (A \bar{x})^\circ$ (hence convex) if A is convex.

³For a convex set *K* its *polar cone* is $K^{\circ} := \{v \mid \langle x, v \rangle \leq 0 \ \forall x \in K\}$.

Fundamentals of Convex Analysis Stability Analysis of regularized least-squares problems The Maximum Entropy on the Mean Method for Linear Inverse Problems

Basic tangent and normal cone calculus

Proposition 20 (Change of coordinates).

Let $D \subset \mathbb{R}^m$ and $C = F^{-1}(D)$ for $F : \mathbb{R}^n \to \mathbb{R}^m$ smooth and rank $F'(\bar{x}) = m$ for $\bar{x} \in C$. Then for $\bar{u} = F(\bar{x})$:

a) $T_C(\bar{x}) = F'(\bar{x})^{-1} T_D(\bar{u});$ b) $\hat{N}_C(\bar{x}) = F'(\bar{x})^* \hat{N}_D(\bar{u})$ c) $N_C(\bar{x}) = F'(\bar{x})^* N_D(\bar{u}).$

Guide for m = n.

a) Apply inverse function theorem to F(x) = u at (\bar{x}, \bar{u}) .

b) Use
$$\hat{N}_C(\bar{x}) = (F'(\bar{x})^{-1}T_D(\bar{u}))^\circ$$
 and invertibility of $F'(\bar{x})^*$.

c) Apply b) locally around \bar{x} , and $\lim \sup_{u \to n\bar{u}} F'(\bar{x}) \hat{N}_D(u) = F'(\bar{x})^* \lim \sup_{u \to n\bar{u}} \hat{N}_D(u)$.

Corollary 21 (Smooth manifolds).

In Proposition 20 let $D := \{0\}$. Then:

a)
$$T_C(\bar{x}) = \ker F'(\bar{x});$$
 b) $\hat{N}_C(\bar{x}) = N_C(\bar{x}) = \operatorname{rge} F'(\bar{x})^*.$

Fundamentals of Convex Analysis Stability Analysis of regularized least-squares problems The Maximum Entropy on the Mean Method for Linear Inverse Problems

Graphical differentiation of set-valued maps

Let $S : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ and $(\bar{x}, \bar{y}) \in \operatorname{gph} S$.

We define the graphical derivative $DS(\bar{x}|\bar{y}) : \mathbb{R}^n \Rightarrow \mathbb{R}^m$ via

 $v \in DS(\bar{x}|\bar{y})(u) :\iff (u,v) \in T_{gphS}(\bar{x},\bar{y}).$

We define the *coderivative* $D^*S(\bar{x}|\bar{y}) : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ via

 $v \in D^*S(\bar{x}|\bar{y})(u) \iff (v, -u) \in N_{\operatorname{gph} S}(\bar{x}, \bar{y}).$

- When S is single valued (at \bar{x}) we write $D^{(*)}S(\bar{x}) := D^{(*)}S(\bar{x}|S(\bar{x}))$.
- Both $DS(\bar{x}|\bar{y})$ and $D^*S(\bar{x}|\bar{y})$ are positively homogenous maps, i.e.,

 $D^{(*)}S(\bar{x})(\lambda z) = \lambda D^{(*)}S(\bar{x})(z) \quad \forall \lambda > 0 \quad \text{and} \quad 0 \in D^{(*)}S(\bar{x})(0).$

イロト イボト イヨト イヨト = 900

Fundamentals of Convex Analysis Stability Analysis of regularized least-squares problems

Example: Coderivative of $\partial \| \cdot \|_1$

Observe that

$$\partial \|\cdot\|_{1}(x) = \sum_{i=1}^{n} \partial |\cdot|(x_{i}), \quad \partial |\cdot|(t) = \begin{cases} \{\operatorname{sgn}(t)\}, & t \neq 0, \\ [-1, 1], & t = 0. \end{cases}$$
(7)

Consequently

$$\operatorname{gph} \partial \|\cdot\|_1 = X_{i=1}^n \operatorname{gph} \partial |\cdot|.$$

 $N_{\text{gph}, \vec{\theta} \parallel \parallel_1}(x, v) = \sum_{i=1}^n \begin{cases} \{0\} \times \mathbb{R}, & x_i \neq 0, \\ \mathbb{R} \times \{0\}, & x_i = 0, |v_i| < 1, \\ \mathbb{R} \times \{0\} \cup \{0\} \times \mathbb{R} \cup \mathbb{R}_+ \times \mathbb{R}_-, & x_i = 0, v_i = -1, \\ \mathbb{R} \times \{0\} \cup \{0\} \times \mathbb{R} \cup \mathbb{R}_- \times \mathbb{R}_+, & x_i = 0, v_i = 1. \end{cases}$

Thus for $(x, v) \in \operatorname{gph} \partial \| \cdot \|_1$:

Figure: Normal cones to $gph \partial | \cdot |$

Hence

$$z \in D^*(\partial \|\cdot\|_1)(x|v)(w) \iff (z_i, -w_i) \in \begin{cases} \{0\} \times \mathbb{R}, & x_i \neq 0, \\ \mathbb{R} \times \{0\}, & x_i = 0, |v_i| < 1, \\ \mathbb{R} \times \{0\} \cup \{0\} \times \mathbb{R} \cup \mathbb{R}_+ \times \mathbb{R}_-, & x_i = 0, v_i = -1, \\ \mathbb{R} \times \{0\} \cup \{0\} \times \mathbb{R} \cup \mathbb{R}_- \times \mathbb{R}_+, & x_i = 0, v_i = 1. \end{cases}$$

$$(8)$$

イロト イボト イヨト イヨト

Calculus rules for Co- and Graphical derivatives

Proposition 22.

Let $S : \mathbb{R}^n \Rightarrow \mathbb{R}^m$, $(\bar{x}, \bar{y}) \in \text{gph } S$. $F : \mathbb{R}^n \to \mathbb{R}^m$ continuously differentiable (at \bar{x}). The following hold:

(a) (Inversion rule) We have

 $y \in DS(\bar{x}|\bar{v})(s) \iff s \in D(S^{-1})(\bar{v}|\bar{x})(y)$ and $z \in D^*S(\bar{x}|\bar{v})(w) \iff -w \in D^*(S^{-1})(\bar{v}|\bar{x})(-z)$

b) (Sum rule) We have $D^{(*)}(S+F)(\bar{x}|\bar{v}+F(\bar{x}))(w) = D^{(*)}S(\bar{x}|\bar{v})(w) + F'(\bar{x})^{(*)}w$.

Proof.

a) gph $S^{-1} = G^{-1}(\text{gph } S)$ for G(x, v) = (v, x). Then apply Proposition 20 (coordinate change).

- b) (Coderivative statement) With G(x, v) = (x, v + F(x)), we have $gph(S + F) = G^{-1}(gph S)$.
 - $z \in D^*(S+F)(\bar{x}|\bar{v}+F(\bar{z}))(w) \quad \iff \quad (z,-w) \in N_{G^{-1}(\operatorname{eph} S)}(\bar{x},\bar{v}+F(\bar{x}))$ Prop.20 ↔ $(z, -w) \in \left(\begin{smallmatrix} I & -F'(\bar{x})^* \\ 0 \end{smallmatrix} \right) N_{\mathrm{gph}\,S}(\bar{x}, \bar{v})$ $\iff {}^4 (z - F'(\bar{x})^* w, -w) \in N_{\operatorname{gph} S}(\bar{x}, \bar{v})$ $\iff z \in D^*S(\bar{x}, \bar{v})(w) + F'(\bar{x})^*w.$

Fundamentals of Convex Analysis Stability Analysis of regularized least-squares problems The Maximum Entropy on the Mean Method for Linear Inverse Problems

Locally Lipschitz maps and graphical differentiation

Let $F : \mathbb{R}^n \to \mathbb{R}^m$. We call F locally Lipschitz⁵ at \bar{x} if

$$\exists L, \varepsilon > 0 : \|F(x) - F(x')\| \le L\|x - x'\| \quad \forall x, x' \in B_{\varepsilon}(\bar{x}).$$

We call

$$\operatorname{Lip} F(\bar{x}) := \limsup_{x, x' \to \bar{x}} \frac{\|F(x) - F(x')\|}{\|x - x'\|}$$

the Lipschitz modulus of F at \bar{x} . Clearly

F locally Lipschitz at $\bar{x} \iff \text{Lip}F(\bar{x}) < \infty$.

Fact: Let $F : \mathbb{R}^n \to \mathbb{R}^m$ be locally Lipschitz at \bar{x} . Then:

- (Scalarization formula) $D^*F(\bar{x})(w) = \partial(\langle w, F \rangle)(\bar{x})^6$ is nonempty, compact.
- (Lipschitz modulus) We have

$$\operatorname{Lip} F(\bar{x}) = |D^* F(\bar{x})|^+ := \sup_{v \in \mathbb{B}} \sup_{v \in D^* F(\bar{x})(z)} ||v||$$
(9)

• (Relation to Clarke Jacobian⁷) conv $D^{(*)}F(\bar{x})(w) = \partial_C F(\bar{x})^{(*)}w$.

⁶For $g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$, we define the limiting subdifferential $\partial g(\bar{x}) := \{v \mid (v, -1) \in N_{eni,q}(\bar{x}, g(\bar{x}))\}$

$$^{7}\partial_{C}F(\bar{x}) := \operatorname{conv}\left\{ V \mid \exists \{x^{k}\} \to \bar{x} : F'(x^{k}) \to V \right\}$$

⁵In Rockafellar-Wets, this property is called strict continuity.

Definiteness properties of the coderivative

Proposition 23.

Let $f \in \Gamma_0$, and let $(\bar{x}, \bar{v}) \in \operatorname{gph} \partial f$. Then

z

 $z \in D^*(\partial f)(\bar{x}|\bar{v})(w) \implies \langle z, w \rangle \ge 0.$

Proof.

Recall from Proposition 18 that $P_{\lambda} := \operatorname{prox}_{\lambda f} = (I + \lambda \partial f)^{-1}$ for all $\lambda > 0$. Thus

$$\begin{array}{c} \in D^{*}(\partial f)(\bar{x}|\bar{v})(w) & \stackrel{\operatorname{Prop.20}}{\longleftrightarrow} & \lambda z \in D^{*}(\lambda \partial f)(\bar{x}|\lambda \bar{v})(w) \\ & \stackrel{\operatorname{Prop.22(b)}}{\longleftrightarrow} & \lambda z + w \in D^{*}(1 + \lambda \partial f)(\bar{x}|\bar{x} + \lambda \bar{v})(w) \\ & \stackrel{\operatorname{Prop.22(a)}}{\longleftrightarrow} & -w \in D^{*}P_{\lambda}(\bar{x} + \lambda \bar{v})(-\lambda z - w) \\ & \stackrel{\operatorname{pos. hom.}}{\longleftrightarrow} & -\frac{w}{||\lambda z + w||} \in D^{*}P_{\lambda}(\bar{x} + \lambda \bar{v})\left(-\frac{\lambda z + w}{||\lambda z + w||}\right) \end{array}$$

Therefore

$$\frac{||w||}{||\lambda z + w||} \leq \sup_{\|r\|=1} \sup_{s \in D^*} \sup_{P_{\lambda}(\bar{x} + \lambda \bar{v})(r)} ||s|| \stackrel{\operatorname{Eq},(9)}{=} \operatorname{Lip}_{\lambda}(\bar{x} + \lambda \bar{v}) = 1.$$

Hence

$$\|w\|^2 \le \|\lambda z + w\|^2 = \lambda^2 \|z\| + 2\lambda \langle z, w \rangle + \|w\|^2 \stackrel{:\lambda, \, \lambda \downarrow 0}{\Rightarrow} \quad 0 \le \langle z, w \rangle.$$

D nac

000000000000000000

The Aubin property and the Mordukhovich criterion

Let $S : \mathbb{R}^n \Rightarrow \mathbb{R}^m$ with closed graph at $(\bar{x}, \bar{y}) \in \operatorname{gph} S$. We say that S has the Aubin property at \bar{x} for \bar{y} if there exist neighborhoods V of \bar{x} and W of \bar{y} as well as $\kappa > 0$ such that

 $S(x') \cap W \subset S(x) + \kappa ||x' - x|| \mathbb{B} \quad \forall x, x' \in V.$

Remark: The Aubin property is a local property in that if S has the Aubin property at \bar{x} for \bar{y} then it has the Aubin property for every point $(x, y) \in \operatorname{gph} S$ sufficiently close to $(\overline{x}, \overline{y})$.

Theorem 24 (Mordukhovich criterion).

Let $S : \mathbb{R}^n \Rightarrow \mathbb{R}^m$ with closed graph at $(\bar{x}, \bar{u}) \in \operatorname{gph} S$. Then the following are equivalent:

S has the Aubin property at \bar{x} for \bar{v} :

D^{*}
$$S(\bar{x}|\bar{y})(0) = \{0\}.$$

< ロ > < 同 > < 回 > < 回 > < □ > <

000000000000000000

Excursion: Monotonicity

We call $T : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ monotone if

$$\langle y - y', y - y' \rangle \quad \forall (x, y), (x', y') \in \operatorname{gph} T.$$

Example:

- T = ∂f for $f \in \Gamma$.
- T: $x \mapsto Ax$ for $A \ge 0$.

Definition 25 (Maximal montonicity).

A monotone map $T : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ is called *maximally monotone* if there is no enlargement of gph T possible without destroying monotonicity, i.e.,

$$\forall (\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^n \setminus \operatorname{gph} T \exists (x, y) \in \operatorname{gph} T : \langle \hat{x} - x, \hat{y} - y \rangle < 0.$$

Facts:

- T (maximally) monotone $\iff T^{-1}$ (maximally) monotone.
- T maximally monotone \Rightarrow gph T closed.
- T maximally monotone \Rightarrow T(x) closed, convex $\forall x$.

ヘロア 人間 アメヨアメヨア

00000000000000000

Fundamentals of Convex Analysis Stability Analysis of regularized least-squares problems The Maximum Entropy on the Mean Method for Linear Inverse Problems

From Aubin property to local Lipschitzness

Proposition 26.

Let $G: \mathbb{R}^n \Rightarrow \mathbb{R}^n$ have the Aubin property at \bar{x} for $\bar{y} \in G(\bar{x})$ and assume that G is monotone. Then the following hold:

- a) G has a Lipschitz continuous single-valued localization at \bar{x} for \bar{y} , i.e., there exist neighborhoods V of \bar{x} and W of \bar{y} such that $\hat{G} : x \in U \mapsto G(x) \cap W$ is single-valued and Lipschitz.
- b) If G is convex-valued, then G is, in fact, single-valued and (locally) Lipschitz around \bar{x} .

Proof.

a) Blackboard. b) Exercise!

. . . .

Corollary 27.

Under the assumptions of Proposition 26 assume that G is maximally monotone. Then G is single-valued and (locally) Lipschitz around \bar{x} .

Proof.

Follows from Proposition 26 as G is convex-valued.

Locally Lipschitz implicit functions

Let $f: \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable at $(\bar{p}, \bar{x}) \in \operatorname{gph} S$ such that $f(p, \cdot)$ is monotone near \bar{p} , let $F : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ be maximally monotone. Define $S : \mathbb{R}^d \Rightarrow \mathbb{R}^n$ by

$$S(p) = \{x \in \mathbb{R}^n \mid 0 \in f(p, x) + F(x)\}, \quad \forall p \in \mathbb{R}^d.$$

Assume that

Theorem 28.

$$0 \in D_x f(\bar{p}, \bar{x})^* w + D^* F(\bar{x}| - f(\bar{p}, \bar{x}))(w) \implies w = 0 \quad (\text{Mordukhovich criterion}). \tag{10}$$

Then S is locally Lipschitz at p.

High-level guide.

Set $Q := f(\bar{p}, \cdot) + F$. By the coderivative calculus from Proposition 22 find that

(10) $\iff D^*(Q^{-1})(0|\bar{x})(0) = \{0\} \iff Q^{-1}$ has Aubin property at 0 for \bar{x}

Since Q, thus Q^{-1} is maximally monotone that means that Q^{-1} is locally Lipschitz around 0. This now has to be leveraged to show that S is locally Lipschitz around \bar{p} ; this hinges on the fact that perturbation (of f) enters smoothly (hence the difference between $f(\bar{p}, \cdot)$ and $f(p, \cdot)$ is controllable).

Application to stability of regularized least-squares

The Mordukhovich criterion for regularized linear least-squares

Consider

$$\min_{x} \frac{1}{2} ||Ax - b||^{2} + \lambda g(x), \quad (g \in \Gamma_{0}, \ \lambda > 0).$$
(11)

Let \bar{x} solve (11), i.e. $\bar{u} := \frac{1}{\lambda} A^T (b - A\bar{x}) \in \partial g(\bar{x})$, i.e.

$$0 \in \underbrace{\frac{1}{\lambda}A^*(A\bar{x}-b)}_{=f(A,b,\lambda,\cdot)(\bar{x})} + \underbrace{\frac{\partial g}{F}(\bar{x})}_{F}.$$

Let $0 \in D_x f(A, b, \lambda, \overline{x})^* w + D^* F(\overline{x}|\overline{u})(w) = \frac{1}{\lambda} A^* A w + D^* (\partial g)(\overline{x}|\overline{u})(w)$, i.e.

$$-\frac{1}{\lambda}A^*Aw \in D^*(\partial g)(\bar{x}|\bar{u})(w).$$
(12)

By Proposition 23 we have

$$0 \leq \langle w, -A^*Aw \rangle$$

Inserting into (12) yields

$$0 \in D^*(\partial g)(\bar{x}|\bar{u})(w) \qquad \stackrel{(\partial g)^{-1}=\partial g^*}{\longleftrightarrow} \quad -w \in D^*(\partial g^*)(\bar{u}|\bar{x})(0).$$

Hence

$$\ker A \bigcap D^*(\partial g^*)(\bar{u}|\bar{x})(0) = \{0\} \quad \Longleftrightarrow \quad \text{Mordukhovich criterion holds}$$
(13)

▲ロト▲御ト▲臣ト▲臣ト 臣 のの()

Example: the LASSO problem, i.e., $g = \|\cdot\|_1$

Set $g := \|\cdot\|_1$. Let \bar{x} be a solution of the LASSO problem

$$\min\frac{1}{2}\|Ax-b\|^2+\lambda\|x\|_1$$

Thus

$$\bar{u} := \frac{1}{\lambda} A^{T} (b - A\bar{x}) \in \partial \| \cdot \|_{1} (\bar{x}) \quad \stackrel{(7)}{\longleftrightarrow} \quad \bar{u}_{i} \in \begin{cases} (\operatorname{sgn}(\bar{x}_{i})), & \bar{x}_{i} \neq 0, \\ \in [-1, 1], & \bar{x}_{i} = 0. \end{cases}$$

We note that

$$\begin{split} w \in D^*(\partial g^*)(\bar{u}|\bar{x})(0) & \iff 0 \in D^*(\partial g)(\bar{x}|\bar{u})(w) \\ & \stackrel{(8)}{\longleftrightarrow} \qquad \begin{pmatrix} 0, -w_i \end{pmatrix} \in \begin{cases} \{0\} \times \mathbb{R}, & \bar{x}_i \neq 0, \\ \mathbb{R} \times \{0\}, & \bar{x}_i = 0, |\bar{u}_i| < 1, \\ \mathbb{R} \times \{0\} \cup \{0\} \times \mathbb{R} \cup \mathbb{R}_+ \times \mathbb{R}_-, & \bar{x}_i = 0, \bar{u}_i = -1, \\ \mathbb{R} \times \{0\} \cup \{0\} \times \mathbb{R} \cup \mathbb{R}_- \times \mathbb{R}_+, & \bar{x}_i = 0, \bar{u}_i = -1, \\ \mathbb{R} \to \{0\} \cup \{0\} \times \mathbb{R} \cup \mathbb{R}_- \times \mathbb{R}_+, & \bar{x}_i = 0, \bar{u}_i = 1. \end{cases} \\ & \implies w_i = 0 \ \forall i \notin J := \{i \mid |\bar{u}_i| = 1\}. \end{split}$$

For $A_J = [a_i \ (i \in J)]$, the matrix whose columns are the columns of A corresponding to J we thus find:

$$\ker A \cap D^*(\partial g^*)(\bar{u}|\bar{x})(0) = \{0\} \iff \ker A_J = \{0\}.$$

・ロト ・ 聞 ト ・ 臣 ト ・ 臣 ト ・ 3

The Maximum Entr 00000 000 000 000 0000000 0000000

Application to stability of regularized least-squares

Towards more general results: PLQ penalties

Let $\mathcal{P} = \left\{ z \in \mathbb{R}^n \mid \langle p_i, z \rangle \le \beta_i \ (i = 1, ..., k) \right\} \subset \mathbb{R}^n$ be polyhedron and let $B \in \mathbb{S}^n_+$. We define the piecewise-linear quadratic (PLQ) penalty

$$\theta_{\mathcal{P},B}(y) = \sup_{z\in\mathcal{P}}\left\{\langle y, z\rangle - \frac{1}{2}\langle Bz, z\rangle\right\}.$$

Example: $\|\cdot\|_1 = \theta_{\mathcal{P},B}$ for $\mathcal{P} = \mathbb{B}_{\infty}$, B = 0. We note that:

- $\theta_{\mathcal{P},B} = (\delta_{\mathcal{P}} + q_B)^* \in \Gamma_0 \text{ for } q_B(y) = \frac{1}{2} \langle Bz, z \rangle, \mathcal{P} \neq \emptyset$
- $\partial \theta^*_{\mathcal{P},\mathcal{B}} = N_{\mathcal{P}} + B.$

Fact: $D^* N_{\mathcal{P}}(u|v)(0) = \operatorname{span} \left\{ p_i \mid i \in \mathcal{A}(u) \right\}$ where $\mathcal{A}(u) = \{i \in \{1, \dots, k\} \mid \langle p_i, u \rangle = \beta_i \}$. Thus, for $(\bar{x}, \bar{u}) \in \operatorname{gph} \theta_{\mathcal{P}, \mathcal{B}}$, we have

$$D^*(\partial \theta^*_{\mathcal{P},B})(\bar{u}|\bar{x})(0) = D^*(N_{\mathcal{P}} + B)(\bar{u}|\bar{x})(0)$$

$$= D^*N_{\mathcal{P}}(\bar{u}|\bar{x} - B\bar{u})(0) + B \cdot 0$$

$$= \operatorname{span} \left\{ p_i \mid i \in \mathcal{A}(\bar{u}) \right\}$$

$$= \operatorname{par} \partial \theta_{\mathcal{P},B}(\bar{u}).$$

▲ロト▲御▶▲臣▶▲臣▶ 臣 のへで

Application to stability of regularized least-squares

Towards quantitative results

Theorem 29.

Under the assumptions of Theorem 28 define $S : \mathbb{R}^d \rightrightarrows \mathbb{R}^n$ by

$$S(p) = \left\{ x \in \mathbb{R}^n \mid 0 \in f(p, x) + F(x) \right\}, \quad \forall p \in \mathbb{R}^d.$$

Assume that

$$0 \in D_x f(\bar{p}, \bar{x})^* w + D^* F(\bar{x}| - f(\bar{p}, \bar{x}))(w) \implies w = 0 \quad (\text{Mordukhovich criterion}).$$
(14)

Then S is locally Lipschitz at p with modulus

 $L \leq \limsup_{p \to \overline{p}} \max_{\|q\| \leq 1} \inf_{w \in DS(p)(q)} \|w\|.$

If F is proto-differentiable⁸ at $(\bar{x}, -f(\bar{p}, \bar{x}))$, S is directionally differentiable at \bar{p} with locally Lipschitz directional derivative (for G(p, x) := f(p, x) + F(x)) given by

$$S'(\bar{p};q) = \left\{ w \in \mathbb{R}^n \mid 0 \in DG(\bar{p},\bar{x}|0)(q,w) \right\} \quad \forall q \in \mathbb{R}^d.$$

・ロト・日本・日本・日本・日本

 $^{{}^{8}\}partial\phi$ is proto-differentiable at (\bar{x},\bar{u}) , e.g., if $\phi = g \circ H$ is fully amenable, i.e., g PLQ and $H \in C^{2}$ such that $\ker H'(\bar{x})^{*} \cap N_{\text{dom }g}(H(\bar{x})) = [0]$ (basic constraint qualification)

Application to stability of regularized least-squares

Application: unconstrained LASSO (stability) (Berk, Brugiapaglia, H. '23)

Apply Theorem 29 with $f(b, \lambda, x) := \frac{1}{\lambda} A^T (Ax - b)$, $F := \partial \| \cdot \|_1$ such that

$$S(b,\lambda) = \left\{ x \mid 0 \in f(b,\lambda,x) + F(x) \right\} = \operatorname*{argmin}_{x \in \mathbb{R}^n} \left\{ \frac{1}{2} \|Ax - b\|^2 + \lambda \|x\|_1 \right\} \quad (\lambda > 0).$$

For $(\bar{b}, \bar{\lambda}) \in \mathbb{R}^n \times \mathbb{R}_{++}$ let $\bar{x} \in S(\bar{b}, \bar{\lambda})$. Assume that

ker $A_J = \{0\}$.

Then S is locally Lipschitz and directionally differentiable at $(\bar{b}, \bar{\lambda})$ with Lipschitz modulus

$$L \leq \frac{1}{\sigma_{\min}(A_J)^2} \left(\sigma_{\max}(A_J) + \left\| \frac{A_J^T(A\bar{x} - \bar{b})}{\bar{\lambda}} \right\| \right).$$

Moreover, the directional derivative $S'((\bar{b},\bar{\lambda});(\cdot,\cdot)): \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}^n$ is locally Lipschitz and given as follows: for $(q, \alpha) \in \mathbb{R}^m \times \mathbb{R}$ there exists an index set $K = K(q, \alpha)$ with $I \subseteq K \subseteq J$ such that

$$S'((\bar{b},\bar{\lambda});(q,\alpha)) = L_K\left((A_K^T A_K)^{-1} A_K^T \left(q + \frac{\alpha}{\bar{\lambda}} (A\bar{x} - \bar{b})\right), 0\right).$$

<ロト < 卸 ト < 臣 ト < 臣 ト 三 つへ()

s Stability Analysis of regularized least-squares problems

The Maximum Entropy on the Mean Method for Linear Inverse Problems

Measure-theoretic tools

3. The Maximum Entropy on the Mean Method for Linear Inverse Problems

Reminder: Probability measures and measure transformation

Let Ω be a nonempty set and let \mathcal{F} be a σ -algebra⁹ on Ω .

- (Ω, \mathcal{F}) is called a measure space.
- A function $\mu : \mathcal{F} \to \mathbb{R}_+$ is called a *measure on* (Ω, \mathcal{F}) *if:*
 - $\mu(\emptyset) = 0$:
 - For $A_k \in \mathcal{F}$ $(k \in \mathbb{N})$ with $A_k \cap A_j = \emptyset$ $(k \neq j)$: $\mu(\bigcup_{k \in \mathbb{N}} A_k) = \sum_{k \in \mathbb{N}} \mu(A_k)$.
 - If, in addition, $\mu(\Omega) = 1$, we call μ a probability measure, and $(\Omega, \mathcal{F}, \mu)$ a probability space.

Example: the Lebesque measure comes with the measure space $(\mathbb{R}^n, \mathbb{B}_n)$, where \mathbb{B}_n is the σ -algebra generated by the open sets in \mathbb{R}^n .

Theorem 30 (Measure transformation).

Let $(\Omega, \mathcal{F}, \mathsf{P})$ be a probability space, and let (Ω', \mathcal{F}') be a measure space. Let $f : \Omega \to \Omega'$ be measurable. Moreover, let $\phi : \Omega' \to \mathbb{R}$ be measurable. Then:

- a) For $\mu := P \circ f^{-1}$ we find that $(\Omega', \mathcal{F}', \mu)$ is a probability space.
- b) It holds that

$$\int_{\Omega}\phi\circ f\ dP=\int_{\Omega'}\phi d\mu.$$

⁹A collection of sets closed under complements and countable unions containing Ω = + < 🗇 + < 🥃 + < 🥃 + <

Distiributions and expectations of random vectors

Let (Ω, \mathcal{F}, P) be a probability space and let $X : \Omega \to \mathbb{R}^n$ be a random vector (i.e., its components $X_i: \Omega \to \mathbb{R}$ are random variables).

- We call $\mu = P \circ X^{-1}$ the *distribution* or *law* of *X*, and we write $X \sim \mu$.
- The expectation or mean of f is

$$E[X] := [E[X_1], \dots, E[X_n]]^T \in \mathbb{R}^n \quad \text{for} \quad E[X_i] = \int_{\Omega} X_i dP.$$

Proposition 31 (Expectation of a random vector¹⁰).

Under the assumptions above we have:

$$E[X] = \left[\int_{\mathbb{R}^n} x_1 \mu(dx), \dots, \int_{\mathbb{R}^n} x_n \mu(dx)\right]^T =: E_{\mu}.$$

Proof.

Define $\pi_i : \mathbb{R}^n \to \mathbb{R}, \pi_i(x) = x_i$. Then we have

$$E[X_i] = E[\pi_i \circ X] = \int_{\Omega} \pi_i \circ X \, dP \stackrel{\text{Th. 30}}{=} \int_{\mathbb{R}^d} \pi_i d\mu.$$

¹⁰ (Ω, \mathcal{F}, P) never mattered'

・ロト ・ 一下・ ・ ヨト・

A Hölder-type inequality

Proposition 32.

Let μ be a probability measure on \mathbb{R}^n and $f, g : \mathbb{R}^n \to \mathbb{R}$ measurable. Then

$$\int \exp(\lambda f + (1-\lambda)g) \, d\mu \leq \left(\int \exp f \, d\mu\right)^{\lambda} \cdot \left(\int \exp g \, d\mu\right)^{1-\lambda} \quad \forall \lambda \in (0,1).$$

When $\int \exp gd\mu$ and $\int \exp fd\mu$ are finite equality holds if and only if $f = g + \gamma$ for some $\gamma \in \mathbb{R}$.

Proof.

Prove the elementary inequality

$$a^{\lambda}b^{\lambda} \leq \lambda a + (1 - \lambda)b \quad \forall a, b \geq 0 \quad ('=' \text{ iff } a = b).$$
 (15)

Now set
$$a := \frac{\exp f}{\int \exp f \, d\mu}$$
 and $b := \frac{\exp g}{\int \exp g \, d\mu}$. Then
$$\frac{\exp(\lambda f + (1 - \lambda)g)}{\left(\int \exp g \, d\mu\right)^{\lambda} \left(\int \exp g \, d\mu\right)^{1-\lambda}} = \left(\frac{\exp f}{\int \exp f \, d\mu}\right)^{\lambda} \left(\frac{\exp g}{\int \exp g \, d\mu}\right)^{1-\lambda} \stackrel{(15)}{\leq} \lambda \frac{\exp f}{\int \exp f \, d\mu} + (1 - \lambda) \frac{\exp g}{\int \exp g \, d\mu}.$$

Therefore (applying integration on both sides yields)

$$\frac{\int \exp(\lambda f + (1 - \lambda)g) \, d\mu}{\left(\int \exp f \, d\mu\right)^{\lambda} \left(\int \exp g \, d\mu\right)^{1 - \lambda}} \leq \lambda \frac{\int \exp f \, d\mu}{\int \exp f \, d\mu} + (1 - \lambda) \frac{\int \exp g \, d\mu}{\int \exp g \, d\mu} = 1,$$

which gives the desired result.

စ္ဂိဝဝဝဝဝဝဝဝဝဝဝဝဝဝ

< ロ > < 同 > < 回 > < 回 > : < 回 > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □

Measure-theoretic tools

Radon-Nikodym theorem - a tour de force

Let μ and ν be measures on the measure space (Ω, \mathcal{F}) . Then we call ν <u>absolutely continuous</u> with respect to μ (write: $\nu \ll \mu$) if for all $A \in \mathcal{F}$:

$$\mu(A)=0 \implies \nu(A)=0.$$

Theorem 33 (Radon-Nikodym).

Let (Ω, \mathcal{F}) be a measure space, and let μ and ν be finite^{11,12} measures on (Ω, \mathcal{F}) such that $\nu \ll \mu$. Then there exists a (\mathcal{F}) -measurable function $f : \Omega \to \mathbb{R}_+$ such that

$$\forall A \in \mathcal{F}: \quad \nu(A) = \int_A f \, d\mu.$$

Remark: The function *f* in Theorem 33 is unique (up to changes on μ -null sets). We often write $\frac{d\nu}{d\mu}$ and call it the Radon-Nikodym derivative (of ν w.r.t. μ). When ν is probability measure (distribution) then $\frac{d\nu}{d\mu}$ is called a μ -density.

Let $v \ll \mu \ll \lambda$ be measures on (Ω, \mathcal{F}) . Then:

$$\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda} \lambda \text{-a.e.}$$

• If g is measurable then
$$\int_{\Omega} g d\nu = \int_{\Omega} g \frac{d\nu}{d\mu} d\mu$$

If
$$\mu \ll \mu$$
 (and $\nu \ll \mu$): $\frac{d\mu}{d\nu} = \left(\frac{d\nu}{d\mu}\right)^{-1} \nu$ -a.e.

¹¹That is $\mu(\Omega), \nu(\Omega) < \infty$.

¹²Or, more generally, σ -finite.

< ロ > < 同 > < 回 > < 回 > < 回 >

Higher level approach to linear inverse problems

The canonical linear inverse problem $Ax \approx b$ is usually solved via an optimization problem

■ $A \in \mathbb{R}^{m \times n}$: linear (forward) operator $\min_{x\in\mathbb{R}^d}\left\{\frac{1}{2}\|Ax-b\|^2+g(x)\right\}$ ■ $b \in \mathbb{R}^m$: measurement vector a: (convex) regularizer

Higher level approach: Interpret the ground truth as a random vector with unknown distribution. Solve for a distribution Q that is close to a prior (quess) μ and such that its mean¹³ $E_{\rm Q}$ satisfies $C \cdot E_{\rm Q} \approx b$. This leads to

$$\min_{Q} \frac{1}{2} ||AE_{Q} - b||^{2} + K_{\mu}(Q)$$

where K_{μ} measures the compliance with (or distance to) μ .

- Is this useful?
- What is our choice of K_u?

¹³i.e.
$$E_Q = \int_{\mathbb{R}^n} yQ(dy)$$

is Stability Analysis of regularized least-squares problems

The MEM framework

Measuring compliance: the KL divergence

Let μ be a (prior) distribution, i.e., a probability measure on $X \subset \mathbb{R}^n$ (i.e. $\mu = P \circ X^{-1}$ where X takes values in X). The measure of compliance of another distribution Q with μ is measured by the **Kullback-Leibler divergence** KL($\cdot | \cdot) : \mathcal{P}(X) \times \mathcal{P}(X)^{14} \to \mathbb{R} \cup \{+\infty\}$,

$$\mathsf{KL}(Q \mid \mu) = \begin{cases} \int_{\Omega} \log\left(\frac{dQ}{d\mu}\right) \, dQ, & Q \ll \mu, \\ +\infty, & \text{otherwise}, \end{cases}$$

where $\frac{dQ}{du}$ is the Radon-Nikodym derivative.

- KL($\cdot | \cdot$) is convex, KL($\cdot | \mu$) strictly convex for all $\mu \in \mathcal{P}(X)$.
- $KL(Q | \mu) \ge 0$; equality if and only if $Q = \mu$ a.e.

 $^{^{14}\}mathcal{P}(X)$: (convex) set of probability measures on X.

The MEM framework

KL divergence concretely

Let $\mu \in \mathcal{P}(X)$ be our prior/reference distribution. We are mainly interested in two cases:

1. $X = \mathbb{R}^n$ and μ is absolutely continuous w.r.t. the Lebesgue measure ν , i.e. has a density $p = \frac{d\mu}{d\nu}$. In this case, if $Q \ll \mu$, Q has a density $\frac{dQ}{d\nu} = q$, and

$$\mathsf{KL}(Q \mid \mu) = \int_{\mathbb{R}^n} \log\left(\frac{q(x)}{p(x)}\right) q(x) dx.$$

Note that we cover the case where $X \subset \mathbb{R}^n$ via $\mu(X) = 1$.

 μ is a discrete probability distribution, i.e., X is countable, and the probability mass function
 p(x) = μ({x}) has Σ_{x∈X} p(x) = 1. Then Q ≪ μ implies that μ has a probability mass function q
 and it holds that
 A set of the probability distribution of the probability mass function and the probability mass function and the probability distribution.

$$\mathsf{KL}(Q \mid \mu) = \sum_{x \in \mathcal{X}} q(x) \log \left(\frac{q(x)}{p(x)} \right).$$

Example: Let μ be the uniform distribution on $X := \{1, ..., N\}$, i.e. p(i) = 1/N for all i = 1, ..., N. Then for $Q \ll \mu$ with PMF q, we have

$$\mathsf{KL}(Q \mid \mu) = \sum_{i=1}^{N} q(i) \underbrace{\log\left(\frac{q(i)}{1/N}\right)}_{\mathsf{I} = \mathsf{Iog}(N)} = \mathsf{Iog}(N) + \sum_{i=1}^{N} \mathsf{Iog}(q(i))q(i).$$

 $\log(N) + \log(q(i))$

▲ロト▲御ト▲臣ト▲臣ト 臣 のなぐ

The MEM re-formulation

Given a prior $\mu \in \mathcal{P}(X)$, the maximum entropy on the mean method (MEMM) for the linear inverse problem $Ax \approx b$ reads:

Determine \overline{Q} as the solution of

$$\min_{\mathcal{Q}\in\mathcal{P}(X)}\left\{\frac{1}{2}\|\boldsymbol{A}\cdot\boldsymbol{E}_{\boldsymbol{Q}}-\boldsymbol{b}\|^{2}+\alpha\mathsf{KL}(\boldsymbol{Q}\mid\boldsymbol{\mu})\right\},\tag{16}$$

1 and set $\bar{x} := E_{\bar{O}}$ to be the estimate for the ground truth.

We observe that the MEM problem can be reformulated as follows:

$$\inf_{Q \in \mathcal{P}(X)} \left\{ \frac{1}{2} \| A \cdot E_Q - b \|^2 + \alpha \mathsf{KL}(Q \mid \mu) \right\} = \inf_{\substack{(Q, x) \in \mathcal{P}(X) \times \mathbb{R}^d : E_Q = x \\ E_Q = x}} \left\{ \frac{1}{2} \| A \cdot x - b \|^2 + \alpha \mathsf{KL}(Q \mid \mu) \right\}$$
$$= \inf_{\substack{x \in \mathbb{R}^d \\ Q \in \mathcal{P}(X): \\ E_Q = x \\ \vdots = x \\ \vdots = x \\ x \in \mathbb{R}^d}} \left\{ \frac{1}{2} \| A \cdot x - b \|^2 + \alpha \mathsf{KL}(Q \mid \mu) \right\}$$
$$= \inf_{\substack{x \in \mathbb{R}^d \\ Q \in \mathcal{P}(X): \\ E_Q = x \\ \vdots = x \\ \vdots = x \\ x \in \mathbb{R}^d}} \left\{ \frac{1}{2} \| A \cdot x - b \|^2 + \alpha \mathsf{KL}(Q \mid \mu) \right\}$$

・ロト ・四ト ・ヨト ・ヨト

The MEM functional and the dual problem

We obtained the reformulated problem

$$\min_{\mathbf{x}\in\mathbb{R}^d} \frac{1}{2} \|\mathbf{A}\cdot\mathbf{x} - \mathbf{b}\|^2 + \alpha \kappa_{\mu}(\mathbf{x}).$$
(17)

with the <u>MEM functional</u> $\kappa_{\mu} : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\},\$

$$\kappa_{\mu}(x) = \inf_{Q \in \mathcal{P}(\Omega)} \{ \mathsf{KL}(Q \mid \mu) + \delta_{\{0\}}(E_Q - x) \}.$$

■
$$\kappa_{\mu} \ge 0$$
; $\kappa_{\mu}(y) = 0$ if $y = E_{\mu}$, in particular, κ_{μ} proper if E_{μ} exists.

• κ_{μ} is convex (infimal projection!).

The million dollar question: Who is κ_{μ} really?

Cramér's function and the MEM functional

Cramér's function

Given a distribution $\mu \in \mathcal{P}(X)$, its moment-generating function is

$$M_{\mu}: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}, \quad M_{\mu}(z):= \int_X \exp(\langle z, y \rangle) \mu(dy).$$

The log-moment-generating function or cumulant generating function $L_{\mu} : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ of $\mu \in \mathcal{P}(X)$ is

$$L_{\mu}(z) := \log \int_{\mathcal{X}} \exp(\langle z, \cdot \rangle) d\mu = \log(M_{\mu}(z)).$$

Its conjugate $L^*_{\mu} : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\},\$

$$L^*_{\mu}(y) := \sup_{z \in \mathbb{R}^d} \{ \langle y, z \rangle - L_{\mu}(z) \}$$

is called Cramér's function¹⁵ (fundamental in large deviations theory)

The key to computational tractability of the reformulated MEMM problem is to establish conditions (on μ) under which Cramér's function equals the MEM functional, i.e.

$$\kappa_{\mu} = L_{\mu}^*.$$

¹⁵Named after Swedish mathematician and statistician Harald Cramér who is considered as 'one of the giants of statistical theory'.

Cramér's function and the MEM functional

Convexity of the log-MGF

Proposition 34 (Convexity of L_{μ}).

Let μ be a probability measure on $X \subset \mathbb{R}^n$. Then L_{μ} is proper and strictly convex. In particular, $L_{\mu} \in \Gamma$.

Proof.

Note that $L_{\mu}(0) = \log \int_{X} 1 d\mu = \log 1 = 0$, so L_{μ} is proper. Now note that, for $\lambda \in (0, 1)$,

$$\begin{array}{ll} M_{\mu}(\lambda z + (1 - \lambda)\mathbf{v}) & = & \int_{X} \exp(\langle \lambda z + (1 - \lambda)\mathbf{v}, \cdot \rangle) \ d\mu \\ & \stackrel{\mathrm{Prop. 32}^{16}}{\leq} & \left(\int \exp{\langle z, \cdot \rangle} \ d\mu\right)^{\lambda} \left(\int \exp{\langle \mathbf{v}, \cdot \rangle} \ d\mu\right)^{1-1} \end{array}$$

Therefore

$$L_{\mu}(\lambda z + (1 - \lambda)v) \leq \log\left(\left(\int \exp\left\langle z, \cdot\right\rangle \ d\mu\right)^{\lambda} \left(\int \exp\left\langle v, \cdot\right\rangle \ d\mu\right)^{1-\lambda}\right) = \lambda L_{\mu}(z) + (1 - \lambda)L_{\mu}(v).$$

If $z, v \in \text{dom } L_{\mu}$, by Proposition 32, this can only be an equality if $\langle z, \cdot \rangle = \langle v, \cdot \rangle + \gamma$ for some $\gamma \in \mathbb{R}$, i.e. z = v. This shows that L_{μ} is, in fact, strictly convex.

¹⁶With $f := \langle z, \cdot \rangle$ and $g := \langle v, \cdot \rangle$

The compact case

Proposition 35.

Let $X \subset \mathbb{R}^n$ be compact, and let $\mu \in \mathcal{P}(X)$. Then the following hold:

a) L_{μ} is strictly convex and (locally Lipschitz) continuous. In fact, L_{μ} is continuously differentiable with

$$abla L_{\mu}(y) = rac{\int_{X} x \exp{\langle y, \cdot
angle} \ d\mu}{M_{\mu}(y)}$$

b) We have $\kappa_{\mu} = L_{\mu}^*$. In particular, $\kappa_{\mu} \in \Gamma_0$ is supercoercive, and essentially strictly convex.

Guide.

a) By Proposition 34 L_{μ} is strictly convex. But by compactness of X, for any $z \in X$, there is $\bar{s} = \operatorname{argmax}_{s \in X} \exp \langle z, s \rangle$, so that

$$L_{\mu}(z) = \log \int_{\mathcal{X}} \exp \left\langle z, \cdot \right\rangle \ d\mu \leq \log \int_{\mathcal{X}} \exp \left\langle z, \, \bar{s} \right\rangle \ d\mu = \left\langle z, \, \bar{s} \right\rangle.$$

Hence, L_{μ} is finite-valued and convex, hence (locally Lipschitz) continuous. The formula for the gradient follows from 'differentiation under the integral'.

b) The identity $\kappa_{\mu} = L_{\mu}^*$. is hard work (more later).

・ロト ・ 一下・ ・ ヨト・

The case where X is compact

The dual problem

Recall the (primal) MEM problem

$$\min_{x\in\mathbb{R}^d} \frac{1}{2} \|A \cdot x - b\|^2 + \alpha \kappa_\mu(x).$$
(18)

Proposition 36.

Under the assumptions of Proposition 35 the following hold:

a) The dual problem of (18) (in the sense of Theorem 17) reads:

$$\min_{z} \frac{\alpha}{2} ||z||^2 - \langle b, z \rangle + L_{\mu}(A^{\mathsf{T}}z).$$
(19)

b) Let \overline{z} be the unique solution of (19). Then $\overline{x} := \nabla L_{\mu}(A^{T}\overline{z})$ solves (18).

Proof.

a) $\kappa_{\mu}^{*} = L_{\mu}$ by Proposition 35.

b) The dual problem is strongly convex, so has a unique solution \bar{z} (Prop. 3/6). The primal-dual recovery is given in Theorem 17 using that L_{μ} is smooth (Prop. 35).

Applications

To solve the dual problem, one can use standard solvers like e.g. L-BFGS which was successfully done for (blind and non-blind) deblurring of

Barcodes/QR-codes.

Prior *u*: Bernoulli.

Reference: G. Rioux et al.: Blind Deblurring of Barcodes via Kullback-Leibler Divergence. IEEE TPAMI 43(1), 2021, pp.77-88.

General images.

Prior μ: Uniform on box.

Reference: G Bioux et al . The Maximum Entropy on the Mean Method for Image Deblurring. Inverse Problems 37, 2021.

Fig. 11. Out of focus image of a QR code.

Fig. 12. Result of applying our method to a processed version of Fig. 11.

A data-driven approach for the MEM framework

A data-driven approach for the MEM framework: the main idea

Recall the MEM dual problem for the linear inverse problem $Ax \approx b$:

$$\min_{\boldsymbol{\tau}\in\mathbb{R}^m} \frac{\alpha}{2} \|\boldsymbol{z}\|^2 - \langle \boldsymbol{b}, \, \boldsymbol{z} \rangle + L_{\mu}(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{z}), \tag{20}$$

where L_{μ} is the log-moment generating function $\log \int_{X} \exp \langle \cdot, s \rangle d\mu$.

The obvious question: 'How to choose the prior μ ?'.

Idea for a data-driven approximation scheme: Let X_1, X_2, \ldots be a sequence of i.i.d.¹⁷ X-valued random variables on the probability space (Ω, \mathcal{F}, P) with shared distribution $\mu = P \circ X_1^{-1}$. Let $X_1(\omega), X_2(\omega), \ldots$, be a realization of the sequence.¹⁸ Pick the first *n*-realizations (data!!). They give rise to the empirical distribution

$$\mu_n^{(\omega)} = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{X_i(\omega)} \quad \text{for} \quad \mathbb{1}_{X_i(\omega)}(A) = \begin{cases} 1, & X_i(\omega) \in A, \\ 0, & \text{else} \end{cases} \quad \forall A \in \mathbb{B}_n \cap X$$

¹⁷Each $X_i \sim \mu$ and for all $n \in \mathbb{N}$ the RVs X_1, \ldots, X_n are independent.

¹⁸Pick one $\omega \in \Omega$, i.e, 'throw the dice once'.

・ロト・日本・日本・日本・日本・日本

A data-driven approach for the MEM framework

The empirical dual

Plugging the empirical distribution $\mu_n^{(\omega)} = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{X_i(\omega)}$ into the log-moment generating function yields:

$$L_{\mu_n^{(\omega)}}(u) = \log \int_X \exp \langle u, \cdot \rangle \, d\mu_n^{(\omega)} = \log \left(\frac{1}{n} \sum_{i=1}^n \exp \langle u, X_i(\omega) \rangle \right).$$

We now define the 'empirical dual'

$$\min_{z\in\mathbb{R}^{M}} \frac{\alpha}{2} ||z||^{2} - \langle b, z \rangle + \log \left(\frac{1}{n} \sum_{i=1}^{n} \exp\left(A^{T} z, X_{i}(\omega) \right) \right).$$
(21)

This problem has a unique solution $z_n(\omega)$. Define the vector (primal-dual recovery!)

$$x_n(\omega) := \nabla L_{\mu_n^{(\omega)}}(A^T z_n(\omega))$$

The million dollar question: Does $x_n(\omega)$ converge to the solution of the MEM problem as $n \to \infty$?

00000

A data-driven approach for the MEM framework

Excursion: Functional convergence

Let $f_k : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\} \ (k \in \mathbb{N})$.

$$\begin{array}{ll} f_k \stackrel{p}{\longrightarrow} f & : \Longleftrightarrow & f_k(x) \to f(x) \quad \forall x \in \mathbb{R}^n \\ f_k \stackrel{e}{\rightarrow} f & : \Longleftrightarrow & \operatorname{epi} f_k \to \operatorname{epi} f \\ f_k \stackrel{c}{\rightarrow} f & : \Longleftrightarrow & f_k(x^k) \to f(x) \quad \forall x \in \mathbb{R}^n, \ \{x^k\} \to x \\ \end{array} \tag{continuous}$$

$$\mathbf{Fact:} \ f_k \stackrel{e}{\to} f \iff \begin{cases} \liminf_{k \to \infty} f^k(x^k) \ge f(x) \quad \forall \ x^k \to x, \\ \limsup_{k \to \infty} f^k(x^k) \le f(x) \quad \exists \ x^k \to x. \end{cases} \quad \forall x \in \mathbb{R}^n$$

Figure: Connections between the convergence concepts

▲□▶▲□▶▲臣▶▲臣▶ 臣 のへで

A data-driven approach for the MEM framework

Pointwise convergence is not enough!

Consider the sequence of functions f^k , defined by

$$f^{k}(x) = \min\{1 - x, 1, 2k|x + \frac{1}{k}| - 1\}$$
 for any $x \in [-1, 1]$.

For any $x \in \mathbb{R}$ we have $f^k(x) \to f(x) := \min\{1 - x, 1\}$ as $k \to \infty$.

The features of epigraphical convergence¹⁹

Proposition 37 (Poor man's sum rule).

Let $f_k \xrightarrow{e} f$ and let g be continuous and finite-valued. Then $f_k + g \xrightarrow{e} f + g$

Proposition 38.

Let $f_k \xrightarrow{e} f$. Then Lim sup(argmin f_k) \subset argmin f. $k \rightarrow \infty$

The convex case allows for even stronger statements.

Proposition 39.

Let $\{f_k \in \Gamma_0\}$. Then the following hold:

- a) (Wijsman) $f_k \xrightarrow{e} f \iff f_k^* \xrightarrow{e} f^*$.
- b) (Attouch) $f_k \xrightarrow{e} f \implies \operatorname{gph} \partial f_k \rightarrow \operatorname{gph} \partial f$.
- c) If $f_k \xrightarrow{e} f$ f level-bounded and $x_k \in \operatorname{argmin} f_k$ for all $k \in \mathbb{N}$. Then $\{x_k\}$ is bounded and every cluster point belongs to argmin f. If f is, in addition strictly convex and $\bar{x} = \operatorname{argmin} f$, then $x_k \to \bar{x}$.

くロト (得) (ア・マラト・ ъ

¹⁹See Rockafellar/Wets, Chapter 7 for details.

Stability Analysis of regularized least-squares p

A data-driven approach for the MEM framework

Epi-convergence of the empirical dual objective

Recall the empirical dual

$$\min_{z\in\mathbb{R}^m}\phi_n^{\omega}(z):=\frac{\alpha}{2}\|z\|^2-\langle b,z\rangle+L_n^{\omega}(A^Tz),$$

where $L_n^{\omega}(u) = \log(\frac{1}{n}\sum_{i=1}^n \exp(\langle u, X_i(\omega) \rangle))$. We record that:

• ϕ_n^{ω} is strongly convex.

• $\phi_n^{\omega} = g + L_n^{\omega} \circ A^T$ where g is finite-valued and continuous.

In view of Proposition 37 and Proposition 39 for ϕ_n^{ω} to epigraphically converge to the objective function

$$\phi(z) := \frac{\alpha}{2} \|z\|^2 - \langle b, z \rangle + L_{\mu}(A^T z)$$

of the MEM dual, it suffices to show that $L_{\alpha}^{\omega} \circ A^{T} \stackrel{e}{\rightarrow} L_{\mu} \circ A^{T}$. This is a probabilistic statement which reads like this, and leverages the theory of *epi-consistency* by King and Wets.

Proposition 40 (Choksi, King-Roskamp, H. '24).

Let (Ω, \mathcal{F}, P) be the underlying probability space. Then

$$L_n^{\omega} \circ A^T \xrightarrow{e} L_{\mu} \circ A^T$$
 (P) – a.e.

▲□▶▲舂▶▲≧▶▲≧▶ 差 のへで

is Stability Analysis of regularized least-squares problems

Fundamentals of Convex Analysis Stability Analysis of regularized least-squares problems The Maximum Entropy on the Mean Method for Linear Inverse Problems

A data-driven approach for the MEM framework

From empirical dual solutions to primal solutions

As a corollary of Proposition 40, we find that the objective function ϕ_n^{ω} of the empirical dual converges epigraphically to that of the MEM dual for almost every $\omega \in \Omega$. Smoothness and Attouch's theorem (Proposition 39 b)) now yield the following:

Corollary 41.

Let $\hat{z} \in \mathbb{R}^m$, and let $z_n \to \hat{z}$ be any sequence converging to \hat{z} . Then for almost every $\omega \in \Omega$,

$$\nabla L_n^{\omega}(A^T z_n) \rightarrow \nabla L_{\mu}(A^T \hat{z}).$$

Our derivations suggest the following scheme to solve a data-driven MEM approach for the linear inverse problem $Ax \approx b$.

- (S1) Generate realizations $x_1, x_2, ..., x_n$ (data!) of i.i.d. random vectors $X_i \sim \mu$.
- (S2) Determine

$$\bar{z}_n := \operatorname*{argmin}_{z} \frac{\alpha}{2} \|z\|^2 - \langle b, z \rangle + \log \left(\frac{1}{n} \sum_{i=1}^n \exp \left\langle A^T z, x_i \right\rangle \right).$$

(S3) Set $\bar{x}_n := \nabla L_\mu (A^T \bar{z}_n)$.

A data-driven approach for the MEM framework

A demonstration

Want to recover a hand drawn digit x from noisy observations $b = x + \eta$. Construct $\mu_n^{(\omega)}$ for the MEM framework by sampling from the MNIST digits dataset.

(S1) For given *n*, draw sample $x_1, \ldots x_n$ uniformly at random from MNIST.

(S2 & S3) Using preferred method (e.g. here L-BFGS) find $\overline{z}_n = \operatorname{argmin}_z \phi_n(z)$. Set $\overline{x}_n = \nabla L_{\mu_n(\omega)}(\overline{z}_n)$.

(a) Ground Truth x

(b) Observed b, $\eta \sim \mathcal{N}(0, 0.1 ||x||_2)$

(c) x_n, n = 100

(d) x_n, n = 5000

(e) x_n , n = 60000

) (f) Post-processed

Fundamentals of Convex Analy:

Beyond compactness of X

The general setting

Given $X \subset \mathbb{R}^n$, and $\mu \in \mathcal{P}(X)$, recall the MEM functional $\kappa_{\mu} : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$,

$$\kappa_{\mu}(\mathbf{x}) = \inf_{\mathbf{Q} \in \mathcal{P}(\Omega)} \{ \mathsf{KL}(\mathbf{Q} \mid \mu) + \delta_{\{0\}}(\mathbf{E}_{\mathbf{Q}} - \mathbf{y}) \},$$

and the log-moment generating function $L_{\mu} : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\},\$

$$L_{\mu}(z) = \log \int_{X} \exp \langle z, \cdot \rangle \, d\mu.$$

We want to find the crucial identity $\kappa_{\mu} = L_{\mu}^{*}$ for the two essential cases

- $X = \mathbb{R}^d$ and μ is absolutely continuous w.r.t. to the Lebesgue measure;
- X is countable $(\mu(X \cap A) = \sum_{x \in X} P(\{f = x\}) \mathbb{1}_{\{x\}}(A)$ for all $A \in \mathbb{B}_n$).

Key ingredient: Exponential families and Legendre-type functions.

s Stability Analysis of regularized least-squares problems

Beyond compactness of X

1st Ingredient: Legendre-type functions

Let $\psi \in \Gamma_0$. Say that ψ is of Legendre-type if it is both (cf. Proposition 10)

- essentially strictly convex;
- essentially smooth.

Rockafellar (1970): Let $\psi \in \Gamma_0$. Then

- ψ of Legendre-type $\iff \psi^*$ is of Legendre type.
- In this case: $\nabla \psi$: int (dom ψ) \rightarrow int (dom ψ^*) is a bijection (with ($\nabla \psi$)⁻¹ = $\nabla \psi^*$).

Fundamentals of Convex Analysis Stability Analysis of regularized least-squares problems The Maximum Entropy on the Mean Method for Linear Inverse Problems

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

Stability Analysis of regularized least-squares problems

Fundamentals of Convex Analysis Stability Analysis of regularized least-squares problems The Maximum Entropy on the Mean Method for Linear Inverse Problems

Beyond compactness of X

2nd ingredient: Exponential families

Let $\mu \in \mathcal{P}(X)$. The natural parameter space for μ is simply the domain of its (log-)MGF, i.e.,

$$\Theta_{\mu} := \left\{ \theta \in \mathbb{R}^{d} \mid \int_{X} \exp(\langle \theta, \cdot \rangle) d\mu < +\infty \right\} (= \operatorname{dom} L_{\mu}).$$

The standard exponential family generated by μ is given by

$$\mathcal{F}_{\mu} := \left\{ f_{\mu_{\theta}} \mid f_{\mu_{\theta}}(y) := \exp(\langle y, \theta \rangle - \psi_{\mu}(\theta)), \quad \theta \in \Theta_{\mu} \right\}.$$

Properties and connections

- For $y \in int(\Theta_{\mu})$ we have: $\overline{Q} \in \operatorname{argmin}_{Q:E_{Q}=y} \mathsf{KL}(Q \mid \mu) \implies \exists f \in \mathcal{F}_{\mu} : d\overline{Q} = f \cdot d\mu$.

▲□▶▲□▶▲□▶▲□▶ = のへで

Fundamentals of Convex Analysis Stability Analysis of regularized least-squares problems The Maximum Entropy on the Mean Method for Linear Inverse Problems

The main result

The (standard) exponential family \mathcal{F}_{μ} is called

- minimal²⁰ if int $\Theta_v \neq \emptyset$ and int (conv S_u) $\neq \emptyset^{21}$;
- **steep** if ψ_v is essentially smooth (automatically satisfied if Θ_v open).

Theorem 42 (Vaisbourd et al.).

Suppose $\mu \in \mathcal{P}(X)$ generates a minimal and steep exponential family. Moreover, suppose one of the following holds:

- \blacksquare S_u is uncountable (absolutely continuous case):
- S_µ is countable and conv $S_µ$ is closed (which is always the case if $S_µ$ is finite).

In this case, $0 \le \kappa_P \in \Gamma_0$ is of Legendre type and coercive. Then $\kappa_{\mu} = L_{\mu}^*$.

イロト イロト イヨト イヨト

²⁰This can essentially be assumed w.l.o.g. by going to relative topology.

²¹ S_{μ} : support of μ , i.e. the smallest closed set $\mu \subset \Omega$ s.t. $\mu(X \setminus A) = 0$.

Beyond compactness of X

How is $\kappa_{\mu} = L_{\mu}^*$ useful?

If $\mu \in \mathcal{P}(\Omega)$ is separable (i.e. $\mu = \mu_1 \times \mu_2 \times \cdots \times \mu_d$), then $M_{\mu}(\theta) = \prod_{i=1}^d M_{\mu_i}(\theta_i)$. Hence

$$egin{aligned} & & * \ \mu^*(\mathbf{y}) & = & \sup_{\mathbf{\theta} \in \mathbb{R}^d} \left\{ \langle \mathbf{y}, \mathbf{\theta}
angle - \log M_\mu(\mathbf{\theta})
ight\} \ & = & \sum_{i=1}^d \sup_{\mathbf{\theta}_i \in \mathbb{R}} \left\{ y_i \mathbf{\theta}_i - \log M_{\mu_i}(\mathbf{\theta}_i)
ight\}. \end{aligned}$$

In many cases this yields analytic formulas for L_{μ}^* , i.e. κ_P (even without separability!).

Example: If μ is the multivariate normal distribution $N(E, \Sigma)$ for $\Sigma > 0$, i.e. $M_P(\theta) = \exp(\langle E, \theta \rangle + \frac{1}{2} \theta^T \Sigma \theta)$, then

L

$$L^*_{\mu}(y) = \sup_{\theta \in \mathbb{R}^n} \{ \langle y, \theta \rangle - \log M_{\mu}(\theta) \}$$

=
$$\sup_{\theta \in \mathbb{R}^n} \{ \langle y - E, \theta \rangle - \frac{1}{2} \theta^T \Sigma \theta \}$$

=
$$\frac{1}{2} (y - E)^T \Sigma^{-1} (y - E).$$

▲□▶▲□▶▲□▶▲□▶ = のへ⊙

Fundamentals of Convex Analysis Stability Analysis of regularized least-squares problems The Maximum Entropy on the Mean Method for Linear Inverse Problems

< ロ > < 同 > < 回 > < 回 > : < 回 > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □

Examples of Cramér's function

Reference Distribution (μ)	Cramér Rate Function $(L^*_{\mu}(y))$	dom L^*_{μ}
Multivariate Normal $\mu \in \mathbb{R}^d, \Sigma \in \mathbb{S}^d, \Sigma > 0$	$\frac{1}{2}(y-\mu)^T \Sigma^{-1}(y-\mu)$	\mathbb{R}^{d}
Poisson ($\lambda \in \mathbb{R}_{++}$)	$y \log(y/\lambda) - y + \lambda$	\mathbb{R}_+
Gamma $(\alpha, \beta \in \mathbb{R}_{++})$	$eta \mathbf{y} - lpha + lpha \log\left(rac{lpha}{eta \mathbf{y}} ight)$	\mathbb{R}_{++}
Normal-inverse Gaussian $\alpha, \beta, \delta \in \mathbb{R} : \alpha \ge \beta ,$ $\delta > 0, \gamma := \sqrt{\alpha^2 - \beta^2}$	$\alpha \sqrt{\delta^2 + (y-\mu)^2} - \beta(y-\mu) - \delta \gamma$	R
Multinomial $(p \in \Delta_d, n \in \mathbb{N})$	$\sum_{i=1}^{d} y_i \log\left(\frac{y_i}{np_i}\right)$	$n\Delta_d \cap I(p)^{22}$

In addition: Laplace, (Negative) Multinomial, Continuous/Discrete Uniform, Logistic, Exponential/Chi-Squared/Erlang (via Gamma), Binomial/Bernoulli/Categorical (via Multinomial), Negative Binomial & Shifted Geometric (via Negative Multinomial).

²² $I(p) := \{x \in \mathbb{R}^d \mid x_i = 0 \text{ if } p_i = 0\}$