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Convex sets and functions

1. Fundamentals from Convex Analysis

‘What's dead may never die!
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Convex sets and functions

Convex sets and cones

"The great watershed in optimization is not between linearity and nonlinearity, but convexity and
nonconvexity.” (R.T. Rockafellar, *1935)

S c Eis said to be
m convexif AS+(1-1)ScS (1€(0,1));
m aconeif AScS (1=0).

Note that K c E is a convex cone iff K + K c K.

Figure: Convex set/non-convex cone
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Convex sets and functions

Relative topology and paralell subspaces

Affine set: A set S = U + x with x € E and a subspace U c is called affine. The subspace U is uniquely
determined by U = aff (S-x) =S - S.
Affine hull: af M := N{S€E |Mc S, S affine}.

Relative interior/boundary: C c E convex.

nCc = {x eC | de>0: Be(x)naff C c C} (relative interior)
xeriC & aff(C-x)=R4(C-x)=:parC (parallel subspace)
ic [ c 1 afC [wc ]
aff C {x} {x} {x}
X, x7 | Ax+(@=D)x 12€R} | (x,%)
B.(x) E B.(x)

Table: Examples of relative interiors
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Convex sets and functions

Extended real-valued functions: an epigraphical perspective
Letf:E— R :=RU {+co).

f(x
m epif:_{(x,a)e]ExR|f(x <a} (epigraph) ’ (x)
epi
m epi.fi= { x,@) € EXR | f(x) < a} (strict epigraph)
gph f
m domf:={xeE|f(x) <co| (domain).

m lev,f:= {x | f(x) < r} (level set) | x

— fis uniquely determined through epi f! Figure: Epigraph of f : R —» R

fproper & —co<fZ4oo o' domf#0
fconvex & epiffepi<fconvex ' f(Ax+ (1-2)y) <Af(x)+ (1 -)f(y) Vx,y €E, 1€[0,1]

= lev,f convex VYreR.

= {f :E > RU {+0c0} | f proper, convex}

TOnly for f : E — R U {40}
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Convex sets and functions

Lower semlcontlnwty

etf:E—->RandX €E.
Lower limit: f(x)
liminf, g f(x) = inf{o | 3 xx - X1 f(x) > )
Lower semicontinuity: f is said to be Isc (or closed) at X if
liminf f(x) > f(X).
X=X

/

X

I+

o :={fel|fclosed} |

Figure: f notIsc at X
Closure: clf :E— R, (clf)(X) := liminfy_ g f(x).

f(x)

Facts: epi f

m flsc <= epifclosed < f=clf < levf
closed (reR)

mclf<f

Figure: f: x {
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Convex sets and functions

Convexity preserving operations (New from old)

Set Operations

For C,Ci (iel)cE, D c E convex, F : E — E’ affine the following sets are convex:
F(C) (affine image)

o

o F'(D) (affine pre-image)
o CxD (Cartesian product)
o Ci+C,  (Minkowski sum)

o NG (Intersection)

Functional operations
For fi,g : E — R convex and F : E’ — E affine the following functions are convex:

m (Affine pre-composition) f:=goF: epif= T '(epig), T: (x,a) ~ (F(x),a)
m (Epi-multiplication) f:= 1% g:=1g(3): epif=lepig

m (Pointwise supremum) f:=sup;, fi: epif =i epif;
(

m (Moreau envelope)  f: x — infy {g(u) + 3lIx — ull}:  epif = epig + epi II-|I2.
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Minimization and Convexity

Coercivity notions and existence of minimizers
Let f: E — R. Then fis called

i) coercive if limjy- 400 f(X) = 400;
i) supercoercive if limjy+e 23 = +oco.

Lemma 1 (Level-boundedness = coercivity).

f: E - R is coercive if and only if it is level-bounded, i.e., lev, f is bounded for all @ € R.

Theorem 2 (Existence of minima).

Letf:E — R U {400} be proper, Isc and level-bounded. Then argming f # (.
Pick {xc} such that f(xx) — f* := infg f < co; choose @ € (f*, +o0); set L, := {x | f(x) < a}.

Bolzano—Weierstrass

L,compact, xk € L, (k suff. large) = X € Ly, {X} >k X
fl
= f(%) < liminf f(x) < liminf f(xc) = f*
X—X keK
= X € argmin f.
E

(m]
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Minimization and Convexity

Stronger notions of convexity
Letf el and C c domf convex. Then f is said to be

a) strictly convex on C if
f(Ax + (1= A)y) <Af(x)+ (1 - D)f(y) (x.y,e C,x#y, 1€(0,1)).

b) strongly convex on C if there exists o > 0 such that
Fx+ (1= D)y) <20 + (1 = DY) = ZA0 = Dlx =y (x.y.€ C. A (0.1))

The scalar o > 0 is called modulus of strong convexity of f (on C).
For C = dom f we simply call f strictly and strongly convex, respectively.

Proposition 3.
LetfeTl. Then:
a) fo-strongly convex = f- g||- 1> convex.

b) f o-strongly convex = f supercoercive and strictly convex.

Guide.
a) Elementary computation.

b) Use the (nontrivial) fact that f — 5| - I has an affine minorant g(x) = (v, x) + S to verify
supercoercivity. Strict convexity is straightforward. u}
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Minimization and Convexity

The basic results in convex optimization

Proposition 4.

Let f € . Then every local minimizer of f (over E) is a global minimizer and argmin f is convex (possibly
empty).

Proposition 5 (Uniqueness of minimizers).

Let f € I be strictly convex. Then f has at most one minimizer.

Corollary 6 (Minimizing the sum of convex functions).

Letf,g € Iy such that dom f N dom g # 0. Suppose that one of the following holds:
i) fis supercoercive;
i) fis coercive and g is bounded from below.

Then f + g is coercive and has a minimizer (over E). If f or g is strictly convex, f + g has exactly one
minimizer.

Observe f + g € I'y. Now show in either case that f + g is coercive, and apply Theorem 2.
The uniqueness result follows immediately from Proposition 5, realizing that f + g € Iy is strictly convex
if one of the summands is.
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Minimization and Convexity

Parametric minimization aka infimal projection

Theorem 7 (Infimal projection).

Leth : Eq XxE; — R U {400} be convex. Then the optimal value function

¢ :By >R, o(x) = ylEn]Efz h(x,y)

is convex. Moreover, the set-valued mapping

x — argmin h(x, y) C Ea.
yeEp

is convex-valued.

Proof.

It can easily be shown that epi < = L(epi<h) under the linear mapping L : (x,y,a) - (X, ).

The remaining assertion follows immediately from Proposition 4 , since y +— h(x, y) is convex for all

x € Ey. o
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Subdifferentiation and conjugacy of convex functions

The convex subdifferential

Definition 8.
Letf: E — R. A vector v € E is called a subgradient of v at X if

f(x) 2 f(X) +<(v, x—X) (x €E). (1

We denote by df(X) the set of all subgradients of f at X and call it the (convex) subdifferential of f at X.

The inequality (1) is referred to as subgradient inequality.

gphf

Slogan: "The subgradients of f at X are the slopes of
affine minorants of f that coincide with f at X”.

Figure: Affine minorants at a point of
nondifferentiability

0edf(x) < xecargmingf (Fermat’s rule)

df(x) closed and convex (x € E)

0f(x) compact and nonempty <= x e€int(domf) <= locally Lipschitz at x
of(x) is asingleton = fdifferentiable at x <= f continuously differentiable at x
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Subdifferentiation and conjugacy of convex functions

Examples of subdifferentiation

m (Indicator function/Normal cone) Let S c E.

Indicator function of S:

0, xeS,
ds 1 E—> RU({+oo}, ds(x) 1:{ +oo, else.

Ns(0)

a6s(x) = {v|os(x) 2 85(X) + (v, x-X) (x €E)}
= |veE|(v.x-%<0(xe9)]

=: Ns(x) (xe8) Figure: Normal cone

m (Euclidean norm) || - || :== /(- -). Then
- (&l it x=0
Q) =4 ! ’
A1) { B if X=0.

m (Empty subdifferential)
—Vx if x>0,

f:XERl—){ Lo else.
;
af(x)={{‘z—w}’ x>0, :

0, else.
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Subdifferentiation and conjugacy of convex functions

The Fenchel conjugate
For f: E — R U {+oo} let f* : E — R be the function whose epigraph encodes the affine minorants of f:
epif = {(v.8) [<v. x)-B < f(x) (xeB)}
= f(v)<B <= sup{{v,x)-f(x)}<B ((v.B) €EXR)
x€E

— P =suplv. 0 - (X)) (veE). @
XxeE

Definition 9 (Fenchel conjugate).

Let f : E — R proper. The function f* : E — R defined through (2) is called the (Fenchel) conjugate of f.
The function (f**) := (f*)* is called the biconjugate of f.

Recall: T := {f :E — R | f convex and proper} and Tp:={fel |fclosed}.
m f* closed and convex - proper if f £ +oco with an affine minorant
m f=f"proper <= fely (Fenchel-Moreau)
m = (cf) (fel)
m f(x)+f(y)=(x, ¥y (x,y€E) (Fenchel-Young Inequality)
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Subdifferentiation and conjugacy of convex functions

Support functions: A special case of conjugacy

The support function os of S c E (nonempty) is defined by

0s:E—> RU{+)}, 05(2):=65(2) =sup(x, 2).
xeS

s is finite-valued if and only if S is bounded (and nonempty)

0s = OconvS = UconvS — TclS

0—*3 = 0w S

dos(x) = {zeconv S | x € News(2) }

® o is anorm if and only if S is symmetric, bounded and 0 € int S.
Example: Let B, be the unit ball in the maximum norm. Then

OB = It
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Subdifferentiation and conjugacy of convex functions

Dual correspondences

‘Every property of the primal object (f € I'y) corresponds to a property of the dual object (f* € Tp).’

Proposition 10 (Dual correspondences).

Letf € T'o(E). Then:
(@) inff=-f*(0) and argminf = —4f*(0).

(b) f level-bounded < 0 € int(dom f*).
(c) f supercoercive <= domf* =E.
(d) The following are equivalent:
(i) fis essentially strictly convex, i.e. strictly convex on every convex subset of dom df;
(i) f* is essentially smooth, i.e. df* is single-valued. In particular, of*(x) = Vf*(x) for all
x € dom 9f* = int (dom f*).

These are all ‘straightforward’ except (d)! u]
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Subdifferentiation and conjugacy of convex functions

Interplay of conjugation and subdifferentiation

Theorem 11 (Subdifferential and conjugate function).

Let f be Isc, proper, convex. TFAE:
i) y e af(x);
i) f(x) + f*(y) = (x y);
i) x €af(y).

In particular, 3f* = (af)~".

Notice that
y € 0f(x) = f(z) > f(x) +(y, z—x) (z€E)
= > %) = f(x) 2 suplty. 2) - f(2))
= )+ (y) <x p)
Fenchel-Young 0+ F ) = 6 9,

Applying the same reasoning to f* and noticing that f** = f if f € 'y, gives the missing equivalence. u]
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Subdifferentiation and conjugacy of convex functions

Infimal convolution

Definition 12 (Infimal convolution).

Letf,g : E —» R U {+o0}. Then the function

f#g:E- R, (f#0)(x) == inflf(u) + g(x - u)}

is called the infimal convolution of f and g. We call the infimal convolution f#g exact at x € E if

argmin{f(u) + g(x — u)} # 0.
uek

We simply call f#g exact if it is exact at every x € dom f#g.

We always have:
m dom f#g = dom f + dom g;
m f#g = g#f;

m f, g convex, then f#g convex (as (f#g)(x) = inf, h(x,y) with h: (x,y) — f(y) + g(x - y)
convex).

Example 13 (Distance functions).
Let C c E. Then dg := 6c#ll - ||, i.e.
do(x) = inf lix - ul
ue

is the distance function of C, which is hence convex if C is a convex.
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Subdifferentiation and conjugacy of convex functions

Conjugacy of infimal convolution

Proposition 14 (Conjugacy o -convolution).

Letf,g : E - R U {+oo}. Then the following hold:
a) (f#9)" = +g%;
b) Iff,g e [y such thatdomfNdomg # 0, then (f + g)* = cl (f*#g").

prooft .

a) Forally € B, we have
(H#0) () = sup{tx, ) =inf(f(w) + olx - )}
= sup{(x, y) = f(u} = g(x = u)}
= sxl;ui){(<u, ¥ = f(u)) + ((x = u. y) = g(x — u))}
= f*'(y) +g'()-
b) (F#9°) 2+ g 20 £ 4 g "€ Iy, hence (F#g7) €.
= d(f#g) = ("#9)" = (f+9)"
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Subdifferentiation and conjugacy of convex functions

Drop the closure!

Theorem 15.

Letf,g € 'y such that
ri (domf) Nri(domg) # 0 (CQ).

Then the following hold

a) (‘Attouch-Brézis’) (f + g)* = f*#g*, and the infimal convolution is exact, i.e. the infimum in the
infimal convolution is attained on dom f*#g~.

b) (Sum rule) 8(f + g) = of + dg.

Proof.
a) Hard work! See, e.g., Rockafellar (1970) or Bauschke/Combettes (2017).
b) Only show "c”:! Let v € 8(f + g)(x). By a), 3 : (f + g)*(v) = f*(T) + g(v - T). Thus,

vedf+g)x) s (f+@)x)+(F+a) (V)= w0

f(x) 4+ g(x) + () + g(v - T) = (G, x) + (v -1, x)

J

Fenchel-Y
TEM™ Te of(x),v — U € dg(x)

v € df(x) + dg(x).

11

The converse direction always holds!
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Subdifferentiation and conjugacy of convex functions

Conjugacy for convex-linear composites
Letfeland L € L(E,E’). Then
Lf:E >R, (LA(y) = inf{f(x) | L(x) =y}
is convex?.
Proposition 16.
Letg: E — R be properand L € £L(E,E’) and T € £(E',E). Then the following hold:
a) (Lg)" =g ol
b) (goT)* =cl(T*g*)ifgeTl.
c) The closure in b) can be dropped and the infimum is attained when finite if g € 'y and

rge T Nri(domg) # 0. 3)

Guide.
a) Straightforward.  b) From a) and Fenchel-Moreau.

c) Observe that (g o T)*(z) = (6gpnT + ¢)*(2.0) for ¢(x, y) = g(y). Apply Attouch-Brézis to the latter
realizing that the (CQ) is equivalent to (3). u}

2Show that epi <Lf = T(epi <f) for T: (x,y) = (Tx,y).
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Subdifferentiation and conjugacy of convex functions

Fenchel-Rockafellar duality

Theorem 17 (Fenchel-Rockafellar duality).

Lety el (E1), ¢ € [(Ez) and L € L(E4,E). Define

mzian ¢(Lx) +y(x) (primal problem)
XE! 1
and
max—y*(L*y) —¢*(-y) (dual problem).
yeEp
Set
p = inf {#(Lx) +y(x)} and d:= sup{-y"(L'y) - ¢'(-y)}
X€Eq y€Ep
The following hold:
a) (Weak duality) p > d.
b) (Strong duality) p = d ifri (dom ¢) NriL(domy) # 0 (CQ).
c) (Primal-dual recovery) If y € Ty and g € 'y the following are equivalent:
i) Xeady (L*y), Lxedp*(-y);
i) p = d,% e argminy(x) + ¢(Lx), 7 € argmax —y" (L°y) - ¢" (y).
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Subdifferentiation and conjugacy of convex functions

Fenchel-Rockafellar duality for regularized least-squares
For A € L(E1,Ez), b € Ep, 4> 0and g € ['5(Ey) consider

1

min S [|1Ax - bI? 4 2g(x). (@)

To apply the Fenchel-Rockafellar duality scheme (Theorem 17) set
1 2
¢ = §||(~) -bl*, y:=4g, L:=A.

Since dom ¢ = Ey, the qualification condition (CQ) is vacuously satisfied. Moreover

1 .

¢ =SP4k, ¥ =axg.

Consequently, the dual problem of (4) reads

1
max (b, y) = EII}'II2 —Axg'(Ay). ®)

Primal-dual recovery: Assume that y is the unique (clear?) solution for the dual problem.
Then

X:X€dg'(A'y) and b-Ax =y solves (4).

Note that, by Proposition 10, dg*(A*) = Vg*(A*y) if g is essentially strictly convex.
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Proximal operators.

The proximal operator

Let f € [y and A > 0. Define the proximal operator of f by

prox;(x) := argmin {f(u) + %HX - ullz}A
u

Proposition 18 (Proximal operator).

Letfelg,A>0. Then:
a) prox; = (I+0f)~"; b) prox; is 1-Lipschitz.

a) Optimality conditions.
b) Set u = prox;(x), v := prox,(y). Then (via a))

x—uedf(u), y-vedf(v) e e {f(V) z WGyl

f(u) f(v) +{y-v,u-vy

summ.

0>2(y—-x+u-v,u—-v)
— (X—=y, u—vy>|u-v|?
CSI
= [lu=vil < lix =yl
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2. Stability Analysis of regularized
least-squares problems
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The general setting

Consider the optimization problem
min h(p, x) + ¢(x (6)

where min h(p. x) + ¢(x)

® h:RP xXR" - R (locally) smooth and convex in x;

® ¢ :R" - RU ({400} closed, proper, convex.

We are interested in the solution map
S(p) = argmin{h(p.x)+(x)}
xeRN

convexity

{x€R" | 0.€ Vyh(p.x) + du(x)}.

(Smooth case) If ¢ € C? then the classical implicit function theorem yields:
X = S(p), V3h(p,X) + V2p(X) >0 = 3JUeN(p):SeC'(U).

Question: What to do when ¢ is not smooth?
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Tools from Variational Analysis

Set-convergence (by Painlevé-Kuratowski)
Let {CK} with Ck c R" for all k € N. We define
m (outer limit)

Limsup CK := {x | 3K  N(infinite), {x*} —k x : xK € CX Vk e K}

k—oo

m (inner limit)
Likminfck = x| 3k €N, {x*} > x: xk € C* VK 2 ko).

Lim infy C¥

Lim sup, C¥

C7C5 CB
CA

c3

CZ

Figure: Example of {C*} non-convergent
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Tools from Variational Analysis

Set-valued maps

For a set-valued map S : R" =3 R™, we define:
m domS = {xeR"| S(x) # 0| (domain);
m gphS := {(x,y) €R"XR™ | ye S(x)} (graph);
m STTRTIZRY, ST(y) = {x eR"|ye S(x)} (inverse map).
We define the outer limit of S at X.
Limsup S(x) := U Limsup S(x¥) = {V [3:xK 5 X, vK >V vk e S(xF)v, }
X k—oo

X—X .
xK %

We call S outer semicontinuous (osc) at X € R" if Lim sup,_,z S(x) c S(x). Clearly,

Sis osc (everywhere) < gphSisclosed — S~ is osc (everywhere).
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Tools from Variational Analysis

Example: The subdifferential operator as a set-valued map
The subdifferential operator of for f € I is a set-valued mapping df : R” = R".

Proposition 19 (o).

Letfely. Then:
a) ri(domf) c domdf(c domf).
b) Forany A > 0, we have

If= r
%ﬂ()) is Lipschitz.

gphdf = Fy(R") where Fy(r) = (proxﬂ(r),
In particular, gph of is closed.
) (o)~ = ar.
d) (Monotonicity)y —y’, x=x"y >0 Y(x,y),(x".y’) € gphof.

Proof.

a) (Sketch) Prove that f'(x; ) = 07a¢(x) is proper which yields df(x) # 0 for x € ri (dom f).

b) Use Proposition 18.

c) Theorem 11.

d) Simple application of the subgradient inequality. u}
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Tools from Variational Analysis

Variational Geomet&y
Let A cR" and X € A. We define

m the tangent cone Ta (X) := Limsup; o g. The following hold:

m We have B
deTa(X) e 3A)l0ixecA): %= —d
— It} 10, {d} > d: X+ tdk €AVk

Ta(X:

%

m Ta(X) is a closed cone; convex if A is convex.
wx® g } The following hold:

m the regular normal cone N (X) = {v | lim SUPx— 2% “Trx
X

m Na(X) =3Ta(x)°.

m N, (X) is closed and convex. Rn(x)
m the limiting normal cone N (X) := Lim SUPx— 4 X N (x). The following hold:
- I
m Nj(X) is closed.
o = >
B Nj(X) = Na(X) = (A - X)° (hence convex) if A is X
convex.

3For a convex set K its polar coneis K° :={v |(x, V) <0V¥xeK}.
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Tools from Variational Analysis

Basic tangent and normal cone calculus

Proposition 20 (Change of coordinates).
LetD c R™ and C = F~'(D) for F : R" — R™ smooth and rank F’(X) = m for X € C. Then foru = F(X):

) Te(%) = F/() "' To(@): b) Ne(%) = F/(%)*No(@) o) No(X) = F' (%) Np (D).

Guide form = n.
a) Apply inverse function theorem to F(x) = u at (X, 0).

b) Use Rig (%) = (F'(%)~" Tp(@))” and invertibility of F(%)".

c) Apply b) locally around X, and Lim sup,,_, 5 F'(X)No (u) = F/(%)* Limsup,,_, 5 No (u). o

. Ng (%)
Corollary 21 (Smooth manifolds).
In Proposition 20 let D := {0}. Then:
a) To(X) = ker F/(X);  b) N (X) = Ne(X) = rge F/(X)*.

Tc(X
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Tools from Variational Analysis

Graphical differentiation of set-valued maps

Let S:R" 3 R™and (X,y) € gph S.
We define the graphical derivative DS(X|y) : R" = R™ via
veDS(Xly)(u) : = (u,v) € Tyns(X. 7).
We define the coderivative D*S(X|y) : R™ =3 R" via
veD'S(Xly)(u) := (v,—u) € Nypps(X.y).
m When S is single valued (at X) we write D®*) S(x) := D*) S(x|S(X)).
m Both DS(X|y) and D*S(Xly) are positively homogenous maps, i.e.,
DMS(R)(1z) = ADWS(X)(z) ¥A>0 and 0e DMS(X)(0).
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Tools from Variational Analysis

Example: Coderivative of 9| - ||1

Observe that
)"( {sgn(t)}, t#0
. = xi . = > > 7
Al 1l (x) ]:15| I(xi), al-1(t) {[_1’1]’ t—o0. (7)
gphd| - |
Consequently
n
gphdll -l = X gphal | — !
Thus for (x, v) € gphd|| - ||1:
{0} xR, x; # 0, .
n > - .
Nephay4 (X, V) = X R {0}, X =0, vil <1, Figure: Normal cones to gphd) - |
epnath =R x{0}U{O}xRURY xR, X =0,v; = -1,
RX{OJU{O}x RUR_ xR}, Xx=0,vi=1.
Hence
{0} X R, X # 0,
. R x {0}, xi = 0,lvil <1,
D*(all - =W 8
2D IMW) = (2-W) € g 0 G xRUR, xR, x5 =0 =1, ©
Rx{OJU{0}xRUR_XR;, x;=0,v;=1.
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Tools from Variational Analysis
Calculus rules for Co- and Graphical derivatives

Proposition 22.

LetS :R" =3 R™, (X,V) € gph S, F : R" — R™ continuously differentiable (at X). The following hold:
(a) (Inversion rule) We have

y e DS(xlv)(s) & seD(S")(VIX)(y) and ze D*S(XIV)(w) & -we D (S")(VIX)(-2)

b) (Sum rule) We have D™ (S + F)(XI7 4 F(X))(w) = D®) S(x{v)(w) + F/ (X)) w.

a) gph S~ = G'(gph S) for G(x, v) = (v, x). Then apply Proposition 20 (coordinate change).
b) (Coderivative statement) With G(x, v) = (x, v + F(x)), we have gph (S + F) = G™'(gph S).
zeD'(S+F)XIV+F(2))(w) < (z,-w)e Ng1 (gphs)()?, v+ F(X))

Prop.20 () R
= (z,-w)e (é > }") )nghs(X, V)
—=* (z-F(X)'w,-w) € Ngps(X, V)

= zeD*S(x,v)(w)+ F(x)"w.
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Tools from Variational Analysis

Locally Lipschitz maps and graphical differentiation
Let F: R" — R™. We call F locally Lipschitz® at X if
AL,e >0 : [|F(x) = FOI < Llix =X ¥x,x" € Be(X).

We call

. . IF(x) = FCI
LipF(X) := limsup —————~—
PF(X) = limsup =

the Lipschitz modulus of F at X. Clearly

F locally Lipschitz at X < LipF(X) < co.
Fact: Let F : R” — R be locally Lipschitz at X. Then:
m (Scalarization formula) D*F(x)(w) = d({w, F))(X)® is nonempty, compact.
m (Lipschitz modulus) We have
LipF(X) = ID*F(X)I* :=sup sup |Vl ©)

VeB veD*F(X)(z)

m (Relation to Clarke Jacobian’) conv D®) F(X)(w) = dcF(X)w.

51n Rockafellar-Wets, this property is called strict continuity.
8For g : R" — R U {+oo}, we define the limiting subdifferential dg(X) = {v [ (v.=1) € Nepi g (%, g(i)}
T9cF(X) := conv {V | 3xK) > X : F/(xK) > v}
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Tools from Variational Analysis

Definiteness properties of the coderivative

Proposition 23.

Let f € Ty, and let (X, V) € gphdf. Then
ze D*(of)(xIV)(w) = <(z,w)>0.

Recall from Proposition 18 that P, := prox ;s = (I+ 49f)~" for all 1 > 0. Thus
Prop.20

z € D*(af)(x|V)(w) = Az € D*(A0f)(X|Av)(w)
Prop.22(b) . I
= Az +w € D* (14 A0f)(XIX + AV)(w)
Prop.22(a) _ _
) —-w € D*Py(X + AV)(-1z - w)
pos. hom. w _ _ Az+w
= ————— e D*PY(X + AV) |- ——
iz <P )( ||Az+wu)
Therefore
g sup lsl "9 LipPy(x 4 a7) = 1.
12z + Wil ™ =1 seD* P, (x+7)(r)
Hence

:4, 110
Wl < 11z + wi? = 2zl + 244z, w) + [wl? 5" 0<(z, w).
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Tools from Variational Analysis

The Aubin property and the Mordukhovich criterion

Let S : R" =3 R™ with closed graph at (X, ¥) € gph S. We say that S has the Aubin property at x for y if
there exist neighborhoods V of X and W of y as well as « > 0 such that

S(X)NWc S(x)+«lx —xIB Vx,x" € V.

Remark: The Aubin property is a local property in that if S has the Aubin property at X for y then it has
the Aubin property for every point (x, y) € gph S sufficiently close to (X, y).

Theorem 24 (Mordukhovich criterion).

Let S : R" =3 R™ with closed graph at (X, U) € gph S. Then the following are equivalent:
®m S has the Aubin property at X fory;
m D*S(xly)(0) = {0}.
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Tools from Variational Analysis

Excursion: Monotonicity

gph T
We call T : R" =3 R" monotone if /
y=y.y=y) V(xy).(x.y')€gphT.

Example: *

m T=offorferl. /

m T:x— AxforA>0.
Figure: T monotone

Definition 25 (Maximal montonicity).

A monotone map T : R" =3 R" is called maximally monotone if there is eph
no enlargement of gph T possible without destroying monotonicity, i.e.,

V(X,7) e R"xR"\ gph T A(x,y) € gph T : (X —x, y —y) <O0.

Facts:

= T (maximally) monotone < T~' (maximally) monotone. N
. Figure: T maximally monotone
m T maximally monotone = gph T closed.

m T maximally monotone = T(x) closed, convex Vx.
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Tools from Variational Analysis

From Aubin property to local Lipschitzness

Proposition 26.

Let G : R" =3 R" have the Aubin property atX fory € G(X) and assume that G is monotone. Then the
following hold:

a) G has a Lipschitz continuous single-valued localization at X for y, i.e., there exist neighborhoods V
of X and W of ¥ such that G : x € U — G(x) n W is single-valued and Lipschitz.

b) If G is convex-valued, then G is, in fact, single-valued and (locally) Lipschitz around X.

Proof.
a) Blackboard. b) Exercise! u}

Corollary 27.

Under the assumptions of Proposition 26 assume that G is maximally monotone. Then G is
single-valued and (locally) Lipschitz around X.

Proof.

Follows from Proposition 26 as G is convex-valued. u]
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Tools from Variational Analysis

Locally Lipschitz implicit functions

Theorem 28.

Let f: RI x R" — R" be continuously differentiable at (p, X) € gph S such that f(p, ) is monotone near p,
let F : R" =3 R" be maximally monotone. Define S : RY =3 R" by

S(p)={xeR"|0ef(p.x)+ F(x)}. VpeR
Assume that
0 € Df(p,X)*w + D*F(X| - f(p,X))(w) = w=0 (Mordukhovich criterion). (10)
Then S is locally Lipschitz at p.

High-level guide.
Set Q := f(p,-) + F. By the coderivative calculus from Proposition 22 find that
(10) & D*(Q")(0x)(0) = {0} & Q 'has Aubin property at 0 for X

Since Q, thus Q" is maximally monotone that means that Q" is locally Lipschitz around 0. This now
has to be leveraged to show that S is locally Lipschitz around p; this hinges on the fact that perturbation
(of f) enters smoothly (hence the difference between f(p, -) and f(p, -) is controllable). m]
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Application to stability of regularized least-squares

The Mordukhovich criterion for regularized linear least-squares
Consider .
min S [IAX - bl + ag(x), (geTo, 1>0). (11)
Let X solve (11), i.e. T := 1AT(b - AX) € 9g(X), i.e.
oclar(ax-b)+ ag ().
2 _

N
=H(Ab.A)(%)

;
Let0 € D,f(A, b, A, X)*w + D*F(X|a)(w) = 1A*Aw + D*(ag)(XIz)(w), i.e.
- SA*Aw € D" (90)(XD)(w). (12)

By Proposition 23 we have
0 <(w, -A"Aw)

Inserting into (12) yields

N __ (99)~"=0g* e
0 € D*(dg)(xIu)(w) — -w € D*(ag")(ulx)(0).
Hence
ker A ﬂ D*(dg™)(ulx)(0) = {0} <= Mordukhovich criterion holds (13)



Stability Analysis of regularized least-squares problems

Oe000

Application to stability of regularized least-squares

Example: the LASSO problem, i.e., g = || - |l
Set g := || - |l1. Let X be a solution of the LASSO problem
min 2 1A% - BIP + A1l

Thus
I R _ o
u:= }A (b-AX) €|l (X)) < TUce
We note that
we D*(g")(ulx)(0) <= 0¢e D*(dg)(xlu)(w)
{0} xR,
®) R x {0},
= O e 0l U0 XRUR, xR,
RXx{0JU{0} x RUR_ xR,
= w=0Vigd:={i|lul=1}.

{sgn(X;)}, X #0,
e[-1,1], xi=o0.

X; # 0,

Xi =0, <1,
Xi=0,0= -1,
% =0,0=1.

For A, = [a; (i € J)], the matrix whose columns are the columns of A corresponding to J we thus find:

ker AN D*(dg")(Ulx)(0) = {0} < kerA; = {0}.
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Application to stability of regularized least-squares

Towards more general results: PLQ penalties

LetP = {z eR" | pi, 2y <Bi(i=1,..., k)} c R" be polyhedron and let B € S'.. We define the
piecewise-linear quadratic (PLQ) penalty

]
bpp(y) = sup{(y, 2)- 5 (Bz, Z>}.
zeP

Example: || - [y = 6p g for P = B.,, B = 0. We note that:
m Opp = (6¢> + qB)* €[ for qB(y) = % (Bz,z) , P+ 0
m 96, = Np +B.
Fact: D*Np(ulv)(0) = span {p; | i € A(u) } where A(u) ={i € (1,....k} | {p;, u) = i }. Thus, for
(X, U) € gph6p g, we have
D"(96,5)(@R)(0) =  D*(Np + B)(@X)(0)
D*Np(Tl% — B)(0) + B - 0
span {pi lie fl(D)}
= pardbpp(l).
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Application to stability of regularized least-squares

Towards quantitative results

Theorem 29.

Under the assumptions of Theorem 28 define S : RY = R" by

S(p)={xeR"|0ef(p.x)+ F(x)}. VpeR
Assume that
0 € Dif(p,X)*w + D*F(X| - f(p,X))(w) = w=0 (Mordukhovich criterion). (14)
Then S is locally Lipschitz at p with modulus

L <limsupmax inf [lw].
p—p lali<t weDS(p)(q)

If F is proto-differentiable® at (X, —f(p, X)), S is directionally differentiable at p with locally Lipschitz
directional derivative (for G(p, x) := f(p, x) + F(x)) given by

S'(p:q) = {w eR" | 0 € DG(p, XI0)(q.w)} VgeR.

8¢ is proto-differentiable at (x,U), e.g., if ¢ = g o His fully amenable, i.e., g PLQand H € €2 such that
ker H'(X)" N Ngom g(H(X)) = {0}  (basic constraint qualification)
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Application to stability of regularized least-squares

Application: unconstrained LASSO (stability) (Berk, Brugiapaglia, H. '23)

Apply Theorem 29 with f(b, 4, x) := %AT(AX —b), F:=4|l-llt such that
1
S(b, 1) = {x | 0€ef(b,A,x)+ F(x)} = a:gmin{élle— bl + /l||x||1} (12> 0).
xeRN

For (b,1) e R" xR let X € S(b, ). Assume that
ker Ay = {0}.
Then S is locally Lipschitz and directionally differentiable at (b, 1) with Lipschitz modulus
L<

1 AJT(A)_( -b)
- O'min(AJ)z ( A ]

A
Moreover, the directional derivative S’((b,1); (,+)) : R™ x R — R" is locally Lipschitz and given as
follows: for (g,a) € R™ x R there exists an index set K = K(q, @) with I € K € J such that

Tmax (Ag) +

§'((B. 1) (0.0)) = L (AT A«) ' A] (g + 5 (A% - B)).0).
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Measure-theoretic tools

3. The Maximum Entropy on the Mean Method
for Linear Inverse Problems
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Measure-theoretic tools

Reminder: Probability measures and measure transformation
Let Q2 be a nonempty set and let 7 be a o-algebra® on Q.
m (Q,F) is called a measure space.
m Afunction u: F — Ry is called a measure on (2, F) if:

m u(0) =0;
m ForAg € F (k e N) with Ag N A; =0 (k # ) 1t (Ukert Ax) = Sears (A )-

If, in addition, u(2) = 1, we call u a probability measure, and (2, 7, ) a probability space.

Example: the Lebesgue measure comes with the measure space (R",B,,), where B, is the o-algebra
generated by the open sets in R".

Theorem 30 (Measure transformation).

Let (2, F, P) be a probability space, and let (', F") be a measure space. Letf: Q — Q' be
measurable. Moreover, let ¢ : ' — R be measurable. Then:

a) Forp:= Pof" wefind that (', 7", u) is a probability space.

b) It holds that
f¢ofdP:f ¢du.
Q (4

9A collection of sets closed under complements and countable unions containing 2.
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Measure-theoretic tools

Distiributions and expectations of random vectors
Let (22, 7, P) be a probability space and let X : Q2 — R" be a random vector (i.e., its components
Xi : Q — R are random variables).

m We call u = P o X" the distribution or law of X, and we write X ~ p1.
m The expectation or mean of f is

E[X] := [E[Xi].....E[X]]” €R" for E[X]= f XidP.
Q

Proposition 31 (Expectation of a random vector'?).

Under the assumptions above we have:

J}[{n x1ll(dx),u.,];n Xmu(dx)]T = E,

Define 7j : R" — R, 7;(x) = x;. Then we have

E[X] =

E[X]] = E[mj 0 X] = fﬂn,- o X dp =0 Ld Tidu.

1°‘(Q.7", P) never mattered’
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Measure-theoretic tools

A Holder-type inequality

Proposition 32.

Let i1 be a probability measure on R" and f, g : R” — R measurable. Then
1-2

fexp(/ler (1-2)g) du< (fexpf d;l)/l ~(fexpg dy) VYae (0,1).

When [ exp gdu and [ exp fdu are finite equality holds if and only if f = g + y for some y € R.

Proof.
Prove the elementary inequality

a'bl<la+(1-)b vYab=0 (‘= iffa=Db). (15)
_ __expf . __expg
Now set a := Ern and b := e Then
exp(Af + (1 -2)g) exp f ¢ expg = (15) expf expg
1 1= < +(1-2) .
(fexpfdy) (fexpgd;z) fexpfd;t fexpgd/t fexpfdy fexpgd;t

Therefore (applying integration on both sides yields)
fexp(/lf+(1 —)g) du ﬁfexpfd/t dodl fexpg du _
(fexp f dp)/l (fexpg d;z)FA T Jexpfu Jewgdu

which gives the desired result.

1,
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Measure-theoretic tools

Radon-Nikodym theorem - a tour de force
Let u and v be measures on the measure space (2, ). Then we call v absolutely continuous with
respect to u (write: v < ) if for all A € F:

u(A)=0 = vy(A)=0.

Theorem 33 (Radon-Nikodym).

Let (Q,7) be a measure space, and let 1 and v be finite''-'2 measures on (2, ) such that v < u. Then
there exists a (¥ )-measurable function f : Q — R such that

VAeTF : V(A):ffd[.L
A

Remark: The function f in Theorem 33 is unique (up to changes on p-null sets). We often write % and call it the
Radon-Nikodym derivative (of v w.r.t. ). When v is probability measure (distribution) then % is called a u-density.

Let v < u < 1 be measures on (2, 7). Then:

dv _ dv du o
dl = dud1 ae

m If gis measurable then [, gdv = [ ggT‘; du.

-1
m Ifu<p(andy < p): % =(%) v-a.e.

"That is (), () < 0.
12Or, more generally, o-finite.
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The MEM framework

Higher level approach to linear inverse problems

The canonical linear inverse problem Ax =~ b is usually solved via an optimization problem
1 m A € R™": linear (forward) operator
B 2
min 3 S11AX = blI* + g(x) m b € R™: measurement vector
xerd 2
m g: (convex) regularizer

Higher level approach: Interpret the ground truth as a random vector with unknown distribution. Solve
for a distribution Q that is close to a prior (guess) u and such that its mean'® Eq satisfies C - Eq ~ b.
This leads to ’
in —||IAEq - b|? + K,
min SlIAEq - bl + K,(Q)

where K, measures the compliance with (or distance to) u.

m [s this useful?

m What is our choice of K, ?

Bie. Eq = fon yQ(dy)
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The MEM framework

Measuring compliance: the KL divergence

Let u be a (prior) distribution, i.e., a probability measure on X c R” (i.e. u = P o X' where X takes
values in X). The measure of compliance of another distribution Q with i is measured by the
Kullback-Leibler divergence KL(: | -) : P(X) x P(X)'* — R U {+oo},

aQ

log|—1]dQ, Q<u,
i =} ool o o<
~+o00, otherwise,

where % is the Radon-Nikodym derivative.
m KL(-|-) is convex, KL(- | ) strictly convex for all x4 € P(X).
m KL(Q | u) > 0; equality if and only if Q = p a.e.

14p(X): (convex) set of probability measures on X.
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The MEM framework

KL divergence concretely

Let u € P(X) be our prior/reference distribution. We are mainly interested in two cases:

1. X =R" and p is absolutely continuous w.r.t. the Lebesgue measure v, i.e. has a density p = %.

In this case, if Q < p, Q has a density % =g, and
a(x)
KL(Q | :f lo (—) Xx)dx.
@1 = | tog( 5 |atx)
Note that we cover the case where X c R" via u(X) = 1.

2. uis adiscrete probability distribution, i.e., X is countable, and the probability mass function
p(x) = u({x}) has Yyex p(x) = 1. Then Q < u implies that i has a probability mass function g

and it holds that )
q(x

KL(Q |p) = log| — |-

(@1) = 3400 e (29

Example: Let u be the uniform distribution on X := {1,..., N}, i.e. p(i) = 1/Nforalli=1,...,N. Then
for Q < p with PMF g, we have

KL(Q|u) = " q(i amy _ S i))a(i
W)=Y ai) tog( Ty ) =log(M) + 3 og(a()a(i

log(N)+log(a(7))
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The MEM framework

The MEM re-formulation
Given a prior u € P(X), the maximum entropy on the mean method (MEMM) for the linear inverse
problem Ax =~ b reads:

Determine Q as the solution of

g 1 2
~|lA-Eq— , 16
Q’Q,'{}(){ZHA Eq - bl + aKL(Q I#)} (16)

and set X := Eg to be the estimate for the ground truth.

We observe that the MEM problem can be reformulated as follows:

1 . 1
inf {—||A<Eo—b||2+aKL(Q|p)} - inf {—||A-x—b||2+aKL(QI/1)}
Qep(x) | 2 (Qux)eP(X)xrd: | 2
Eq=x
1
- 'f{—A-x—b2+ inf KL(Q }
Jinf, ol I @ it (Qlu)
Eq=x
R
=k (X)
(1 )
= ngd{EHA -X = bl +cu<y(x)}.
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The MEM framework

The MEM functional and the dual problem

We obtained the reformulated problem
1
min =|lA - x = b|Z + ax,(x). (17)
xerd 2
with the MEM functional x, : R% — R U {+oo},

Ku(X) = Qei;}(fm{KL(Q [ 1) + 6101 (Eq — X))

m «, > 0;x,(y) =0if y = E,, in particular, «, proper if E, exists.

|k, is convex (infimal projection!).

[ The million dollar question: Who is «, really? ]
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Cramér’s function and the MEM functional

Cramér’s function
Given a distribution i € P(X), its moment-generating function is
M, :R" > RU {40}, M,(2):= j;exp((z, y)u(dy).
The log-moment-generating function or cumulant generating function L, : R? — R U {+oo} of u € P(X) is
Ly(2) := Iogfxexp((z, 2)du = log(M,(z)).
Its conjugate L; : RY — R U {40},

L;(y) = sup{(y, 2) - L,(2)}
zerd

is called Cramér’s function'® (fundamental in large deviations theory)
The key to computational tractability of the reformulated MEMM problem is to establish conditions (on )
under which Cramér’s function equals the MEM functional, i.e.

oy
k=L,

5Named after Swedish mathematician and statistician Harald Cramér who is considered as ‘one of the giants of
statistical theory’.



The Maximum Entropy on the Mean Method for Linear Inverse Problems

Cramér’s function and the MEM functional

Convexity of the log-MGF

Proposition 34 (Convexity of L,).

Let u be a probability measure on X C R". Then L, is proper and strictly convex. In particular, L, € T.

Note that L,,(0) = Iogfx 1du = log1 =0, so L, is proper. Now note that, for A € (0, 1),

Mz +(-0y) = [ ew(z(1-)v. ) da

Prop. 3218 d =
< (fexp(z, ) d,u) (fexp(v, ) d,u) .

Ly(Az+ (1 - A)v) < log ((fexp (z,-) d,u)/1 (fexp(v, ) d,u)FﬁJ = AL, (2) + (1 = A)Lu(v).

Therefore

If z,v € dom L, by Proposition 32, this can only be an equality if (z, -) = (v, -) +y for some y € R, i.e.
z = v. This shows that L, is, in fact, strictly convex. O

18With f := (z, -y and g := (v, -)
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The case where X is compact

The compact case

Proposition 35.

Let X c R" be compact, and let u € P(X). Then the following hold:
a) L, is strictly convex and (locally Lipschitz) continuous. In fact, L, is continuously differentiable with

Jexexpy, ) du
M.(y)

b) We have x, = L. In particular, , € I'o is supercoercive, and essentially strictly convex.

VL(y) =

Guide.

a) By Proposition 34 L, is strictly convex. But by compactness of X, for any z € X, there is
§ = argmax, y exp(Z, S), so that

L(z) = Iogf exp(z, -) du < Iogf exp(z, 8) du=<(z, ).
X X

Hence, L, is finite-valued and convex, hence (locally Lipschitz) continuous. The formula for the gradient
follows from ‘differentiation under the integral’.

b) The identity x, = L. is hard work (more later). u]
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The case where X is compact

The dual problem

Recall the (primal) MEM problem
1
min =A< x = b|? + ax,(x). (18)
xerd 2

Proposition 36.

Under the assumptions of Proposition 35 the following hold:
a) The dual problem of (18) (in the sense of Theorem 17) reads:

mzin gllzll2 —(b, 2) + L,(A T2). (19)

b) LetZ be the unique solution of (19). Then X := VL,(ATZ) solves (18).
Proof.
a) «; = L, by Proposition 35.

b) The dual problem is strongly convex, so has a unique solution z (Prop. 3/6). The primal-dual recovery
is given in Theorem 17 using that L, is smooth (Prop. 35). u]
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The case where X is compact

Applications

To solve the dual problem, one can use standard
solvers like e.g. L-BFGS which was successfully
done for (blind and non-blind) deblurring of

m Barcodes/QR-codes.
Prior u: Bernoulli.

Reference: G. Rioux et al.: Blind Deblurring
of Barcodes via Kullback-Leibler Divergence.
IEEE TPAMI 43(1), 2021, pp.77-88.

m General images. Fig. 11. Out of focus image of a QR code.

Prior x: Uniform on box. EEZE

Reference: G. Rioux et al.: The Maximum
Entropy on the Mean Method for Image
Deblurring. Inverse Problems 37, 2021. [=]

Fig. 12. Result of applying our method to a processed version of Fig. 11.
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A data-driven approach for the MEM framework

A data-driven approach for the MEM framework: the main idea

Recall the MEM dual problem for the linear inverse problem Ax =~ b:
in L1212 T
= — (b, L,(A'Z), 20
min 5lIZI" = <b. 2) + u(A'Z) (20)

where L, is the log-moment generating function Iogfx exp (-, s) du.

The obvious question: ‘How to choose the prior 1 ?".

Idea for a data-driven approximation scheme: Let X, X, ... be a sequence of i.i.d."” X-valued
random variables on the probability space (2, 7, P) with shared distribution 4 = P o X1“. Let

Xi(w), X2(w), .. ., be a realization of the sequence.'® Pick the first n-realizations (data!l). They give rise
to the empirical distribution

1< 1, Xi(w) €A,
:E; X(w) for ]1Xi(w)(A)_{0’ e VA €BnNX.

17Each X; ~ pand for all n € N the RVs Xi,..., Xp are independent.
18Ppick one w € Q, i.e, ‘throw the dice once’.
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A data-driven approach for the MEM framework

The empirical dual

Plugging the empirical distribution ;45,“') = ‘5 i 1 x,(w) into the log-moment generating function yields:

o 1%
L= logfexpw, Yl = log(— D exp(u, Xi(‘“))]'
Hn X ni=
We now define the ‘empirical dual’
. 1%
min SzlP - (b. 2) + |og[; ;exsz, Xi(w)>]~ @1
This problem has a unique solution z,(w). Define the vector (primal-dual recovery!)

Xn(w) == VLHS..:) (A Tzn(“)))

The million dollar question: Does x,(w) converge to the solution of the MEM problem as n —
?
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A data-driven approach for the MEM framework

Excursion: Functional convergence
Let f : R" — R U {+o0} (k € N).
fDF = fu(x) = f(x) VxeR" (pointwise)

fo Sf 1= epifi >epif (epigraphical)
fo SF e fi(x¥) > f(x) VxeR" {x} > x (continuous)

e liminfroe A (x%) 2 f(x) ¥ xK - x,
Fact: f, f Vx eR"
act:f > = {Iim SUPLeo P (XF) < f(x) T XK - x. xe
i St
oSt
fo bt

Figure: Connections between the convergence concepts
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A data-driven approach for the MEM framework

Pointwise convergence is not enough!

Consider the sequence of functions ¥, defined by
f%(x) = min{1 = x,1, 2k|x + %| -1} forany xe[-1,1].

For any x € R we have f*(x) — f(x) := min{1 — x, 1} as k — 0.

argmin fg argmin f

_____
L - - - -
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A data-driven approach for the MEM framework

The features of epigraphical convergence'®

Proposition 37 (Poor man’s sum rule).

Let fx 5 fand let g be continuous and finite-valued. Then fx + g X f+g

Proposition 38.

Let f > f. Then Lim sup(argmin fi ) C argmin f.
k00

The convex case allows for even stronger statements.

Proposition 39.
Let {fx € I'p}). Then the following hold:

a) Wisman)f > f — f: 5.
b) (Attouch) f = f = gphdf, — gphdf.

c) Iffy S f f level-bounded and Xi € argmin fi for all k € N. Then {x«} is bounded and every cluster
point belongs to argmin f.If f is, in addition strictly convex and X = argmin f, then xx — X.

195ee Rockafellar/Wets, Chapter 7 for details.
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A data-driven approach for the MEM framework

Epi-convergence of the empirical dual objective
Recall the empirical dual
min 6(2) := Gllel’ - (b. 2) + LY(AT2),

where LY (u) = Iog(% 1 exp(u, X;(w))). We record that:
m ¢ is strongly convex.
m ¢2 =g+ LY o AT where g is finite-valued and continuous.
In view of Proposition 37 and Proposition 39 for ¢% to epigraphically converge to the objective function

9(2) i= Gl = (b, 2)+ L,(A"2)

of the MEM dual, it suffices to show that L@ o AT 5 L, o AT. This is a probabilistic statement which
reads like this, and leverages the theory of epi-consistency by King and Wets.

Proposition 40 (Choksi, King-Roskamp, H. "24).

Let (Q2, ¥, P) be the underlying probability space. Then

L2oAT S L,0AT (P)-ae.
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From empirical dual solutions to primal solutions

As a corollary of Proposition 40, we find that the objective function ¢ of the empirical dual converges
epigraphically to that of the MEM dual for almost every w € €. Smoothness and Attouch’s theorem
(Proposition 39 b)) now yield the following:

Corollary 41
Letz € R™, and let z, — Z be any sequence converging to Z. Then for almost every w € Q,
VLE(ATz,) - VL,(AT2).

Our derivations suggest the following scheme to solve a data-driven MEM approach for the linear inverse
problem Ax =~ b.

(S1) Generate realizations xy, Xz, . .. X, (datal) of i.i.d. random vectors X; ~
(S2) Determine

-

n
- . 1
Zp = argimn 2||z|| (b, z)+|og[nZexp ATz, x, ]

i=

(83) Set %, := VL,(ATZ,).
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A demonstration
Want to recover a hand drawn digit x from noisy observations b = x + 1. Construct uf,“') for the MEM
framework by sampling from the MNIST digits dataset.

(S1) For given n, draw sample X1, ... X, uniformly at random from MNIST.
(S2 & S3) Using preferred method (e.g. here L-BFGS) find Z, = argmin, ¢,(z). Set X, = VL (., (Zn).
Hn

(a) Ground Truth x (b) Observed b,
1~ N(0,0.1Ixll2)

2] 747]17

(¢) xn, n =100 d) xp, n = 5000 (e) xn, n = 60000 ) Post-processed
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Beyond compactness of X

The general setting

Given X c R", and y € P(X), recall the MEM functional k, : R” — R U {40},
= inf {KL Eq - y)}
Ku(x) oég(n){ (Q1 1) + 60)(Eq - )}
and the log-moment generating function L, : R” — R U {40},
L(z) = Iogf exp(z, -) du.
X

We want to find the crucial identity x, = L for the two essential cases
m X =R and y is absolutely continuous w.r.t. to the Lebesgue measure;
m Xis countable (u(X NA) = Yyex P({f = x})1ix(A) for all A € By).

Key ingredient: Exponential families and Legendre-type functions.
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Beyond compactness of X

1st Ingredient: Legendre-type functions

Let ¢ € I'y. Say that y is of Legendre-type if it is both (cf. Proposition 10)
m essentially strictly convex;

m essentially smooth.

Rockafellar (1970): Let ¢ € I'p. Then
m y of Legendre-type < y* is of Legendre type.
m In this case: Vi : int (domy) — int (domy*) is a bijection (with (V)~" = Vy*).

int (dom )

int (dom y*)
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Beyond compactness of X

2nd ingredient: Exponential families

Let u € P(X). The natural parameter space for p is simply the domain of its (log-)MGF, i.e.,

Q, = {0 eRY| Lexp((@, )du < +oo} (=domlLy).

The standard exponential family generated by u is given by

Fu = {fug | g (¥) = exp((y. ) =0 (0)). 66, ).

Properties and connections

] L fugQp = 1,thus pig := po f;; is a probability measure with ‘L—“f =1f (0 €Oy).

m Fory cint(©,) we have: Q € argminge,_, KL(Q|p) = 3FfeF,: dQ="f du
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Beyond compactness of X

The main result

The (standard) exponential family 7, is called
m minimal % if int©, # 0 and int (conv S,,) # 0 2';

m steep if ¥, is essentially smooth (automatically satisfied if ©, open).

Theorem 42 (Vaisbourd et al.).

Suppose u € P(X) generates a minimal and steep exponential family. Moreover, suppose one of the
following holds:

m S, is uncountable (absolutely continuous case);

m S, is countable and conv S, is closed (which is always the case if S, is finite).

In this case, 0 < kp € Iy is of Legendre type and coercive.

20This can essentially be assumed w.l.0.g. by going to relative topology.
21 Sy.: support of y, i.e. the smallest closed set u c Q s.t. u(X\ A) = 0.
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Beyond compactness of X

How is x, = L, useful?
If u € P(RQ) is separable (i.e. it = p1y X ptp X -+ X pg), then M, (8) = [T, My, (6)). Hence

Li(y) = sup{(y,G)—IogMﬂ(H)}
perd

d
= 21 z:]g {y,-Hi —log Mﬂi(G,-)} .
=

In many cases this yields analytic formulas for L}, i.e. xp (even without separability!).

Example: If u is the multivariate normal distribution N(E, X) for £ > 0, i.e.
Mp(6) = exp ((E. 6) + 167X6), then

Li(y) = sup(y, ) ~logM,(6))
6eRN
= sup {(y -E 0)- 167):9}
6erN 2

= JU-BTEy-E).
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Beyond compactness of X

Examples of Cramér’s function

Reference Distribution (1) Cramér Rate Function (L;(y)) dom L
Multivariate Normal 1 o1 q
1eR) T s ¥ >0 -y -p) R

Poisson (1 € Ry ) ylog(y/A)-y+4 Ry
Gamma (a,8 € R, ) By —a + alog (ﬂiy) Ry

Normal-inverse Gaussian

@B, 6€R a2 |f, a 6%+ (y - p)2 -Bly —u) -6y R

6>0,y:= a?-p?

Multinomial (p € Ag, n € N) >4y Iog(n%i) nlg N I(p)2

In addition: Laplace, (Negative) Multinomial, Continuous/Discrete Uniform, Logistic,
Exponential/Chi-Squared/Erlang (via Gamma), Binomial/Bernoulli/Categorical (via Multinomial),
Negative Binomial & Shifted Geometric (via Negative Multinomial).

22(p) := {xe]Rd |xi=0ifpj = 0}
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