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Convex sets and functions

1. Fundamentals from Convex Analysis
‘What’s dead may never die!’
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Convex sets and functions

Convex sets and cones

”The great watershed in optimization is not between linearity and nonlinearity, but convexity and
nonconvexity.” (R.T. Rockafellar, *1935)

S ⊂ E is said to be

convex if λS + (1 − λ)S ⊂ S (λ ∈ (0, 1));

a cone if λS ⊂ S (λ ≥ 0).

Note that K ⊂ E is a convex cone iff K + K ⊂ K .

0

Figure: Convex set/non-convex cone
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Convex sets and functions

Relative topology and paralell subspaces

Affine set: A set S = U + x with x ∈ E and a subspace U ⊂ is called affine. The subspace U is uniquely
determined by U = aff (S − x) = S − S.

Affine hull: affM :=
⋂
{S ∈ E | M ⊂ S, S affine } .

Relative interior/boundary: C ⊂ E convex.

ri C :=
{
x ∈ C

∣∣∣ ∃ε > 0 : Bε(x) ∩ aff C ⊂ C
}

(relative interior)
x ∈ ri C ⇔ aff (C − x) = R+(C − x) =: par C (parallel subspace)

aff C
ri C

C

C aff C ri C

{x} {x} {x}
[x, x′] {λx + (1 − λ)x′ | λ ∈ R} (x, x′)
Bε(x) E Bε(x)

Table: Examples of relative interiors
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Convex sets and functions

Extended real-valued functions: an epigraphical perspective
Let f : E→ R := R ∪ {±∞}.

epi f :=
{
(x, α) ∈ E × R

∣∣∣ f(x) ≤ α
}

(epigraph)

epi <f :=
{
(x, α) ∈ E × R

∣∣∣ f(x) < α
}

(strict epigraph)

dom f :=
{
x ∈ E

∣∣∣ f(x) < ∞
}

(domain).

levr f :=
{
x

∣∣∣ f(x) ≤ r
}

(level set)

→ f is uniquely determined through epi f !

gph f

epi f

x

f(x)

Figure: Epigraph of f : R→ R

f proper :⇔ −∞ < f . +∞ ⇔ 1 dom f , ∅

f convex :⇔ epi f/epi <f convex ⇔ 1 f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) ∀x, y ∈ E, λ ∈ [0, 1]

⇒ levr f convex ∀r ∈ R.

Γ :=
{
f : E→ R ∪ {+∞}

∣∣∣ f proper, convex
}

1Only for f : E→ R ∪ {+∞}
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Convex sets and functions

Lower semicontinuity
Let f : E→ R and x̄ ∈ E.

Lower limit:
lim infx→x̄ f(x) := inf

{
α

∣∣∣ ∃ xk → x̄ : f(xk )→ α
}

Lower semicontinuity: f is said to be lsc (or closed) at x̄ if

lim inf
x→x̄

f(x) ≥ f(x̄).

Γ0 := {f ∈ Γ | f closed }

Closure: cl f : E→ R, (cl f)(x̄) := lim infx→x̄ f(x).

x̄
x

f(x)

Figure: f not lsc at x̄

Facts:

f lsc ⇐⇒ epi f closed ⇐⇒ f = cl f ⇐⇒ levr f
closed (r ∈ R)

cl f ≤ f

epi f

x

f(x)

Figure: f : x 7→
{

1
x x > 0,

+∞, else.
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Convex sets and functions

Convexity preserving operations (New from old)

1 Set Operations

For C ,Ci (i ∈ I) ⊂ E, D ⊂ E′ convex, F : E→ E′ affine the following sets are convex:

◦ F(C) (affine image)
◦ F−1(D) (affine pre-image)
◦ C × D (Cartesian product)
◦ C1 + C2 (Minkowski sum)
◦

⋂
i∈I Ci (Intersection)

2 Functional operations
For fi , g : E→ R convex and F : E′ → E affine the following functions are convex:

(Affine pre-composition) f := g ◦ F : epi f = T−1(epi g), T : (x, α) 7→ (F(x), α)

(Epi-multiplication) f := λ ⋆ g := λg
(
·
λ

)
: epi f = λepi g

(Pointwise supremum) f := supi∈I fi : epi f =
⋂

i∈I epi fi

(Moreau envelope) f : x 7→ infu

{
g(u) + 1

2 ∥x − u∥2
}
: epi f = epi g + epi 1

2 ∥ · ∥
2.
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Minimization and Convexity

Coercivity notions and existence of minimizers
Let f : E→ R. Then f is called

i) coercive if lim∥x∥→+∞ f(x) = +∞;

ii) supercoercive if lim∥x∥→+∞
f(x)
∥x∥ = +∞.

Lemma 1 (Level-boundedness = coercivity).

f : E→ R is coercive if and only if it is level-bounded, i.e., levαf is bounded for all α ∈ R.

Theorem 2 (Existence of minima).

Let f : E→ R ∪ {+∞} be proper, lsc and level-bounded. Then argminE f , ∅.

Proof.
Pick {xk } such that f(xk )→ f∗ := infE f < ∞; choose α ∈ (f∗,+∞); set Lα :=

{
x

∣∣∣ f(x) ≤ α
}
.

Lαcompact, xk ∈ Lα (k suff. large)
Bolzano−Weierstrass

=⇒ ∃x̄ ∈ Lα, {xk } →K x̄

=⇒ f(x̄)
f lsc
≤ lim inf

x→x̄
f(x) ≤ lim inf

k∈K
f(xk ) = f∗

=⇒ x̄ ∈ argmin
E

f .

□
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Minimization and Convexity

Stronger notions of convexity
Let f ∈ Γ and C ⊂ dom f convex. Then f is said to be

a) strictly convex on C if

f(λx + (1 − λ)y) < λf(x) + (1 − λ)f(y) (x, y, ∈ C , x , y, λ ∈ (0, 1)).

b) strongly convex on C if there exists σ > 0 such that

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) −
σ

2
λ(1 − λ)∥x − y∥2 (x, y, ∈ C , λ ∈ (0, 1))

The scalar σ > 0 is called modulus of strong convexity of f (on C).

For C = dom f we simply call f strictly and strongly convex, respectively.

Proposition 3.

Let f ∈ Γ. Then:

a) f σ-strongly convex ⇐⇒ f − σ
2 ∥ · ∥

2 convex.

b) f σ-strongly convex =⇒ f supercoercive and strictly convex.

Guide.
a) Elementary computation.

b) Use the (nontrivial) fact that f − σ
2 ∥ · ∥

2 has an affine minorant g(x) = ⟨v , x⟩+ β to verify
supercoercivity. Strict convexity is straightforward. □
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Minimization and Convexity

The basic results in convex optimization
Proposition 4.

Let f ∈ Γ. Then every local minimizer of f (over E) is a global minimizer and argmin f is convex (possibly
empty).

Proposition 5 (Uniqueness of minimizers).

Let f ∈ Γ be strictly convex. Then f has at most one minimizer.

Corollary 6 (Minimizing the sum of convex functions).

Let f , g ∈ Γ0 such that dom f ∩ dom g , ∅. Suppose that one of the following holds:

i) f is supercoercive;

ii) f is coercive and g is bounded from below.

Then f + g is coercive and has a minimizer (over E). If f or g is strictly convex, f + g has exactly one
minimizer.

Guide.
Observe f + g ∈ Γ0. Now show in either case that f + g is coercive, and apply Theorem 2.
The uniqueness result follows immediately from Proposition 5, realizing that f + g ∈ Γ0 is strictly convex
if one of the summands is. □
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Minimization and Convexity

Parametric minimization aka infimal projection

Theorem 7 (Infimal projection).

Let h : E1 × E2 → R ∪ {+∞} be convex. Then the optimal value function

φ : E1 → R, φ(x) := inf
y∈E2

h(x, y)

is convex. Moreover, the set-valued mapping

x 7→ argmin
y∈E2

h(x, y) ⊂ E2.

is convex-valued.

Proof.
It can easily be shown that epi <φ = L(epi <h) under the linear mapping L : (x, y, α) 7→ (x, α).
The remaining assertion follows immediately from Proposition 4 , since y 7→ h(x, y) is convex for all
x ∈ E1. □
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Subdifferentiation and conjugacy of convex functions

The convex subdifferential
Definition 8.
Let f : E→ R. A vector v ∈ E is called a subgradient of v at x̄ if

f(x) ≥ f(x̄) + ⟨v , x − x̄⟩ (x ∈ E). (1)

We denote by ∂f(x̄) the set of all subgradients of f at x̄ and call it the (convex) subdifferential of f at x̄.

The inequality (1) is referred to as subgradient inequality.

Slogan: ”The subgradients of f at x̄ are the slopes of
affine minorants of f that coincide with f at x̄”.

gph f

Figure: Affine minorants at a point of
nondifferentiability

0 ∈ ∂f(x) ⇐⇒ x ∈ argminE f (Fermat’s rule)
∂f(x) closed and convex (x ∈ E)
∂f(x) compact and nonempty ⇐⇒ x ∈ int (dom f) ⇐⇒ locally Lipschitz at x
∂f(x) is a singleton ⇐⇒ f differentiable at x ⇐⇒ f continuously differentiable at x
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Subdifferentiation and conjugacy of convex functions

Examples of subdifferentiation
(Indicator function/Normal cone) Let S ⊂ E.

Indicator function of S:

δS : E→ R ∪ {+∞}, δS(x) :=
{

0, x ∈ S,
+∞, else.

∂δS(x̄) =
{
v

∣∣∣ δS(x) ≥ δS(x̄) + ⟨v , x − x̄⟩ (x ∈ E)
}

=
{
v ∈ E

∣∣∣ ⟨v , x − x̄⟩ ≤ 0 (x ∈ S)
}

=: NS(x̄) (x̄ ∈ S)

S

NS(0)

Figure: Normal cone

(Euclidean norm) ∥ · ∥ :=
√
⟨·, ·⟩. Then

∂∥ · ∥(x̄) =
{ {

x̄
∥x̄∥

}
if x̄ , 0,

B if x̄ = 0.

(Empty subdifferential)

f : x ∈ R 7→
{
−
√

x if x ≥ 0,
+∞ else.

∂f(x) =


{
− 1

2
√

x

}
, x > 0,

∅, else.
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Subdifferentiation and conjugacy of convex functions

The Fenchel conjugate

For f : E→ R ∪ {+∞} let f∗ : E→ R be the function whose epigraph encodes the affine minorants of f :

epi f∗ !
=

{
(v , β)

∣∣∣ ⟨v , x⟩ − β ≤ f(x) (x ∈ E)
}

=⇒ f∗(v) ≤ β ⇐⇒ sup
x∈E
{⟨v , x⟩ − f(x)} ≤ β ((v , β) ∈ E × R)

=⇒ f∗(v) = sup
x∈E
{⟨v , x⟩ − f(x)} (v ∈ E). (2)

Definition 9 (Fenchel conjugate).

Let f : E→ R proper. The function f∗ : E→ R defined through (2) is called the (Fenchel) conjugate of f .
The function (f∗∗) := (f∗)∗ is called the biconjugate of f .

Recall: Γ :=
{
f : E→ R | f convex and proper

}
and Γ0 := {f ∈ Γ | f closed } .

f∗ closed and convex - proper if f . +∞ with an affine minorant

f = f∗∗proper ⇐⇒ f ∈ Γ0 (Fenchel-Moreau)

f∗ = (cl f)∗ (f ∈ Γ)

f(x) + f∗(y) ≥ ⟨x, y⟩ (x, y ∈ E) (Fenchel-Young Inequality)
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Subdifferentiation and conjugacy of convex functions

Support functions: A special case of conjugacy

The support function σS of S ⊂ E (nonempty) is defined by

σS : E→ R ∪ {+∞}, σS(z) := δ∗S(z) = sup
x∈S
⟨x, z⟩ .

σS is finite-valued if and only if S is bounded (and nonempty)

σS = σconv S = σconv S = σcl S

σ∗S = δconv S

∂σS(x) =
{
z ∈ conv S

∣∣∣ x ∈ Nconv S(z)
}

σS is a norm if and only if S is symmetric, bounded and 0 ∈ int S.

Example: Let B∞ be the unit ball in the maximum norm. Then

σB∞ = ∥ · ∥1.
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Subdifferentiation and conjugacy of convex functions

Dual correspondences

‘Every property of the primal object (f ∈ Γ0) corresponds to a property of the dual object (f∗ ∈ Γ0).’

Proposition 10 (Dual correspondences).

Let f ∈ Γ0(E). Then:

(a) inf f = −f∗(0) and argmin f = −∂f∗(0).

(b) f level-bounded ⇐⇒ 0 ∈ int (dom f∗).

(c) f supercoercive ⇐⇒ dom f∗ = E.

(d) The following are equivalent:

(i) f is essentially strictly convex, i.e. strictly convex on every convex subset of dom ∂f ;
(ii) f∗ is essentially smooth, i.e. ∂f∗ is single-valued. In particular, ∂f∗(x) = ∇f∗(x) for all

x ∈ dom ∂f∗ = int (dom f∗).

Guide.
These are all ‘straightforward’ except (d)! □
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Subdifferentiation and conjugacy of convex functions

Interplay of conjugation and subdifferentiation

Theorem 11 (Subdifferential and conjugate function).

Let f be lsc, proper, convex. TFAE:

i) y ∈ ∂f(x);

ii) f(x) + f∗(y) = ⟨x, y⟩;

iii) x ∈ ∂f∗(y).

In particular, ∂f∗ = (∂f)−1.

Proof.
Notice that

y ∈ ∂f(x) ⇐⇒ f(z) ≥ f(x) + ⟨y, z − x⟩ (z ∈ E)

⇐⇒ ⟨y, x⟩ − f(x) ≥ sup
z
{⟨y, z⟩ − f(z)}

⇐⇒ f(x) + f∗(y) ≤ ⟨x, y⟩
Fenchel−Young
⇐⇒ f(x) + f∗(y) = ⟨x, y⟩ ,

Applying the same reasoning to f∗ and noticing that f∗∗ = f if f ∈ Γ0, gives the missing equivalence. □
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Subdifferentiation and conjugacy of convex functions

Infimal convolution
Definition 12 (Infimal convolution).

Let f , g : E→ R ∪ {+∞}. Then the function

f#g : E→ R, (f#g)(x) := inf
u∈E
{f(u) + g(x − u)}

is called the infimal convolution of f and g. We call the infimal convolution f#g exact at x ∈ E if

argmin
u∈E

{f(u) + g(x − u)} , ∅.

We simply call f#g exact if it is exact at every x ∈ dom f#g.

We always have:
dom f#g = dom f + dom g;
f#g = g#f ;
f , g convex, then f#g convex (as (f#g)(x) = infy h(x, y) with h : (x, y) 7→ f(y) + g(x − y)
convex).

Example 13 (Distance functions).

Let C ⊂ E. Then dC := δC#∥ · ∥, i.e.
dC (x) = inf

u∈C
∥x − u∥

is the distance function of C, which is hence convex if C is a convex.
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Subdifferentiation and conjugacy of convex functions

Conjugacy of infimal convolution
Proposition 14 (Conjugacy of inf-convolution).

Let f , g : E→ R ∪ {+∞}. Then the following hold:

a) (f#g)∗ = f∗ + g∗;

b) If f , g ∈ Γ0 such that dom f ∩ dom g , ∅, then (f + g)∗ = cl (f∗#g∗).

Proof.
a) For all y ∈ E, we have

(f#g)∗(y) = sup
x

{
⟨x, y⟩ − inf

u

{
f(u) + g(x − u)

}}
= sup

x,u

{
⟨x, y⟩ − f(u) − g(x − u)

}
= sup

x,u

{
(⟨u, y⟩ − f(u)) + (⟨x − u, y⟩ − g(x − u))

}
= f∗(y) + g∗(y).

b) (f∗#g∗)∗
a)
= f∗∗ + g∗∗

f ,g∈Γ0
= f + g

clear?
∈ Γ0, hence (f∗#g∗) ∈ Γ.

=⇒ cl (f∗#g∗) = (f∗#g∗)∗∗ = (f + g)∗.

□
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Subdifferentiation and conjugacy of convex functions

Drop the closure!
Theorem 15.
Let f , g ∈ Γ0 such that

ri (dom f) ∩ ri (dom g) , 0 (CQ).

Then the following hold

a) (‘Attouch-Brézis’) (f + g)∗ = f∗#g∗, and the infimal convolution is exact, i.e. the infimum in the
infimal convolution is attained on dom f∗#g∗.

b) (Sum rule) ∂(f + g) = ∂f + ∂g.

Proof.
a) Hard work! See, e.g., Rockafellar (1970) or Bauschke/Combettes (2017).

b) Only show ”⊂”:1 Let v ∈ ∂(f + g)(x). By a), ∃ū : (f + g)∗(v) = f∗(ū) + g(v − ū). Thus,

v ∈ ∂(f + g)(x)
Th. 11
⇐⇒ (f + g)(x) + (f + g)∗(v) = ⟨v , x⟩

⇐⇒ f(x) + g(x) + f∗(ū) + g(v − ū) = ⟨ū, x⟩+ ⟨v − ū, x⟩
Fenchel−Young
⇐⇒ ū ∈ ∂f(x), v − ū ∈ ∂g(x)

=⇒ v ∈ ∂f(x) + ∂g(x).

□

1The converse direction always holds!
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Subdifferentiation and conjugacy of convex functions

Conjugacy for convex-linear composites
Let f ∈ Γ and L ∈ L(E,E′). Then

Lf : E′ → R, (Lf)(y) := inf
{
f(x)

∣∣∣ L(x) = y
}

is convex2.

Proposition 16.

Let g : E→ R be proper and L ∈ L(E,E′) and T ∈ L(E′,E). Then the following hold:

a) (Lg)∗ = g∗ ◦ L∗.

b) (g ◦ T)∗ = cl (T∗g∗) if g ∈ Γ.

c) The closure in b) can be dropped and the infimum is attained when finite if g ∈ Γ0 and

rge T ∩ ri (dom g) , ∅. (3)

Guide.
a) Straightforward. b) From a) and Fenchel-Moreau.

c) Observe that (g ◦ T)∗(z) = (δgph T + ϕ)∗(z, 0) for ϕ(x, y) 7→ g(y). Apply Attouch-Brézis to the latter
realizing that the (CQ) is equivalent to (3). □

2Show that epi <Lf = T(epi < f) for T : (x, y) 7→ (Tx, y).
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Subdifferentiation and conjugacy of convex functions

Fenchel-Rockafellar duality

Theorem 17 (Fenchel-Rockafellar duality).

Let γ ∈ Γ(E1), ϕ ∈ Γ(E2) and L ∈ L(E1,E2). Define

min
x∈E1

ϕ(Lx) + γ(x) (primal problem)

and
max
y∈E2
−γ∗(L∗y) − ϕ∗(−y) (dual problem).

Set
p := inf

x∈E1
{ϕ(Lx) + γ(x)} and d := sup

y∈E2

{−γ∗(L∗y) − ϕ∗(−y)}.

The following hold:

a) (Weak duality) p ≥ d.

b) (Strong duality) p = d if ri (dom ϕ) ∩ ri L(dom γ) , ∅ (CQ).

c) (Primal-dual recovery) If γ ∈ Γ0 and g ∈ Γ0 the following are equivalent:

i) x̄ ∈ ∂γ∗(L∗ ȳ), Lx̄ ∈ ∂ϕ∗(−ȳ);
ii) p = d, x̄ ∈ argmin γ(x) + ϕ(Lx), ȳ ∈ argmax−γ∗(L∗y) − ϕ∗(−y).
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Subdifferentiation and conjugacy of convex functions

Fenchel-Rockafellar duality for regularized least-squares
For A ∈ L(E1,E2), b ∈ E2, λ > 0 and g ∈ Γ0(E1) consider

min
x

1
2
∥Ax − b∥2 + λg(x). (4)

To apply the Fenchel-Rockafellar duality scheme (Theorem 17) set

ϕ :=
1
2
∥(·) − b∥2, γ := λg, L := A .

Since dom ϕ = E2, the qualification condition (CQ) is vacuously satisfied. Moreover

ϕ∗ =
1
2
∥ · ∥2 + ⟨b , ·⟩ , γ∗ = λ ⋆ g.

Consequently, the dual problem of (4) reads

max
y
⟨b , y⟩ −

1
2
∥y∥2 − λ ⋆ g∗(A ∗y). (5)

Primal-dual recovery: Assume that ȳ is the unique (clear?) solution for the dual problem.
Then

x̄ : x̄ ∈ ∂g∗(A ∗ ȳ) and b − Ax̄ = ȳ solves (4).

Note that, by Proposition 10, ∂g∗(A ∗) = ∇g∗(A ∗ ȳ) if g is essentially strictly convex.
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Proximal operators

The proximal operator
Let f ∈ Γ0 and λ > 0. Define the proximal operator of f by

proxf (x) := argmin
u

{
f(u) +

1
2
∥x − u∥2

}
.

Proposition 18 (Proximal operator).

Let f ∈ Γ0, λ > 0. Then:

a) proxf = (I + ∂f)−1; b) proxf is 1-Lipschitz.

Proof.
a) Optimality conditions.

b) Set u = proxf (x), v := proxf (y). Then (via a))

x − u ∈ ∂f(u), y − v ∈ ∂f(v)
subgrad. ineq.

=⇒

{
f(v) ≥ f(u) + ⟨x − u, v − u⟩ ,
f(u) ≥ f(v) + ⟨y − v , u − v⟩

summ.
=⇒ 0 ≥ ⟨y − x + u − v , u − v⟩

⇐⇒ ⟨x − y, u − v⟩ ≥ ∥u − v∥2

CSI
=⇒ ∥u − v∥ ≤ ∥x − y∥.

□
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2. Stability Analysis of regularized
least-squares problems
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The general setting

Consider the optimization problem
min
x∈Rn

h(p, x) + φ(x) (6)
where

h : Rp × Rn → R (locally) smooth and convex in x;

φ : Rn → R ∪ {+∞} closed, proper, convex.

We are interested in the solution map

S(p) := argmin
x∈Rn

{
h(p, x) + φ(x)

}
convexity
=

{
x ∈ Rn

∣∣∣ 0 ∈ ∇x h(p, x) + ∂φ(x)
}
.

(Smooth case) If φ ∈ C2 then the classical implicit function theorem yields:

x̄ = S(p̄), ∇2
xx h(p̄, x̄) + ∇2φ(x̄) ≻ 0 =⇒ ∃U ∈ N(p̄) : S ∈ C1(U).

Question: What to do when φ is not smooth?
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Tools from Variational Analysis

Set-convergence (by Painlevé-Kuratowski)
Let {Ck } with Ck ⊂ Rn for all k ∈ N. We define

(outer limit)

Lim sup
k→∞

Ck :=
{
x | ∃K ⊂ N(infinite), {xk } →K x : xk ∈ Ck ∀k ∈ K

}
(inner limit)

Lim inf
k→∞

Ck :=
{
x | ∃k0 ∈ N, {xk } → x : xk ∈ Ck ∀k ≥ k0

}
.

Lim supk Ck

Lim infk Ck

C2

C4
C6

C3

C5
C7

Figure: Example of {Ck } non-convergent
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Tools from Variational Analysis

Set-valued maps

For a set-valued map S : Rn ⇒ Rm , we define:

dom S :=
{
x ∈ Rn

∣∣∣ S(x) , ∅
}

(domain);

gph S :=
{
(x, y) ∈ Rn × Rm

∣∣∣ y ∈ S(x)
}

(graph);

S−1 : Rm ⇒ Rn , S−1(y) =
{
x ∈ Rn

∣∣∣ y ∈ S(x)
}

(inverse map).

We define the outer limit of S at x̄.

Lim sup
x→x̄

S(x) :=
⋃

xk→x̄

Lim sup
k→∞

S(xk ) =
{
v̄

∣∣∣ ∃ : xk → x̄, vk → v̄ : vk ∈ S(xk )∀k

}
We call S outer semicontinuous (osc) at x̄ ∈ Rn if Lim supx→x̄ S(x) ⊂ S(x̄). Clearly,

S is osc (everywhere) ⇐⇒ gph S is closed ⇐⇒ S−1 is osc (everywhere).
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Tools from Variational Analysis

Example: The subdifferential operator as a set-valued map
The subdifferential operator ∂f for f ∈ Γ is a set-valued mapping ∂f : Rn ⇒ Rn .

Proposition 19 (∂f ).

Let f ∈ Γ0. Then:

a) ri (dom f) ⊂ dom ∂f(⊂ dom f).

b) For any λ > 0, we have

gph ∂f = Fλ(Rn) where Fλ(r) =
(
proxλf (r),

r − proxλf (r)
λ

)
is Lipschitz.

In particular, gph ∂f is closed.

c) (∂f)−1 = ∂f∗.

d) (Monotonicity) ⟨y − y′, x − x′⟩ ≥ 0 ∀(x, y), (x′, y′) ∈ gph ∂f .

Proof.
a) (Sketch) Prove that f ′(x; ·) = σ∂f(x) is proper which yields ∂f(x) , ∅ for x ∈ ri (dom f).

b) Use Proposition 18.

c) Theorem 11.

d) Simple application of the subgradient inequality. □
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Tools from Variational Analysis

Variational Geometry
Let A ⊂ Rn and x̄ ∈ A . We define

the tangent cone TA (x̄) := Lim supt↓0
A−x̄

t . The following hold:

We have
d ∈ TA (x̄) ⇐⇒ ∃{tk } ↓ 0, {xk ∈ A } : xk −x̄

tk
→ d

⇐⇒ ∃{tk } ↓ 0, {dk } → d : x̄ + tk dk ∈ A ∀k

TA (x̄) is a closed cone; convex if A is convex.

TA (x̄)

x̄

the regular normal cone N̂A (x̄) =
{
v

∣∣∣∣ lim supx→A x̄
⟨v , x−x̄⟩
∥x−x̄∥ ≤ 0

}
. The following hold:

N̂A (x̄) = 3TA (x̄)◦.

N̂A (x̄) is closed and convex. N̂A (x̄)

x̄

the limiting normal cone NA (x̄) := Lim supx→A x̄ N̂A (x). The following hold:

NA (x̄) is closed.

NA (x̄) = N̂A (x̄) = (A − x̄)◦ (hence convex) if A is
convex.

x̄

NA (x̄)

3For a convex set K its polar cone is K◦ := {v | ⟨x, v⟩ ≤ 0 ∀x ∈ K } .
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Tools from Variational Analysis

Basic tangent and normal cone calculus

Proposition 20 (Change of coordinates).

Let D ⊂ Rm and C = F−1(D) for F : Rn → Rm smooth and rank F ′(x̄) = m for x̄ ∈ C. Then for ū = F(x̄):

a) TC (x̄) = F ′(x̄)−1TD(ū); b) N̂C (x̄) = F ′(x̄)∗N̂D(ū) c) NC (x̄) = F ′(x̄)∗ND(ū).

Guide for m = n.
a) Apply inverse function theorem to F(x) = u at (x̄, ū).

b) Use N̂C (x̄) =
(
F ′(x̄)−1TD(ū)

)◦
and invertibility of F ′(x̄)∗.

c) Apply b) locally around x̄, and Lim supu→D ū F ′(x̄)N̂D(u) = F ′(x̄)∗ Lim supu→D ū N̂D(u). □

Corollary 21 (Smooth manifolds).

In Proposition 20 let D := {0}. Then:

a) TC (x̄) = ker F ′(x̄); b) N̂C (x̄) = NC (x̄) = rge F ′(x̄)∗.

C

TC (x̄)

NC (x̄)
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Tools from Variational Analysis

Graphical differentiation of set-valued maps

Let S : Rn ⇒ Rm and (x̄, ȳ) ∈ gph S.

We define the graphical derivative DS(x̄ |ȳ) : Rn ⇒ Rm via

v ∈ DS(x̄ |ȳ)(u) :⇐⇒ (u, v) ∈ Tgph S(x̄, ȳ).

We define the coderivative D∗S(x̄ |ȳ) : Rm ⇒ Rn via

v ∈ D∗S(x̄ |ȳ)(u) :⇐⇒ (v ,−u) ∈ Ngph S(x̄, ȳ).

When S is single valued (at x̄) we write D(∗)S(x̄) := D(∗)S(x̄ |S(x̄)).

Both DS(x̄ |ȳ) and D∗S(x̄ |ȳ) are positively homogenous maps, i.e.,

D(∗)S(x̄)(λz) = λD(∗)S(x̄)(z) ∀λ > 0 and 0 ∈ D(∗)S(x̄)(0).
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Tools from Variational Analysis

Example: Coderivative of ∂∥ · ∥1
Observe that

∂∥ · ∥1(x) =
n

X
i=1

∂| · |(xi), ∂| · |(t) =

{sgn(t)}, t , 0,
[−1, 1], t = 0.

(7)

Consequently

gph ∂∥ · ∥1 =
n

X
i=1

gph ∂| · |.

Thus for (x, v) ∈ gph ∂∥ · ∥1:

Ngph ∂∥·∥1 (x, v) =
n

X
i=1


{0} × R, xi , 0,
R × {0}, xi = 0, |vi | < 1,
R × {0} ∪ {0} × R ∪ R+ × R−, xi = 0, vi = −1,
R × {0} ∪ {0} × R ∪ R− × R+, xi = 0, vi = 1.

t

gph ∂| · |

Figure: Normal cones to gph ∂| · |

Hence

z ∈ D∗(∂∥ · ∥1)(x |v)(w) ⇐⇒ (zi ,−wi) ∈


{0} × R, xi , 0,
R × {0}, xi = 0, |vi | < 1,
R × {0} ∪ {0} × R ∪ R+ × R−, xi = 0, vi = −1,
R × {0} ∪ {0} × R ∪ R− × R+, xi = 0, vi = 1.

(8)
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Tools from Variational Analysis

Calculus rules for Co- and Graphical derivatives
Proposition 22.

Let S : Rn ⇒ Rm , (x̄, v̄) ∈ gph S, F : Rn → Rm continuously differentiable (at x̄). The following hold:

(a) (Inversion rule) We have

y ∈ DS(x̄ |v̄)(s) ⇐⇒ s ∈ D(S−1)(v̄ |x̄)(y) and z ∈ D∗S(x̄ |v̄)(w) ⇐⇒ −w ∈ D∗(S−1)(v̄ |x̄)(−z)

b) (Sum rule) We have D(∗)(S + F)(x̄ |v̄ + F(x̄))(w) = D(∗)S(x̄ |v̄)(w) + F ′(x̄)(∗)w.

Proof.
a) gph S−1 = G−1(gph S) for G(x, v) = (v , x). Then apply Proposition 20 (coordinate change).

b) (Coderivative statement) With G(x, v) = (x, v + F(x)), we have gph (S + F) = G−1(gph S).

z ∈ D∗(S + F)(x̄ |v̄ + F(z̄))(w) ⇐⇒ (z,−w) ∈ NG−1(gph S)(x̄, v̄ + F(x̄))

Prop.20
⇐⇒ (z,−w) ∈

(
I −F′(x̄)∗

0 I

)
Ngph S(x̄, v̄)

⇐⇒ 4 (z − F ′(x̄)∗w,−w) ∈ Ngph S(x̄, v̄)

⇐⇒ z ∈ D∗S(x̄, v̄)(w) + F ′(x̄)∗w.

□

4
(

I −B
0 I

)−1
=

(
I B
0 I

)



Fundamentals of Convex Analysis Stability Analysis of regularized least-squares problems The Maximum Entropy on the Mean Method for Linear Inverse Problems

Tools from Variational Analysis

Locally Lipschitz maps and graphical differentiation
Let F : Rn → Rm . We call F locally Lipschitz5 at x̄ if

∃L , ε > 0 : ∥F(x) − F(x′)∥ ≤ L∥x − x′∥ ∀x, x′ ∈ Bε(x̄).

We call

LipF(x̄) := lim sup
x,x′→x̄

∥F(x) − F(x′)∥
∥x − x′∥

the Lipschitz modulus of F at x̄. Clearly

F locally Lipschitz at x̄ ⇐⇒ LipF(x̄) < ∞.

Fact: Let F : Rn → Rm be locally Lipschitz at x̄. Then:

(Scalarization formula) D∗F(x̄)(w) = ∂(⟨w, F⟩)(x̄)6 is nonempty, compact.

(Lipschitz modulus) We have

LipF(x̄) = |D∗F(x̄)|+ := sup
v∈B

sup
v∈D∗F(x̄)(z)

∥v∥ (9)

(Relation to Clarke Jacobian7) conv D(∗)F(x̄)(w) = ∂C F(x̄)(∗)w.

5 In Rockafellar-Wets, this property is called strict continuity.
6For g : Rn → R ∪ {+∞}, we define the limiting subdifferential ∂g(x̄) :=

{
v

∣∣∣ (v ,−1) ∈ Nepi g(x̄, g(x̄)
}

7∂C F(x̄) := conv
{
V

∣∣∣ ∃{xk } → x̄ : F ′(xk )→ V
}
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Tools from Variational Analysis

Definiteness properties of the coderivative
Proposition 23.

Let f ∈ Γ0, and let (x̄, v̄) ∈ gph ∂f . Then

z ∈ D∗(∂f)(x̄ |v̄)(w) ⇒ ⟨z, w⟩ ≥ 0.

Proof.
Recall from Proposition 18 that Pλ := proxλf = (I + λ∂f)−1 for all λ > 0. Thus

z ∈ D∗(∂f)(x̄ |v̄)(w)
Prop.20
⇐⇒ λz ∈ D∗(λ∂f)(x̄ |λv̄)(w)

Prop.22(b)
⇐⇒ λz + w ∈ D∗(I + λ∂f)(x̄ |x̄ + λv̄)(w)

Prop.22(a)
⇐⇒ −w ∈ D∗Pλ(x̄ + λv̄)(−λz − w)

pos. hom.
⇐⇒ −

w
∥λz + w∥

∈ D∗Pλ(x̄ + λv̄)
(
−

λz + w
∥λz + w∥

)
Therefore

∥w∥
∥λz + w∥

≤ sup
∥r∥=1

sup
s∈D∗Pλ(x̄+λv̄)(r)

∥s∥
Eq.(9)
= LipPλ(x̄ + λv̄) = 1.

Hence

∥w∥2 ≤ ∥λz + w∥2 = λ2∥z∥+ 2λ ⟨z, w⟩+ ∥w∥2
:λ, λ↓0
⇒ 0 ≤ ⟨z, w⟩ .

□
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Tools from Variational Analysis

The Aubin property and the Mordukhovich criterion

Let S : Rn ⇒ Rm with closed graph at (x̄, ȳ) ∈ gph S. We say that S has the Aubin property at x̄ for ȳ if
there exist neighborhoods V of x̄ and W of ȳ as well as κ > 0 such that

S(x′) ∩W ⊂ S(x) + κ∥x′ − x∥B ∀x, x′ ∈ V .

Remark: The Aubin property is a local property in that if S has the Aubin property at x̄ for ȳ then it has
the Aubin property for every point (x, y) ∈ gph S sufficiently close to (x̄, ȳ).

Theorem 24 (Mordukhovich criterion).

Let S : Rn ⇒ Rm with closed graph at (x̄, ū) ∈ gph S. Then the following are equivalent:

S has the Aubin property at x̄ for ȳ;

D∗S(x̄ |ȳ)(0) = {0}.
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Tools from Variational Analysis

Excursion: Monotonicity

We call T : Rn ⇒ Rn monotone if〈
y − y′, y − y′

〉
∀(x, y), (x′, y′) ∈ gph T .

Example:

T = ∂f for f ∈ Γ.

T : x 7→ Ax for A ⪰ 0.

x

gph T

Figure: T monotone

Definition 25 (Maximal montonicity).

A monotone map T : Rn ⇒ Rn is called maximally monotone if there is
no enlargement of gph T possible without destroying monotonicity, i.e.,

∀(x̂, ŷ) ∈ Rn × Rn \ gph T ∃(x, y) ∈ gph T :
〈
x̂ − x, ŷ − y

〉
< 0.

Facts:

T (maximally) monotone ⇐⇒ T−1 (maximally) monotone.

T maximally monotone⇒ gph T closed.

T maximally monotone⇒ T(x) closed, convex ∀x.

x

gph T̂

Figure: T̂ maximally monotone
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Tools from Variational Analysis

From Aubin property to local Lipschitzness
Proposition 26.

Let G : Rn ⇒ Rn have the Aubin property at x̄ for ȳ ∈ G(x̄) and assume that G is monotone. Then the
following hold:

a) G has a Lipschitz continuous single-valued localization at x̄ for ȳ, i.e., there exist neighborhoods V
of x̄ and W of ȳ such that Ĝ : x ∈ U 7→ G(x) ∩W is single-valued and Lipschitz.

b) If G is convex-valued, then G is, in fact, single-valued and (locally) Lipschitz around x̄.

Proof.
a) Blackboard. b) Exercise! □

Corollary 27.

Under the assumptions of Proposition 26 assume that G is maximally monotone. Then G is
single-valued and (locally) Lipschitz around x̄.

Proof.
Follows from Proposition 26 as G is convex-valued. □
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Tools from Variational Analysis

Locally Lipschitz implicit functions

Theorem 28.
Let f : Rd × Rn → Rn be continuously differentiable at (p̄, x̄) ∈ gph S such that f(p, ·) is monotone near p̄,
let F : Rn ⇒ Rn be maximally monotone. Define S : Rd ⇒ Rn by

S(p) =
{
x ∈ Rn

∣∣∣ 0 ∈ f(p, x) + F(x)
}
, ∀p ∈ Rd .

Assume that

0 ∈ Dx f(p̄, x̄)∗w + D∗F(x̄ | − f(p̄, x̄))(w) ⇒ w = 0 (Mordukhovich criterion). (10)

Then S is locally Lipschitz at p̄.

High-level guide.

Set Q := f(p̄, ·) + F . By the coderivative calculus from Proposition 22 find that

(10) ⇐⇒ D∗(Q−1)(0|x̄)(0) = {0} ⇐⇒ Q−1has Aubin property at 0 for x̄

Since Q , thus Q−1 is maximally monotone that means that Q−1 is locally Lipschitz around 0. This now
has to be leveraged to show that S is locally Lipschitz around p̄; this hinges on the fact that perturbation
(of f ) enters smoothly (hence the difference between f(p̄, ·) and f(p, ·) is controllable). □
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Application to stability of regularized least-squares

The Mordukhovich criterion for regularized linear least-squares
Consider

min
x

1
2
∥Ax − b∥2 + λg(x), (g ∈ Γ0, λ > 0). (11)

Let x̄ solve (11), i.e. ū := 1
λAT (b − Ax̄) ∈ ∂g(x̄), i.e.

0 ∈
1
λ

A ∗(Ax̄ − b)︸            ︷︷            ︸
=f(A ,b ,λ,·)(x̄)

+ ∂g︸︷︷︸
F

(x̄).

Let 0 ∈ Dx f(A , b , λ, x̄)∗w + D∗F(x̄ |ū)(w) = 1
λA ∗Aw + D∗(∂g)(x̄ |ū)(w), i.e.

−
1
λ

A ∗Aw ∈ D∗(∂g)(x̄ |ū)(w). (12)

By Proposition 23 we have
0 ≤

〈
w, −A ∗Aw

〉
Inserting into (12) yields

0 ∈ D∗(∂g)(x̄ |ū)(w)
(∂g)−1=∂g∗

⇐⇒ −w ∈ D∗(∂g∗)(ū|x̄)(0).

Hence
kerA

⋂
D∗(∂g∗)(ū|x̄)(0) = {0} ⇐⇒ Mordukhovich criterion holds (13)
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Application to stability of regularized least-squares

Example: the LASSO problem, i.e., g = ∥ · ∥1

Set g := ∥ · ∥1. Let x̄ be a solution of the LASSO problem

min
1
2
∥Ax − b∥2 + λ∥x∥1.

Thus

ū :=
1
λ

AT (b − Ax̄) ∈ ∂∥ · ∥1(x̄)
(7)
⇐⇒ ūi ∈

{sgn(x̄i)}, x̄i , 0,
∈ [−1, 1], x̄i = 0.

We note that

w ∈ D∗(∂g∗)(ū|x̄)(0) ⇐⇒ 0 ∈ D∗(∂g)(x̄ |ū)(w)

(8)
⇐⇒ (0,−wi) ∈


{0} × R, x̄i , 0,
R × {0}, x̄i = 0, |ūi | < 1,
R × {0} ∪ {0} × R ∪ R+ × R−, x̄i = 0, ūi = −1,
R × {0} ∪ {0} × R ∪ R− × R+, x̄i = 0, ūi = 1.

=⇒ wi = 0 ∀i < J := {i | |ūi | = 1 } .

For AJ = [aj (i ∈ J)], the matrix whose columns are the columns of A corresponding to J we thus find:

kerA ∩ D∗(∂g∗)(ū|x̄)(0) = {0} ⇐⇒ kerAJ = {0}.
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Application to stability of regularized least-squares

Towards more general results: PLQ penalties

Let P =
{
z ∈ Rn

∣∣∣ ⟨pi , z⟩ ≤ βi (i = 1, . . . , k)
}
⊂ Rn be polyhedron and let B ∈ Sn

+. We define the
piecewise-linear quadratic (PLQ) penalty

θP,B (y) = sup
z∈P

{
⟨y, z⟩ −

1
2
⟨Bz, z⟩

}
.

Example: ∥ · ∥1 = θP,B for P = B∞, B = 0. We note that:

θP,B = (δP + qB )
∗ ∈ Γ0 for qB (y) = 1

2 ⟨Bz, z⟩ ,P , ∅

∂θ∗
P,B = NP + B.

Fact: D∗NP(u|v)(0) = span
{
pi

∣∣∣ i ∈ A(u)
}

where A(u) = {i ∈ {1, . . . , k } | ⟨pi , u⟩ = βi }. Thus, for
(x̄, ū) ∈ gph θP,B , we have

D∗(∂θ∗
P,B )(ū|x̄)(0) = D∗(NP + B)(ū|x̄)(0)

= D∗NP(ū|x̄ − Bū)(0) + B · 0

= span
{
pi

∣∣∣ i ∈ A(ū)
}

= par ∂θP,B (ū).
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Application to stability of regularized least-squares

Towards quantitative results

Theorem 29.
Under the assumptions of Theorem 28 define S : Rd ⇒ Rn by

S(p) =
{
x ∈ Rn

∣∣∣ 0 ∈ f(p, x) + F(x)
}
, ∀p ∈ Rd .

Assume that

0 ∈ Dx f(p̄, x̄)∗w + D∗F(x̄ | − f(p̄, x̄))(w) ⇒ w = 0 (Mordukhovich criterion). (14)

Then S is locally Lipschitz at p̄ with modulus

L ≤ lim sup
p→p̄

max
∥q∥≤1

inf
w∈DS(p)(q)

∥w∥.

If F is proto-differentiable8 at (x̄,−f(p̄, x̄)), S is directionally differentiable at p̄ with locally Lipschitz
directional derivative (for G(p, x) := f(p, x) + F(x)) given by

S′(p̄; q) =
{
w ∈ Rn

∣∣∣ 0 ∈ DG(p̄, x̄ |0)(q,w)
}
∀q ∈ Rd .

8∂ϕ is proto-differentiable at (x̄, ū), e.g., if ϕ = g ◦ H is fully amenable, i.e., g PLQ and H ∈ C2 such that
kerH′(x̄)∗ ∩ Ndom g(H(x̄)) = {0} (basic constraint qualification)
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Application to stability of regularized least-squares

Application: unconstrained LASSO (stability) (Berk, Brugiapaglia, H. ’23)

Apply Theorem 29 with f(b , λ, x) := 1
λAT (Ax − b), F := ∂∥ · ∥1 such that

S(b , λ) =
{
x

∣∣∣ 0 ∈ f(b , λ, x) + F(x)
}
= argmin

x∈Rn

{
1
2
∥Ax − b∥2 + λ∥x∥1

}
(λ > 0).

For (b̄ , λ̄) ∈ Rn × R++ let x̄ ∈ S(b̄ , λ̄). Assume that

kerAJ = {0}.

Then S is locally Lipschitz and directionally differentiable at (b̄ , λ̄) with Lipschitz modulus

L ≤
1

σmin(AJ)2

σmax (AJ) +

∥∥∥∥∥∥∥ AT
J (Ax̄ − b̄)

λ̄

∥∥∥∥∥∥∥
 .

Moreover, the directional derivative S′((b̄ , λ̄); (·, ·)) : Rm × R→ Rn is locally Lipschitz and given as
follows: for (q, α) ∈ Rm × R there exists an index set K = K(q, α) with I ⊆ K ⊆ J such that

S′((b̄ , λ̄); (q, α)) = LK

(
(AT

K AK )
−1AT

K

(
q +

α

λ̄
(Ax̄ − b̄)

)
, 0

)
.
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Measure-theoretic tools

3. The Maximum Entropy on the Mean Method
for Linear Inverse Problems
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Measure-theoretic tools

Reminder: Probability measures and measure transformation
Let Ω be a nonempty set and let F be a σ-algebra9 on Ω.

(Ω,F ) is called a measure space.

A function µ : F → R+ is called a measure on (Ω,F ) if:

µ(∅) = 0;
For Ak ∈ F (k ∈ N) with Ak ∩ Aj = ∅ (k , j) : µ (

⋃
k∈N Ak ) =

∑
k∈N µ(Ak ).

If, in addition, µ(Ω) = 1, we call µ a probability measure, and (Ω,F , µ) a probability space.

Example: the Lebesgue measure comes with the measure space (Rn ,Bn), where Bn is the σ-algebra
generated by the open sets in Rn .

Theorem 30 (Measure transformation).

Let (Ω,F ,P) be a probability space, and let (Ω′,F ′) be a measure space. Let f : Ω→ Ω′ be
measurable. Moreover, let ϕ : Ω′ → R be measurable. Then:

a) For µ := P ◦ f−1 we find that (Ω′,F ′, µ) is a probability space.

b) It holds that ∫
Ω
ϕ ◦ f dP =

∫
Ω′
ϕdµ.

9A collection of sets closed under complements and countable unions containing Ω.
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Measure-theoretic tools

Distiributions and expectations of random vectors
Let (Ω,F ,P) be a probability space and let X : Ω→ Rn be a random vector (i.e., its components
Xi : Ω→ R are random variables).

We call µ = P ◦ X−1 the distribution or law of X , and we write X ∼ µ.

The expectation or mean of f is

E[X ] := [E[X1], . . . ,E[Xn]]
T
∈ Rn for E[Xi ] =

∫
Ω

XidP.

Proposition 31 (Expectation of a random vector10).

Under the assumptions above we have:

E[X ] =

[∫
Rn

x1µ(dx), . . . ,
∫
Rn

xnµ(dx)
]T

=: Eµ.

Proof.
Define πi : R

n → R, πi(x) = xi . Then we have

E[Xi ] = E[πi ◦ X ] =

∫
Ω
πi ◦ X dP Th. 30

=

∫
Rd
πidµ.

□

10 ‘(Ω,F ,P) never mattered’
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Measure-theoretic tools

A Hölder-type inequality
Proposition 32.

Let µ be a probability measure on Rn and f , g : Rn → R measurable. Then∫
exp(λf + (1 − λ)g) dµ ≤

(∫
exp f dµ

)λ
·

(∫
exp g dµ

)1−λ

∀λ ∈ (0, 1).

When
∫
exp gdµ and

∫
exp fdµ are finite equality holds if and only if f = g + γ for some γ ∈ R.

Proof.
Prove the elementary inequality

aλbλ ≤ λa + (1 − λ)b ∀a, b ≥ 0 (′=′ iff a = b). (15)

Now set a := exp f∫
exp f dµ

and b :=
exp g∫
exp g dµ

. Then

exp(λf + (1 − λ)g)(∫
exp f dµ

)λ (∫
exp g dµ

)1−λ =

 exp f∫
exp f dµ

λ  exp g∫
exp g dµ

1−λ (15)
≤ λ

exp f∫
exp f dµ

+ (1 − λ)
exp g∫
exp g dµ

.

Therefore (applying integration on both sides yields)∫
exp(λf + (1 − λ)g) dµ(∫

exp f dµ
)λ (∫

exp g dµ
)1−λ ≤ λ

∫
exp f dµ∫
exp f dµ

+ (1 − λ)

∫
exp g dµ∫
exp g dµ

= 1,

which gives the desired result. □
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Measure-theoretic tools

Radon-Nikodym theorem - a tour de force
Let µ and ν be measures on the measure space (Ω,F ). Then we call ν absolutely continuous with
respect to µ (write: ν ≪ µ) if for all A ∈ F :

µ(A) = 0 =⇒ ν(A) = 0.

Theorem 33 (Radon-Nikodym).

Let (Ω,F ) be a measure space, and let µ and ν be finite11 ,12 measures on (Ω,F ) such that ν ≪ µ. Then
there exists a (F )-measurable function f : Ω→ R+ such that

∀A ∈ F : ν(A) =

∫
A

f dµ.

Remark: The function f in Theorem 33 is unique (up to changes on µ-null sets). We often write dν
dµ and call it the

Radon-Nikodym derivative (of ν w.r.t. µ). When ν is probability measure (distribution) then dν
dµ is called a µ-density.

Let ν ≪ µ ≪ λ be measures on (Ω,F ). Then:

dν
dλ = dν

dµ
dµ
dλ λ-a.e.

If g is measurable then
∫
Ω gdν =

∫
Ω g dν

dµ dµ.

If µ ≪ µ (and ν ≪ µ): dµ
dν =

(
dν
dµ

)−1
ν-a.e.

11That is µ(Ω), ν(Ω) < ∞.
12Or, more generally, σ-finite.
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The MEM framework

Higher level approach to linear inverse problems

The canonical linear inverse problem Ax ≈ b is usually solved via an optimization problem

min
x∈Rd

{
1
2
∥Ax − b∥2 + g(x)

} A ∈ Rm×n : linear (forward) operator

b ∈ Rm : measurement vector

g: (convex) regularizer

Higher level approach: Interpret the ground truth as a random vector with unknown distribution. Solve
for a distribution Q that is close to a prior (guess) µ and such that its mean13 EQ satisfies C · EQ ≈ b.
This leads to

min
Q

1
2
∥AEQ − b∥2 + Kµ(Q)

where Kµ measures the compliance with (or distance to) µ.

Is this useful?

What is our choice of Kµ?

13 i.e. EQ =
∫
Rn yQ(dy)
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The MEM framework

Measuring compliance: the KL divergence

Let µ be a (prior) distribution, i.e., a probability measure on X ⊂ Rn (i.e. µ = P ◦ X−1 where X takes
values in X). The measure of compliance of another distribution Q with µ is measured by the
Kullback-Leibler divergence KL(· | ·) : P(X) × P(X)14 → R ∪ {+∞},

KL(Q | µ) =


∫
Ω
log

(
dQ
dµ

)
dQ , Q ≪ µ,

+∞, otherwise,

where dQ
dµ is the Radon-Nikodym derivative.

KL(· | ·) is convex, KL(· | µ) strictly convex for all µ ∈ P(X).

KL(Q | µ) ≥ 0; equality if and only if Q = µ a.e.

14P(X): (convex) set of probability measures on X.
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The MEM framework

KL divergence concretely
Let µ ∈ P(X) be our prior/reference distribution. We are mainly interested in two cases:

1. X = Rn and µ is absolutely continuous w.r.t. the Lebesgue measure ν, i.e. has a density p = dµ
dν .

In this case, if Q ≪ µ, Q has a density dQ
dν = q, and

KL(Q | µ) =
∫
Rn

log

(
q(x)
p(x)

)
q(x)dx.

Note that we cover the case where X ⊂ Rn via µ(X) = 1.

2. µ is a discrete probability distribution, i.e., X is countable, and the probability mass function
p(x) = µ({x}) has

∑
x∈X p(x) = 1. Then Q ≪ µ implies that µ has a probability mass function q

and it holds that

KL(Q | µ) =
∑
x∈X

q(x) log
(

q(x)
p(x)

)
.

Example: Let µ be the uniform distribution on X := {1, . . . ,N}, i.e. p(i) = 1/N for all i = 1, . . . ,N. Then
for Q ≪ µ with PMF q, we have

KL(Q | µ) =
N∑

i=1

q(i) log

(
q(i)
1/N

)
︸       ︷︷       ︸

log(N)+log(q(i))

= log(N) +
N∑

i=1

log(q(i))q(i).
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The MEM framework

The MEM re-formulation
Given a prior µ ∈ P(X), the maximum entropy on the mean method (MEMM) for the linear inverse
problem Ax ≈ b reads:

Determine Q̄ as the solution of

min
Q∈P(X)

{
1
2
∥A · EQ − b∥2 + αKL(Q | µ)

}
, (16)

and set x̄ := EQ̄ to be the estimate for the ground truth.

We observe that the MEM problem can be reformulated as follows:

inf
Q∈P(X)

{
1
2
∥A · EQ − b∥2 + αKL(Q | µ)

}
= inf

(Q ,x)∈P(X)×Rd :
EQ=x

{
1
2
∥A · x − b∥2 + αKL(Q | µ)

}

= inf
x∈Rd

{ 1
2
∥A · x − b∥2 + α inf

Q∈P(X):
EQ=x

KL(Q | µ)

︸                ︷︷                ︸
:=κµ(x)

}

= inf
x∈Rd

{
1
2
∥A · x − b∥2 + ακµ(x)

}
.
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The MEM framework

The MEM functional and the dual problem

We obtained the reformulated problem

min
x∈Rd

1
2
∥A · x − b∥2 + ακµ(x). (17)

with the MEM functional κµ : R
d → R ∪ {+∞},

κµ(x) = inf
Q∈P(Ω)

{KL(Q | µ) + δ{0}(EQ − x)}.

κµ ≥ 0; κµ(y) = 0 if y = Eµ, in particular, κµ proper if Eµ exists.

κµ is convex (infimal projection!).

The million dollar question: Who is κµ really?
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Cramér’s function and the MEM functional

Cramér’s function
Given a distribution µ ∈ P(X), its moment-generating function is

Mµ : R
n → R ∪ {+∞}, Mµ(z) :=

∫
X

exp(⟨z, y⟩)µ(dy).

The log-moment-generating function or cumulant generating function Lµ : Rd → R ∪ {+∞} of µ ∈ P(X) is

Lµ(z) := log

∫
X

exp(⟨z, ·⟩)dµ = log(Mµ(z)).

Its conjugate L∗µ : Rd → R ∪ {+∞},

L∗µ(y) := sup
z∈Rd
{⟨y, z⟩ − Lµ(z)}

is called Cramér’s function15 (fundamental in large deviations theory)

The key to computational tractability of the reformulated MEMM problem is to establish conditions (on µ)
under which Cramér’s function equals the MEM functional, i.e.

κµ = L∗µ .

15Named after Swedish mathematician and statistician Harald Cramér who is considered as ‘one of the giants of
statistical theory’.
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Cramér’s function and the MEM functional

Convexity of the log-MGF

Proposition 34 (Convexity of Lµ).

Let µ be a probability measure on X ⊂ Rn . Then Lµ is proper and strictly convex. In particular, Lµ ∈ Γ.

Proof.
Note that Lµ(0) = log

∫
X

1dµ = log 1 = 0, so Lµ is proper. Now note that, for λ ∈ (0, 1),

Mµ(λz + (1 − λ)v) =

∫
X

exp(
〈
λz + (1 − λ)v , ·

〉
) dµ

Prop. 3216

≤

(∫
exp ⟨z, ·⟩ dµ

)λ (∫
exp ⟨v , ·⟩ dµ

)1−λ

.

Therefore

Lµ(λz + (1 − λ)v) ≤ log

(∫ exp ⟨z, ·⟩ dµ
)λ (∫

exp ⟨v , ·⟩ dµ
)1−λ = λLµ(z) + (1 − λ)Lµ(v).

If z, v ∈ dom Lµ, by Proposition 32, this can only be an equality if ⟨z, ·⟩ = ⟨v , ·⟩+ γ for some γ ∈ R, i.e.
z = v. This shows that Lµ is, in fact, strictly convex. □

16With f := ⟨z, ·⟩ and g := ⟨v , ·⟩
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The case where X is compact

The compact case

Proposition 35.

Let X ⊂ Rn be compact, and let µ ∈ P(X). Then the following hold:

a) Lµ is strictly convex and (locally Lipschitz) continuous. In fact, Lµ is continuously differentiable with

∇Lµ(y) =

∫
X

x exp ⟨y, ·⟩ dµ

Mµ(y)

b) We have κµ = L∗µ . In particular, κµ ∈ Γ0 is supercoercive, and essentially strictly convex.

Guide.
a) By Proposition 34 Lµ is strictly convex. But by compactness of X , for any z ∈ X, there is
s̄ = argmaxs∈X exp ⟨z, s⟩, so that

Lµ(z) = log

∫
X

exp ⟨z, ·⟩ dµ ≤ log

∫
X

exp ⟨z, s̄⟩ dµ = ⟨z, s̄⟩ .

Hence, Lµ is finite-valued and convex, hence (locally Lipschitz) continuous. The formula for the gradient
follows from ‘differentiation under the integral’.

b) The identity κµ = L∗µ . is hard work (more later). □
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The case where X is compact

The dual problem

Recall the (primal) MEM problem

min
x∈Rd

1
2
∥A · x − b∥2 + ακµ(x). (18)

Proposition 36.

Under the assumptions of Proposition 35 the following hold:

a) The dual problem of (18) (in the sense of Theorem 17) reads:

min
z

α

2
∥z∥2 − ⟨b , z⟩+ Lµ(AT z). (19)

b) Let z̄ be the unique solution of (19). Then x̄ := ∇Lµ(AT z̄) solves (18).

Proof.
a) κ∗µ = Lµ by Proposition 35.

b) The dual problem is strongly convex, so has a unique solution z̄ (Prop. 3/6). The primal-dual recovery
is given in Theorem 17 using that Lµ is smooth (Prop. 35). □
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The case where X is compact

Applications

To solve the dual problem, one can use standard
solvers like e.g. L-BFGS which was successfully
done for (blind and non-blind) deblurring of

Barcodes/QR-codes.
Prior µ: Bernoulli.
Reference: G. Rioux et al.: Blind Deblurring
of Barcodes via Kullback-Leibler Divergence.
IEEE TPAMI 43(1), 2021, pp.77-88.

General images.

Prior µ: Uniform on box.
Reference: G. Rioux et al.: The Maximum
Entropy on the Mean Method for Image
Deblurring. Inverse Problems 37, 2021.
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A data-driven approach for the MEM framework

A data-driven approach for the MEM framework: the main idea
Recall the MEM dual problem for the linear inverse problem Ax ≈ b:

min
z∈Rm

α

2
∥z∥2 − ⟨b , z⟩+ Lµ(AT z), (20)

where Lµ is the log-moment generating function log
∫
X
exp ⟨·, s⟩ dµ.

The obvious question: ‘How to choose the prior µ?’.

Idea for a data-driven approximation scheme: Let X1,X2, . . . be a sequence of i.i.d.17 X-valued
random variables on the probability space (Ω,F ,P) with shared distribution µ = P ◦ X−1

1 . Let
X1(ω),X2(ω), . . . , be a realization of the sequence.18 Pick the first n-realizations (data!!). They give rise
to the empirical distribution

µ
(ω)
n =

1
n

n∑
i=1

1Xi (ω) for 1Xi (ω)(A) =

1, Xi(ω) ∈ A ,
0, else

∀A ∈ Bn ∩ X.

17Each Xi ∼ µ and for all n ∈ N the RVs X1 , . . . ,Xn are independent.
18Pick one ω ∈ Ω, i.e, ‘throw the dice once’.
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A data-driven approach for the MEM framework

The empirical dual

Plugging the empirical distribution µ(ω)n = 1
n
∑n

i=1 1Xi (ω) into the log-moment generating function yields:

L
µ
(ω)
n

(u) = log

∫
X

exp ⟨u, ·⟩ dµ(ω)n = log

 1
n

n∑
i=1

exp
〈
u, Xi(ω)

〉 .
We now define the ‘empirical dual’

min
z∈Rm

α

2
∥z∥2 − ⟨b , z⟩+ log

 1
n

n∑
i=1

exp
〈
AT z, Xi(ω)

〉 . (21)

This problem has a unique solution zn(ω). Define the vector (primal-dual recovery!)

xn(ω) := ∇L
µ
(ω)
n

(AT zn(ω))

The million dollar question: Does xn(ω) converge to the solution of the MEM problem as n →
∞?
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A data-driven approach for the MEM framework

Excursion: Functional convergence
Let fk : Rn → R ∪ {+∞} (k ∈ N).

fk
p
→ f :⇐⇒ fk (x)→ f(x) ∀x ∈ Rn (pointwise)

fk
e
→ f :⇐⇒ epi fk → epi f (epigraphical)

fk
c
→ f :⇐⇒ fk (xk )→ f(x) ∀x ∈ Rn , {xk } → x (continuous)

Fact: fk
e
→ f ⇐⇒

lim infk→∞ fk (xk ) ≥ f(x) ∀ xk → x,
lim supk→∞ fk (xk ) ≤ f(x) ∃ xk → x.

∀x ∈ Rn

==fk
c
→ f

fk
e
→ f

fk
p
→ f

Figure: Connections between the convergence concepts
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A data-driven approach for the MEM framework

Pointwise convergence is not enough!

Consider the sequence of functions fk , defined by

fk (x) = min{1 − x, 1, 2k |x +
1
k
| − 1} for any x ∈ [−1, 1].

For any x ∈ R we have fk (x)→ f(x) := min{1 − x, 1} as k → ∞.

fk 1

-1 1

argmin fk

f

−1

1

-1 1

argmin f
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A data-driven approach for the MEM framework

The features of epigraphical convergence19

Proposition 37 (Poor man’s sum rule).

Let fk
e
→ f and let g be continuous and finite-valued. Then fk + g

e
→ f + g

Proposition 38.

Let fk
e
→ f . Then Lim sup

k→∞
(argmin fk ) ⊂ argmin f .

The convex case allows for even stronger statements.

Proposition 39.

Let {fk ∈ Γ0}. Then the following hold:

a) (Wijsman) fk
e
→ f ⇐⇒ f∗k

e
→ f∗.

b) (Attouch) fk
e
→ f =⇒ gph ∂fk → gph ∂f .

c) If fk
e
→ f f level-bounded and xk ∈ argmin fk for all k ∈ N. Then {xk } is bounded and every cluster

point belongs to argmin f .If f is, in addition strictly convex and x̄ = argmin f , then xk → x̄.

19See Rockafellar/Wets, Chapter 7 for details.
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A data-driven approach for the MEM framework

Epi-convergence of the empirical dual objective

Recall the empirical dual
min
z∈Rm

ϕωn (z) :=
α

2
∥z∥2 − ⟨b , z⟩+ Lω

n (A
T z),

where Lω
n (u) = log

(
1
n
∑n

i=1 exp
〈
u, Xi(ω)

〉)
. We record that:

ϕωn is strongly convex.

ϕωn = g + Lω
n ◦ AT where g is finite-valued and continuous.

In view of Proposition 37 and Proposition 39 for ϕωn to epigraphically converge to the objective function

ϕ(z) :=
α

2
∥z∥2 − ⟨b , z⟩+ Lµ(AT z)

of the MEM dual, it suffices to show that Lω
n ◦ AT e

→ Lµ ◦ AT . This is a probabilistic statement which
reads like this, and leverages the theory of epi-consistency by King and Wets.

Proposition 40 (Choksi, King-Roskamp, H. ’24).

Let (Ω,F ,P) be the underlying probability space. Then

Lω
n ◦ AT e

→ Lµ ◦ AT (P) − a.e.
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A data-driven approach for the MEM framework

From empirical dual solutions to primal solutions

As a corollary of Proposition 40, we find that the objective function ϕωn of the empirical dual converges
epigraphically to that of the MEM dual for almost every ω ∈ Ω. Smoothness and Attouch’s theorem
(Proposition 39 b)) now yield the following:

Corollary 41.

Let ẑ ∈ Rm , and let zn → ẑ be any sequence converging to ẑ. Then for almost every ω ∈ Ω,

∇Lω
n (A

T zn)→ ∇Lµ(AT ẑ).

Our derivations suggest the following scheme to solve a data-driven MEM approach for the linear inverse
problem Ax ≈ b.

(S1) Generate realizations x1, x2, . . . xn (data!) of i.i.d. random vectors Xi ∼ µ.

(S2) Determine

z̄n := argmin
z

α

2
∥z∥2 − ⟨b , z⟩+ log

 1
n

n∑
i=1

exp
〈
AT z, xi

〉 .
(S3) Set x̄n := ∇Lµ(AT z̄n).
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A data-driven approach for the MEM framework

A demonstration
Want to recover a hand drawn digit x from noisy observations b = x + η. Construct µ(ω)n for the MEM
framework by sampling from the MNIST digits dataset.

(S1) For given n, draw sample x1, . . . xn uniformly at random from MNIST.

(S2 & S3) Using preferred method (e.g. here L-BFGS) find zn = argminz ϕn(z). Set xn = ∇L
µ
(ω)
n

(zn).

(a) Ground Truth x (b) Observed b,
η ∼ N(0, 0.1∥x∥2)

(c) xn , n = 100 (d) xn , n = 5000 (e) xn , n = 60000 (f) Post-processed



Fundamentals of Convex Analysis Stability Analysis of regularized least-squares problems The Maximum Entropy on the Mean Method for Linear Inverse Problems

Beyond compactness of X

The general setting

Given X ⊂ Rn , and µ ∈ P(X), recall the MEM functional κµ : Rn → R ∪ {+∞},

κµ(x) = inf
Q∈P(Ω)

{KL(Q | µ) + δ{0}(EQ − y)},

and the log-moment generating function Lµ : Rn → R ∪ {+∞},

Lµ(z) = log

∫
X

exp ⟨z, ·⟩ dµ.

We want to find the crucial identity κµ = L∗µ for the two essential cases

X = Rd and µ is absolutely continuous w.r.t. to the Lebesgue measure;

X is countable (µ(X ∩ A) =
∑

x∈X P({f = x})1{x}(A) for all A ∈ Bn).

Key ingredient: Exponential families and Legendre-type functions.
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Beyond compactness of X

1st Ingredient: Legendre-type functions
Let ψ ∈ Γ0. Say that ψ is of Legendre-type if it is both (cf. Proposition 10)

essentially strictly convex;

essentially smooth.

Rockafellar (1970): Let ψ ∈ Γ0. Then

ψ of Legendre-type ⇐⇒ ψ∗ is of Legendre type.

In this case: ∇ψ : int (domψ)→ int (domψ∗) is a bijection (with (∇ψ)−1 = ∇ψ∗).

θ

int (domψ)

µ

int (domψ∗)

∇ψ

∇ψ∗
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Beyond compactness of X

2nd ingredient: Exponential families

Let µ ∈ P(X). The natural parameter space for µ is simply the domain of its (log-)MGF, i.e.,

Θµ :=

{
θ ∈ Rd |

∫
X

exp(⟨θ, ·⟩)dµ < +∞

}
(= dom Lµ) .

The standard exponential family generated by µ is given by

Fµ :=
{
fµθ

∣∣∣ fµθ (y) := exp(⟨y, θ⟩ − ψµ(θ)), θ ∈ Θµ

}
.

Properties and connections∫
µ

fµθdµ = 1, thus µθ := µ ◦ f−1
µθ

is a probability measure with dµθ
dµ = fθ (θ ∈ Θµ).

For y ∈ int (Θµ) we have: Q̄ ∈ argminQ:EQ=y KL(Q | µ) =⇒ ∃f ∈ Fµ : dQ̄ = f · dµ.
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Beyond compactness of X

The main result

The (standard) exponential family Fµ is called

minimal 20 if intΘv , ∅ and int (conv Sµ) , ∅
21;

steep if ψv is essentially smooth (automatically satisfied if Θv open).

Theorem 42 (Vaisbourd et al.).

Suppose µ ∈ P(X) generates a minimal and steep exponential family. Moreover, suppose one of the
following holds:

Sµ is uncountable (absolutely continuous case);

Sµ is countable and conv Sµ is closed (which is always the case if Sµ is finite).

Then κµ = L∗µ . In this case, 0 ≤ κP ∈ Γ0 is of Legendre type and coercive.

20This can essentially be assumed w.l.o.g. by going to relative topology.
21Sµ : support of µ, i.e. the smallest closed set µ ⊂ Ω s.t. µ(X \ A) = 0.
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Beyond compactness of X

How is κµ = L∗µ useful?

If µ ∈ P(Ω) is separable (i.e. µ = µ1 × µ2 × · · · × µd ), then Mµ(θ) =
∏d

i=1 Mµi (θi). Hence

L∗µ(y) = sup
θ∈Rd

{
⟨y, θ⟩ − logMµ(θ)

}
=

d∑
i=1

sup
θi∈R

{
yiθi − logMµi (θi)

}
.

In many cases this yields analytic formulas for L∗µ , i.e. κP (even without separability!).

Example: If µ is the multivariate normal distribution N(E,Σ) for Σ ≻ 0, i.e.
MP(θ) = exp

(
⟨E, θ⟩+ 1

2 θ
TΣθ

)
, then

L∗µ(y) = sup
θ∈Rn
{⟨y, θ⟩ − logMµ(θ)}

= sup
θ∈Rn

{
⟨y − E, θ⟩ −

1
2
θTΣθ

}
=

1
2
(y − E)TΣ−1(y − E).
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Beyond compactness of X

Examples of Cramér’s function

Reference Distribution (µ) Cramér Rate Function (L∗µ(y)) dom L∗µ
Multivariate Normal
µ ∈ Rd ,Σ ∈ Sd ,Σ ≻ 0

1
2 (y − µ)

TΣ−1(y − µ) Rd

Poisson (λ ∈ R++) y log(y/λ) − y + λ R+

Gamma (α, β ∈ R++) βy − α+ α log
(
α
βy

)
R++

Normal-inverse Gaussian
α, β, δ ∈ R : α ≥ |β|,
δ > 0, γ :=

√
α2 − β2

α
√
δ2 + (y − µ)2 − β(y − µ) − δγ R

Multinomial (p ∈ ∆d , n ∈ N)
∑d

i=1 yi log
(

yi
npi

)
n∆d ∩ I(p)22

In addition: Laplace, (Negative) Multinomial, Continuous/Discrete Uniform, Logistic,
Exponential/Chi-Squared/Erlang (via Gamma), Binomial/Bernoulli/Categorical (via Multinomial),
Negative Binomial & Shifted Geometric (via Negative Multinomial).

22 I(p) :=
{
x ∈ Rd | xi = 0 if pi = 0

}
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