
Rigorous numerics for nonlinear differential equations

using Chebyshev series

Jean-Philippe Lessard∗ Christian Reinhardt†

Abstract

A computational method based on Chebyshev series to rigorously compute so-
lutions of initial and boundary value problems of analytic nonlinear vector fields
is proposed. The idea is to recast solutions as fixed points of an operator defined
on a Banach space of rapidly decaying Chebyshev coefficients and to use the so-
called radii polynomials to show the existence of a unique fixed point nearby an
approximate solution. As applications, solutions of initial value problems in the
Lorenz equations and symmetric connecting orbits in the Gray-Scott equation are
rigorously computed. The symmetric connecting orbits are obtained by solving a
boundary value problem with one of the boundary values in the stable manifold.

1 Introduction

In this paper, we propose a rigorous numerical method based on the Chebyshev polyno-
mials to compute solutions of nonlinear differential equations. More explicitly, the field of
rigorous numerics develops algorithms that provide approximate solutions to a problem
together with precise bounds within which exact solutions are guaranteed to exist in the
mathematically rigorous sense. In this context, the main idea of our proposed approach
is to expand the solution of a given differential equation using its Chebyshev series, plug
the expansion in the equation, obtain an equivalent infinite dimensional problem of the
form f(x) = 0 to solve in a Banach space of rapidly decaying Chebyshev coefficients and
to get the existence, via a fixed point argument, of a genuine solution of f(x) = 0 nearby
a numerical approximation of a finite dimensional projection of f . The fixed point ar-
gument is solved by using the radii polynomials (e.g. see [1]), which provide an efficient
way of constructing a set on which the contraction mapping theorem is applicable.

Before proceeding further, it is worth mentioning that a similar approach based on
Fourier series is widely used in the field of rigorous numerics to compute solutions of
differential equations with periodic profiles. For instance, time periodic solutions of
ODEs [2, 3], stationary solutions of PDEs with periodic or Neumann boundary condi-
tions [4, 5, 6, 7], time periodic solutions of delay differential equations [8, 9] and invariant
sets of infinite dimensional maps [10] have been successfully computed using Fourier se-
ries and rigorous numerics. However, to the best of our knowledge, this is the first time
that a method based on Chebyshev series is presented to rigorously compute solutions of
nonlinear differential equations. Since a large class of solutions of differential equations
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are non periodic (e.g. solutions of initial value problems (IVPs) and boundary value prob-
lems (BVPs) with non periodic boundary values), we believe that our proposed approach
is a valuable contribution to the field of rigorous numerics. Also, since Chebyshev series
are Fourier series in disguise [11], the mathematical machinery developed in the last ten
years to prove existence of solutions with periodic profiles can directly be transferred
to prove existence of non periodic solutions. To give a few examples, the analytic esti-
mates introduced in [4, 6, 10, 12] and the Banach space of rapidly decaying coefficients
used in [3, 4] can be used here. Finally, let us mention the work [13] where the authors
develop Chebyshev interpolation polynomial-based tools for rigorous computing. How-
ever, it seems that they have not yet applied their methods to rigorously solve nonlinear
differential equations.

In the present work, we focus our attention to analytic vector fields of the form

du

dt
= Ψ(u), Ψ : Rn → Rn, (1)

where we aim at computing rigorously solutions of IVPs and BVPs associated to (1). Even
if we present the method in this context, we strongly believe that a similar approach could
be adapted to directly prove existence of solutions of higher order differential equations.

The Chebyshev polynomials are defined by T0(t) = 1, T1(t) = t and Tk+1(t) =
2tTk(t) − Tk−1(t) for k ≥ 1. They lead to an analogue of the Fourier expansion for non
periodic functions on an interval and, as mentioned earlier, they are Fourier series in
disguise, as Tk(cos θ) = cos(kθ). The following standard result can be found in [14].

Theorem 1.1. Every Lipschitz continuous function v : [−1, 1]→ R has a unique repre-
sentation as an absolutely and uniformly convergent series v(t) =

∑∞
k=0 akTk(t).

The following result, which can also be found in [14], shows that the coefficients ak
of the Chebyshev series of an analytic function v decay exponentially fast to zero.

Theorem 1.2. Let a function v analytic in [−1, 1] be analytically continuable to the open
ρ-ellipse Eρ for some ρ > 1 where it satisfies |v(z)| ≤ M for all z ∈ Eρ for some M .
Then its Chebyshev coefficients satisfy |ak| ≤ 2Mρ−k, with |a0| ≤M in the case k = 0.

Eρ (with foci at ±1) is defined by fixing ρ > 1 and considering the image of the circle
with radius ρ in the complex plane C under the map w = 1

2 (z + z−1). This consequence
of Theorem 1.1 and Theorem 1.2 plays a fundamental role in the design of our approach.

Corollary 1.1. Assume that Ψ : Rn → Rn is real analytic and let u : [−1, 1] → Rn
be a solution of (1). Then each component uj of u is real analytic and has a unique
representation as an absolutely and uniformly convergent series of the form uj(t) =∑∞
k=0(aj)kTk(t). Also, for each j ∈ {1, . . . , n}, the sequence of Chebyshev coefficients

{(aj)k}k≥0 of uj decreases to zero faster than any algebraic decay, that is, for any decay

rate s > 1, there exists a constant Cj = Cj(s) <∞ such that |(aj)k| ≤ Cj
ks , for k ≥ 1.

Consider a Chebyshev expansion of a solution u of the analytic vector field (1)

u(t) = a0 + 2
∑
k≥1

akTk(t), (2)

where ak =
(
(a1)k, (a2)k, · · · , (an)k

)T ∈ Rn. Letting ‖ak‖∞ = maxj=1,...,n{|(aj)k|} and
defining the weights

ωsk
def
=

{
1, if k = 0

|k|s, if k 6= 0,
(3)
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one has by Corollary 1.1 that for any given s > 1

‖a‖s def
= sup

k≥0
{‖ak‖∞ωsk} <∞. (4)

The philosophy of our method is therefore to rigorously compute solutions u of an IVP
or a BVP associated to (1) first by recasting them as solutions of an operator equation

F (u) = 0, (5)

and then to use Chebyshev series to transform (5) into an equivalent problem of the form

f(x) = 0, (6)

to solve in a Banach space Xs of algebraically decaying Chebyshev coefficients. We now
introduce the operators (5) and (6), first for IVPs and then for BVPs.

Initial value problems. The first class of problems we address in the present work are
initial value problems associated to the vector field (1). Integrating (1) from −1 to t,
one has that finding a solution u with initial condition u(−1) = p0 ∈ Rn is equivalent to
finding a solution u of F (u) = 0, where the nonlinear operator F is given by

F (u)(t)
def
= p0 +

∫ t

−1

Ψ(u(s))ds− u(t), t ∈ [−1, 1]. (7)

The fact that t ∈ [−1, 1] is not a restriction since in the autonomous vector field (1), a
re-scaling of time could be considered. The goal is to develop a rigorous computational
method based on Chebyshev series to compute solutions of (7). Given the Chebyshev
expansion (2) of u with a = (ak)k≥0 the infinite vector of Chebyshev coefficients, consider
the Chebyshev expansion of Ψ(u) given by

Ψ(u(t)) = c0 + 2
∑
k≥1

ckTk(t), (8)

where ck = ck(a) =
(
(c1)k, (c2)k, · · · , (cn)k

)T ∈ Rn. In particular, if Ψ(u) is a polynomial
vector field, then since Chebyshev polynomials satisfy Tk(cos θ) = cos(kθ), ck is given
by discrete convolutions involving the coefficients of a. Plugging (2) and (8) in (7),
and using the properties Tk(−1) = (−1)k and Tk(1) = 1 for all k,

∫
T0(s)ds = T1(s),∫

T1(s)ds = (T2(s) + T0(s))/4 and
∫
Tk(s)ds = 1

2

(
Tk+1(s)
k+1 − Tk−1(s)

k−1

)
for k ≥ 2, one gets

that
F (u)(t) = f̃0 + 2

∑
k≥1

f̃kTk(t),

where f̃0
def
= p0−a0 +c0− c1

2 −2
∑
j≥2

(−1)j

j2−1 cj and f̃k
def
= ck−1−ck+1

2k −ak, for k ≥ 1. Denote

x = a and define f(x) = (fk(x))k≥0 component-wise by

fk(x)
def
=


p0 − a0 + c0 −

c1
2
− 2

∑
j≥2

(−1)j

j2 − 1
cj , k = 0,

2kak + ck+1 − ck−1, k ≥ 1.

(9)

Note that fk = −2kf̃k for k ≥ 1. f given by (9) is called the IVP-operator and finding
a solution u of the initial value problem (7) is equivalent to finding a zero of the IVP-
operator.
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Boundary value problems. A second class of problems that we address in the present
work are boundary value problems associated to the vector field (1), that is solutions u
satisfying the differential equations (1) in [−1, 1] while satisfying the boundary condition

G(u(−1), u(1)) = 0, (10)

where G : R2n → Rp is an affine map, with p the number of boundary conditions. Letting
p1 = u(1), integrating the vector field (1) from t to 1 and appending the boundary
condition (10) results in the integral operator defined by

F (θ, u)(t)
def
=

 G(u(−1), u(1))

u(t) +

∫ 1

t

Ψ(u(s))ds− p1

 , (11)

where G(u(−1), u(1)) and/or p1 depend on a parameter θ ∈ Rp which ensures that the
operator (11) is not overdetermined. Denote by x = (θ, a) the infinite dimensional vector
of unknowns. Following the same approach as the one used to derive the IVP-operator,
we plug (2) and (8) in (11), use standard properties of the Chebyshev polynomials and
then we define the operator f(x) = (fk(x))k≥−1 given component-wise by

fk(x) =


η(θ, a), k = −1,

a0 + c0 +
c1
2
− 2

∑
j≥2

1

j2 − 1
cj − p1, k = 0,

2kak + ck+1 − ck−1, k ≥ 1,

(12)

where η ∈ Rp is a function of a = (ak)k≥0 and possibly of θ that represents the boundary
condition (10) expressed using the Chebyshev expansion of u. We call the operator
f(x) = (fk(x))k≥−1 given by (12) the BVP-operator. Hence, finding a solution u of the
boundary value problem (11) is equivalent to finding a zero of the BVP-operator.

Let us introduce the notation x = (xk)k≥k0 and f = (fk)k≥k0 , with k0 ∈ {−1, 0}. If
x is the vector of unknown of the IVP-operator (9), then k0 = 0 and x = (xk)k≥k0

, with
xk = ak ∈ Rn for k ≥ 0. If x is the vector of unknown of the BVP-operator (12), then
k0 = −1 and x = (xk)k≥k0

, with x−1 = θ ∈ Rp and xk = ak ∈ Rn for k ≥ 0. Similarly, if
f is the IVP-operator (9), then k0 = 0 and if f is the BVP-operator (12), then k0 = −1
and f = (fk)k≥k0 , with f−1 = η ∈ Rp.

Given θ ∈ Rp, let ‖θ‖∞ = max{|θ1|, |θ2|, . . . , |θp|}. Recall the weights (3). As a
consequence of Corollary 1.1, we define the IVP-operator and the BVP-operator on the
Banach space of decaying Chebyshev coefficients given by

Xs = {x = (xk)k≥k0
: ‖x‖s def

= sup
k≥k0

{‖xk‖∞ωsk} <∞}, (13)

with k0 = 0 in case of the IVP-operator and with k0 = −1 in case of the BVP-operator.
The rest of the paper aims at introducing the rigorous method to prove existence of
solutions of f(x) = 0 within Xs using the notion of the radii polynomials.

The paper is organized as follows. In Section 2, we introduce the rigorous computa-
tional method to prove existence of solutions of f(x) = 0 within Xs, where f is either the
IVP-operator (9) or the BVP-operator (12). In Section 3, we present some applications.
In Section 3.1, rigorous computations of IVPs in the Lorenz equations are introduced
while in Section 3.2, we compute symmetric connecting orbits for the Gray-Scott equa-
tion. Note that the symmetric connecting orbits are obtained by computing solutions of
a BVP with one of the boundary values in the stable manifold. We conclude the paper
in Section 4 by presenting some possible extensions and improvements.
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2 Rigorous computations

In this section, we introduce the rigorous computational method to compute x ∈ Xs that
are solutions of f(x) = 0, where the operator f is either the IVP-operator (9) or the
BVP-operator (12). Let us formalize the definition of the operator f on Xs.

Lemma 2.1. Consider the Banach space Xs with s > 1, the vector field (1), let x =
(xk)k≥k0 ∈ Xs and define u(t) = a0 + 2

∑
k≥1 akTk(t), where ak = xk for k ≥ 0. Assume

that the coefficients (ck)k≥0 of the Chebyshev series of Ψ(u) given by (8) satisfy

‖c‖s = sup
k≥0
{‖ck‖∞ωsk} <∞. (14)

Consider f either the IVP-operator (9) or the BVP-operator (12). Then, f : Xs → Xs−1.
Also, if x ∈ Xs is a solution of f(x) = 0, then x ∈ Xs0 for any s0 > 1. Finally,
u(t) = a0 + 2

∑
k≥1 akTk(t) is a solution of F = 0 where F is the integral operator (7)

(respectively (11)) if and only if x = (xk)k≥k0
∈ Xs solves f(x) = 0 where f is the

IVP-operator (9) (respectively the BVP-operator (12)).

Before presenting the proof of Lemma 2.1, it is important to remark that the hy-
pothesis (14) is met for all polynomial vector fields, since for any s > 1, Ωs

def
= {a =

(ak)k∈N : ak ∈ R, ‖a‖s < ∞} is an algebra under the discrete convolution. More pre-
cisely for any a, b ∈ Ωs, there exists a constant α = α(a, b) < ∞ such that |(a ∗ b)k| =
|∑k1+k2=k

ki∈Z
a|k1|b|k2|| ≤ α

ωsk
(e.g. see [4] for the case s ≥ 2 and see [15] for the case

s ∈ (1, 2)). This implies that a ∗ b ∈ Ωs, and hence that (Ωs, ∗) is an algebra. For ease of
notation we will henceforth omit the ∗.

Proof. (of Lemma 2.1) Consider x = (xk)k≥k0
∈ Xs and define u(t) = a0+2

∑
k≥1 akTk(t),

with ak = xk for k ≥ 0. In case k0 = −1, one clearly has that ‖fk0
(x)‖∞ = ‖η(x)‖∞ <∞.

Consider the Chebyshev coefficients (ck)k≥0 of Ψ(u) that satisfy ‖c‖s < ∞. Hence,

‖ck‖∞ ≤ ‖c‖s
ωsk

and therefore ‖∑j≥2
cj
j2−1‖∞ ≤ ‖c‖s

∑
j≥2

1
js(j2−1) < ∞. That implies

that ‖f0(x)‖∞ < ∞. Now, there exists a constant α1 < ∞ such that ‖fk(x)‖∞ =

‖2kak + ck+1 − ck−1‖∞ ≤ 2‖a‖s
ωs−1
k

+ ‖c‖s
ωsk+1

+ ‖c‖s
ωsk−1

≤ α1

ωs−1
k

for all k ≥ 1. It follows that

‖f(x)‖s−1 <∞ and therefore that f(x) ∈ Xs−1.
Assume now that x ∈ Xs is a solution of f(x) = 0. Hence, for any k ≥ 1, fk(x) =

2kak + ck+1 − ck−1 = 0 which implies that ak = − 1
2k (ck+1 − ck−1). Since c = (ck)k≥0

satisfies (14), there exists a constant α2 <∞ such that

sup
k≥1
{‖ak‖∞ωs+1

k } ≤ sup
k≥1
{ 1

2k
(‖ck+1‖∞ + ‖ck−1‖∞)ωs+1

k } ≤ α2.

That shows that x = (xk)k≥k0
∈ Xs+1. Repeating the same argument inductively and

using the fact that Xs1 ⊂ Xs2 for any s1 ≥ s2, one gets that x ∈ Xs0 for all s0 > 1.
Finally, the fact that u(t) = a0 + 2

∑
k≥1 akTk(t) is a solution of F = 0 where F is the

integral operator (7) (resp. (11)) if and only if x = (xk)k≥k0
∈ Xs solves f(x) = 0 where

f is the IVP-operator (9) (resp. the BVP-operator (12)) is trivial by construction.

A consequence of Lemma 2.1 is that if one shows the existence of x ∈ Xs such that
f(x) = 0 (for some s > 1) where f is the IVP-operator (9) (resp. the BVP-operator
(12)), then the coefficients (ak)k decay faster than any algebraic decay and u(t) given by
(2) is a solution of the initial value problem (7) (resp. the boundary value problem (11)).

5



The strategy to find solutions of (6) is to consider an equivalent fixed point operator
T : Xs → Xs whose fixed point are in one-to-one correspondence with the zeros of f .
More precisely, the operator T is a Newton-like operator about an approximate solution
x̄ of f . In order to compute this numerical approximation we introduce a Galerkin
projection. Let m > 1 and define the finite dimensional projection Πm : Xs → Xs

m by
Πmx = (xk)m−1

k=k0
. The Galerkin projection of f is defined by

f (m) : Xs
m → Xs

m : xF 7→ Πmf(xF , 0∞), (15)

where 0∞ = (I − Πm)0. Identifying (xF , 0∞) with xF ∈ Xs
m
∼= Rp+nm we think of

f (m) : Rp+nm → Rp+nm. Now assume that we have computed x̄F ∈ Rp+nm such that
f (m)(x̄F ) ≈ 0 and let x̄ = (x̄F , 0∞) ∈ Xs. Let Bx̄(r) = x̄ + B(r), the closed ball in Xs

of radius r centered at x̄, where

B(r) =

{
x ∈ Xs : ‖x‖s = sup

k≥k0

{‖xk‖∞ωsk} ≤ r
}

=
∏
k≥k0

[
− r

ωsk
,
r

ωsk

]d(k0)

, (16)

where d(−1) = p and d(k) = n for k ≥ 0. In order to define the fixed point operator

T , we introduce Am ≈
(
Df (m)(x̄F )

)−1
a numerical inverse of Df (m)(x̄F ). Assume that

the finite dimensional matrix Am is invertible (this hypothesis can be rigorously verified
with interval arithmetic). Define the linear invertible operator A : Xs → Xs+1 by

(Ax)k =

{
(Am(Πmx))k, k = k0, . . . ,m− 1(

1
2k

)
xk, k ≥ m. (17)

Finally define the Newton-like operator T : Xs → Xs about the numerical solution x̄ by

T (x) = x−Af(x). (18)

The goal is to determine (if possible) a positive radius r of the ball Bx̄(r) so that
T : Bx̄(r) → Bx̄(r) is a contraction. Assuming that such r > 0 exists, an application
of the contraction mapping theorem yields the existence of a unique fixed point x̃ of T
within the closed ball Bx̄(r). By invertibility of the linear operator A, one can conclude
that x̃ is the unique solution of f(x) = 0 in the ball Bx̄(r). By construction, this
unique solution represents a solution u(t) of the IVP-operator (7) or the boundary value
problem (11), depending on the situation. Hence, all we need to do is to find r > 0
such that T : Bx̄(r) → Bx̄(r) is a contraction. This task is achieved with the notion of
the radii polynomials (originally introduced in [1] to compute equilibria of PDEs), which
provide an efficient way of constructing a set on which the contraction mapping theorem
is applicable. Their construction depends on some bounds that we introduce shortly.
Before that, we introduce the notation � to denote component-wise inequality, that is
given two vectors u, v, u � v if and only if uk ≤ vk for all k. The same notation holds
for ≺. Consider now the bound Y = (Yk)k≥k0

satisfying∣∣∣[T (x̄)− x̄
]
k

∣∣∣ � Yk, k ≥ k0, (19)

where Yk ∈ Rn+ for k ≥ 0. If k0 = −1, then Yk0
∈ Rp+. Consider the bound Z(r) =

(Zk(r))k≥k0 satisfying

sup
ξ1,ξ2∈B(r)

∣∣∣[DT (x̄+ ξ1)ξ2
]
k

∣∣∣ � Zk(r), k ≥ k0, (20)
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where Zk(r) ∈ Rn+ for k ≥ 0. If k0 = −1, then Zk0
(r) ∈ Rp+. If the vector field (1) is

polynomial, then it is possible to obtain a polynomial expansion in r for Zk(r). As a
matter of fact, in this case, the degree of the polynomial Zk(r) is the same than the degree
of the polynomial vector field Ψ(u). Otherwise, that is if the analytic vector field Ψ(u)
is not polynomial, a Taylor expansion can be considered in order to obtain a polynomial
expression in r for Zk(r). We make now the following important assumption. Assume
that there exists a number M ≥ m where m is the dimension of the Galerkin projection
(15) such that the bounds Y and Z satisfying (19) and (20) are such that

A1. Yk = 0 ∈ Rn for all k ≥M .

A2. There exists a uniform polynomial bound Z̄M (r) ∈ Rn+ such that for all k ≥M ,

Zk(r) � Z̄M (r)

ωsk
. (21)

Before introducing the radii polynomials, let us briefly talk about the two above
assumptions. If the vector field Ψ(u) is polynomial, then the nonlinear terms ck(ā) are
convolutions terms of the form (ā(j1)ā(j2) · · · ā(j`))k which are eventually equal to zero
for large enough k since āk = 0 for k ≥ m. Hence, by construction of A defined in
(17) and of the bound Y as in (19), there exists M such that Yk can be defined to be
0 ∈ Rn for k ≥ M . Again in case the vector field Ψ(u) is polynomial, there are some
analytic convolution estimates (e.g. the ones developed in [4]) that allow computing
Z̄M (r) satisfying (21). The computation of the uniform polynomial bound Z̄M (r) is
presented explicitly in the examples of Section 3.

Defintion 2.1. Denote by 1n ∈ Rn the vector whose components are all 1. We define
the finite radii polynomials (pk(r))M−1

k≥k0
by

pk(r) = Yk + Zk(r)− r

ωsk
1n, k = k0, . . . ,M − 1, (22)

and the tail radii polynomial by

pM (r) = Z̄M (r)− r1n. (23)

The following result justifies the construction of the radii polynomials of Definition 2.1.

Theorem 2.1. If there exists r > 0 such that pk(r) ≺ 0 for all k = k0, . . . ,M , then
T : Bx̄(r) → Bx̄(r) is a contraction and therefore there exists a unique x̃ ∈ Bx̄(r) such
that T (x̃) = x̃. Hence, there exists a unique x̃ ∈ Bx̄(r) such that f(x̃) = 0.

Proof. See Corollary 3.6 in [4].

The strategy to rigorously compute solutions of the IVP-operator f given in (7)
and the BVP-operator f given in (11) is therefore to construct the radii polynomials of
Definition 2.1, to verify (if possible) the hypothesis of Theorem 2.1, and to use the result
of Lemma 2.1 to conclude that u(t) = a0 + 2

∑
k≥1 akTk(t) is a solution of F = 0 where

F is either the integral operator given by (7) or the operator given by (11)
While the computation of the bound Y satisfying (19) is rather straightforward, the

computation of the polynomial bound Z(r) satisfying (20) is more involved. In order to
simplify its computation, we introduce the linear invertible operator A† : Xs → Xs−1 by

(A†x)k =

{
(Df (m)(x̄F )(Πmx))k, k = k0, . . . ,m− 1

(2k)xk, k ≥ m. (24)
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and we use the factorization T (x) = x−Af(x) = (I −AA†)x−A(f(x)−A†x). Letting
ξ1 = wr, ξ2 = vr with w, v ∈ B(1), one has that

DT (x̄+ ξ1)ξ2 = (I −AA†)ξ2 −A
(
Df(x̄+ ξ1)ξ2 −A†ξ2

)
=
[
(I −AA†)v

]
r −A

(
Df(x̄+ wr)vr −A†vr

)
,

(25)

where the first term is of the form εr, for ε = (I−AA†)v ∈ Xs very small, and where the
coefficient of r in [Df(x̄+wr)vr−A†vr]k should be small as the dimension of the Galerkin
projection m is large. Hence, for m large enough, the coefficient in r of Zk(r) should be
small. That should increase the chances of the coefficient of r in the radii polynomials
defined in Definition 2.1 to be negative, and therefore increase the chances of verifying
the hypothesis of Theorem 2.1. We are now ready to present some applications.

3 Applications

In this section, we present two applications. The first application, presented in Sec-
tion 3.1, concerns initial value problems in the Lorenz equations. More precisely, we use
the notion of radii polynomials to compute rigorously solutions of the IVP-operator f
given by (9). This yields rigorous enclosures of solutions of the integral operator (7),
where Ψ(u) is the vector field arising in the Lorenz equations. The second application,
presented in Section 3.2, concerns projected boundary value problems in the Gray-Scott
equation. More precisely, we use the notion of radii polynomials to compute rigorously
solutions of the BVP-operator f given by (12) where one of the boundary value is in the
stable manifold of a steady state. This yields rigorous enclosures of several symmetric
connecting orbits for the Gray-Scott equation.

3.1 Initial value problem in the Lorenz equations

Consider the Lorenz equations re-scaled by a time factor L given by

du

dt
= Ψ(u) = L

 σ(u2 − u1)
ρu1 − u2 − u1u3

u1u2 − βu3

 (26)

at the classical parameter values σ = 10, ρ = 28 and β = 8/3.
The Chebyshev coefficients (8) of (26) are given explicitly by

ck = L

 σ((a2)k − (a1)k)
ρ(a1)k − (a2)k − (a1a3)k

(a1a2)k − β(a3)k

 (27)

with
(anam)k =

∑
k1+k2=k

ki∈Z

(an)|k1|(am)|k2|

for n = 1, m = 1, 2 and k ≥ 0. Given an initial condition p0, this results in an explicit
expression f(x) for the IVP-operator (9). We now present rigorous numerical results
illustrating the performance of our method.
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Theorem 3.1. Consider

p1
0 = (8.102574164767477, 9.551574461919124, 24.429705657930224)

p2
0 = (−0.3074083926082352, 0.3943349846945122, 0)

p3
0 = (4.102702069909453, 8.936495309135337, 0.5789130478426856).

Let s = 2. For p0 ∈ {p1
0, p

2
0, p

3
0} consider the IVP-operator f given by (9) with ck as in

(27). For each L in Table 1 or Table 2 corresponds a unique solution x̃ ∈ Xs of f(x) = 0
in a ball Bx̄(rp1,2,3

0
) ⊂ Xs of radius rp1,2,3

0
centered at an approximate solution x̄.

L 0.1 0.2 0.3 0.4 0.5 0.54
mp2

0
300 300 300 300 300 300

rp2
0

2.01× 10−12 3.21× 10−12 5.80× 10−11 1.95× 10−10 5.12× 10−9 4.52× 10−8

Table 1: Given p2
0 and for a fix L, these are corresponding values of the Galerkin projection

dimension mp2
0

and the radius rp2
0

around the approximate solution x̄ in Xs for which
the radii polynomials approach was successful.

L 0.5 1 1.5 2 2.5 3
mp1

0
50 100 200 250 300 500

mp3
0

150 200 300 400 500 600

rp1
0

2.61× 10−9 1.27× 10−8 2.85× 10−8 8.77× 10−8 4.53× 10−7 1.03× 10−6

rp3
0

1.07× 10−7 1.31× 10−7 6.29× 10−7 1.09× 10−6 1.40× 10−6 5.17× 10−6

Table 2: Given p1,3
0 and for a fix L, these are corresponding values of the Galerkin

projection dimension mp1,3
0

and the radius rp1,3
0

around the approximate solution x̄ in Xs

for which the radii polynomials approach was successful.

Before we discuss the proof via an application of Theorem 2.1 we comment on the
choice of the initial conditions. p1

0 is chosen to lie approximately on the unstable manifold
of the positive eye equilibrium (

√
β(ρ− 1),

√
β(ρ− 1), ρ − 1), p2

0 lies approximately on
the unstable manifold of the origin whereas p3

0 is taken randomly. As one can see in
Tables 1 and 2, the data of the verification method depends strongly on the choice of the
initial condition. We assume that this stems from the presence of poles of the complex
extension of the solutions u : [−1, 1] → R3 of (26) whose position in the complex plane
changes depending on the initial condition and the scaling factor L. By Theorem 1.2 this
influences the decay rate of the Chebychev coeffcients. This is illustrated in Figure 1.
We refer to Figure 2 for a representation in phase space of two solutions of Theorem 3.1.

The proof of Theorem 3.1 can be found in the MATLAB programs proofLorenz1.m,
proofLorenz2.m and proofLorenz3.m at [16]. It relies on Theorem 2.1 and uses the package
Intlab [17] for the interval computations and the package Chebfun [18]. In order to apply
Theorem 2.1 the construction of the radii polynomials as defined in (22) and (23) is
crucial. After the following remark we aim to give some details about the derivation of
the bounds defined in (19), (20) and (21) involved in the construction of the polynomials.

Remark 3.1. Consider an approximate solution x̄ and a corresponding unique genuine
solution x̃ ∈ Bx̄(r) ⊂ Xs of f(x) = 0 for a decay rate s > 1 and a radius r > 0.
Via the expansion (2) the sequences of Chebyshev coefficients x̄ and x̃ correspond to

9
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Figure 1: Comparison of the componentwise solution profiles of a solution u : [−1, 1] → R3 of
the Lorenz equations for the initial condition p10 (blue), p20 (red) and p30 (green) for L = 1 and
of the decay rates of their Chebyshev coefficient sequences.
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Figure 2: Profile in phase space of the solution (u1, u2, u3) of the Lorenz equations starting at
(a) the initial condition p10; (b) the initial condition p30.

functions ū and ũ respectively, where ũ solves (26) with respective initial condition p0.
The following reasoning translates the inequality ‖x̄ − x̃‖s ≤ r into an upper bound for
‖ū− ũ‖C0

def
= supt∈[−1,1] ‖ū(t)− ũ(t)‖∞. For every t ∈ [−1, 1] and every s > 1 we have

‖ū(t)− ũ(t)‖∞ ≤ ‖ā0 − ã0‖∞ + 2

∞∑
k=1

‖āk − ãk‖∞ |Tk(t)|︸ ︷︷ ︸
≤1

≤
(

1 + 2

∞∑
k=1

1

ωsk

)
r

≤
(

3 +
2

s− 1

)
r.

Hence by taking the supremum over all t ∈ [−1, 1] we obtain ‖ū− ũ‖C0 ≤
(

3 + 2
s−1

)
r.

We now turn to the computations of the bounds involved in the construction of the
radii polynomials.
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3.1.1 Derivation of the bounds required to construct the radii polynomials

Note here that k0 = 0, p = 0 and n = 3. Choose a time scaling factor L. Consider f the
IVP-operator (9) with ck given in (27). Recalling (15), consider a Galerkin projection
dimension m and an approximate solution x̄ = ā = (āF , 0∞), that is f (m)(āF ) ≈ 0.
Set the computational parameter M arising in hypotheses A1 and A2 to M = 2m− 1.
With this choice, A1 is fulfilled and we can directly compute Y0, . . . , YM−1 from (19)
using interval arithmetic. Concerning the computation of Z1(r), . . . , ZM−1(r) satisfying
(20) and Z̄M (r) satisfying (21), the first step is to use (25) and to compute polynomials
zk(r) = zk1 r + zk2 r

2 for k ≥ 0 with zkl ∈ R3, such that
[
Df(x̄+ rw)rv −A†rv

]
k

= zk(r),
where w, v ∈ B(1). Note that B(1) is given by (16) with r = 1. The derivation of an
upper bound for |zk(r)| is a major step to obtain Zk(r) and is postponed to a separate
consideration. We remark that we have to distinguish the cases k = 0, 1 ≤ k ≤ m − 1
and m ≤ k. A straightforward calculation leads to the expressions summarized in Table
3. Note that vIi is defined for i = 1, 2, 3 by

(vIi )k =

{
0, k = 0, . . . ,m− 1

(vi)k, k ≥ m.

k = 0

z0
1

L


 0

−(ā3v
I
1)0 − (ā1v

I
3)0

(ā1v
I
2)0 + (ā2v

I
2)0

 − 1

2

 0

−(ā3v
I
1)1 − (ā1v

I
3)1

(ā1v
I
2)1 + (ā2v

I
2)1

 − 2

m−1∑
j=2

1

j2 − 1

 0

−(ā3v
I
1)j − (ā1v

I
3)j

(ā1v
I
2)j + (ā2v

I
2)j



−2

M−1∑
j=m

1

j2 − 1


σ((v2)j − (v1)j)

ρ(v1)j − (v2)j
−β(v3)j

 +

 0
−(ā3v1)j − (ā1v3)j
(ā1v2)j + (ā2v2)j


 − 2

∞∑
j=M

1

j2 − 1


σ((v2)j − (v1)j)

ρ(v1)j − (v2)j
−β(v3)j

 +

 0
−(ā3v1)j − (ā1v3)j
(ā1v2)j + (ā2v2)j





z0
2 L

 0
−(w3v1)0 − (w1v3)0
(w1v2)0 + (w2v1)0

 − 1
2

 0
−(w3v1)0 − (w1v3)0
(w1v2)0 + (w2v1)0

 − 2

∞∑
j=2

1

j2 − 1

 0
−(w3v1)j − (w1v3)j
(w1v2)j + (w2v1)j


k = 1, . . . ,m− 1

zk1 L


 0

−(ā3v
I
1)k+1 − (ā1v

I
3)k+1

(ā1v
I
2)k+1 + (ā2v

I
2)k+1

 −
 0

−(ā3v
I
1)k−1 − (ā1v

I
3)k−1

(ā1v
I
2)k−1 + (ā2v

I
2)k−1




zk2 L

 0
−(w3v1)k+1 − (w1v3)k+1
(w1v2)k+1 + (w2v1)k+1

 −
 0
−(w3v1)k−1 − (w1v3)k−1
(w1v2)k−1 + (w2v1)k−1


k ≥ m

zk1 L



σ((v2)k+1 − (v1)k+1)

ρ(v1)k+1 − (v2)k+1
−β(v3)k+1

 +

 0
−(ā3v1)k+1 − (ā1v3)k+1
(ā1v2)k+1 + (ā2v2)k+1


 −


σ((v2)k−1 − (v1)k−1)

ρ(v1)k−1 − (v2)k−1
−β(v3)k−1

 +

 0
−(ā3v1)k−1 − (ā1v3)k−1
(ā1v2)k−1 + (ā2v2)k−1





zk2 L

 0
−(w3v1)k+1 − (w1v3)k+1
(w1v2)k+1 + (w2v1)k+1

 −
 0
−(w3v1)k−1 − (w1v3)k−1
(w1v2)k−1 + (w2v1)k−1



Table 3: Formulas for zlk

Our next goal is to compute polynomials Z̃k(r) = Z̃k1 r + Z̃k2 r
2 ∈ R3 such that∣∣zkl ∣∣ � Z̃kl , for l = 1, 2 and k = 0, . . . ,M − 1 (28)

and Z̃M (r) = Z̃M1 r + Z̃M2 r2 ∈ R3 such that

|zkl | �
Z̃Ml
ωsk

, for l = 1, 2 and k ≥M. (29)

To obtain the bounds Z̃k1 for k = 0, . . . ,M − 1 define the finite sums
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Σk,Ii
def
=

m−1∑
k1=−m+1

(|āi|)|k1|
1

ωs,Ik−k1

, for k = 0, . . . ,M − 1,

Σki
def
=

m−1∑
k1=−m+1

(|āi|)|k1|
1

ωsk−k1

, for k = 0, . . . ,M,

where

ωs,Ik
def
=

{
0, 0 ≤ k ≤ m− 1

ωsk, k ≥ m.

To define the uniform bound Z̃M1 for k ≥M we set for i = 1, 2, 3

ΣM−1
i = (|āi|)0 +

m−1∑
k1=1

(|āi|)k1

(
1 +

1

(1− k1

M−1 )s

)
.

In order to compute Z̃k2 for k = 0, . . . ,M and Z̃M2 we employ estimates whose detailed
explanation can be found in [4]. For M ≥ 6 and s ≥ 2, define the constant

γM = 2

(
M

M − 1

)s
+

(
4 ln(M − 2)

M
+
π2 − 6

3

)(
1

M
+

1

2

)s−2

,

and in addition define

α2,M
k =



1 + 2

M∑
k1=1

1
ω2s
k1

+ 2
M2s−1(2s−1) , k = 0

M∑
k1=1

2ks

ωsk1
ωsk+k1

+ 2ks

(k+M+1)s(M−1)s(s−1) + 2 +

M∑
k1=1

2ks

ωsk1
ωsk−k1

, 1 ≤ k ≤M − 1

2 + 2

M∑
k1=1

1
ωsk1

+ 2
Ms−1(s−1) + γM , k ≥M.

This yields that ∣∣∣∣∣ ∑
k1+k2=k

1

ωk1
ωk2

∣∣∣∣∣ ≤ α2,M
k

ωsk
, for k ≥ 0.

Combining these definitions a direct reasoning leads to the bounds of Table 4.
We are now in position to take the last step in defining Zk(r) = Zk1 r + Zk2 r

2 for
k = 0, . . . ,M−1 specified in (20) and Z̄M (r) = Z̄M1 r+Z̄M2 r2 given by (21). As previously
mentioned, by definition of A and A†, there is a small ε such that for all k ≥ 0,∣∣[(I −AA†)rv]

k

∣∣ � rε13.

In particular for k ≥ m we have ε = 0 by definition of A and A† given respectively by (17)
and (24). We let Vl = (Z̃0

l , . . . , Z̃
m−1
l ) ∈ R3m for l = 1, 2 to obtain for k = 0, . . . ,m− 1

Zk1 = [|Am|V1]k + ε13

Zk2 = [|Am|V2]k ,
(30)
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k = 0

Z̃0
1

L


 0

Σ
0,I
3 + Σ

0,I
1

Σ
0,I
1 + Σ

0,I
2

 +
1

2

 0

Σ
1,I
3 + Σ

1,I
1

Σ
1,I
1 + Σ

1,I
2

 + 2

m−1∑
j=2

1

j2 − 1

 0

Σ
j,I
3 + Σ

j,I
1

Σ
j,I
3 + Σ

j,I
1



+2

M−2∑
j=m

1

j2 − 1

 1

ωs
j

 2|σ|
|ρ| + 1
|β|

 +

 0

Σ
j
3 + Σ

j
1

Σ
j
2 + Σ

j
2


 +

2

((M − 1)2 − 1)(s − 1)(M − 2)s−1


 2|σ|
|ρ| + 1
|β|

 +

 0

Σ
M−1
3 + Σ

M−1
1

Σ
M−1
1 + Σ

M−1
2





Z̃0
2 L

 2α
2,M
0
ωs0

+
α

2,M−1
1
ωs1

+ 2

M−1∑
j=2

2α
2,M−1
j

(j2 − 1)ωs
j

+
4α

2,M−1
M−1

((M − 1)2 − 1)(s − 1)(M − 2)s−1


0

1
1


k = 1, . . . ,m− 1

Z̃k1 L


 0

Σ
k+1,I
3 + Σ

k+1,I
1

Σ
k+1,I
1 + Σ

k+1,I
2

 +

 0

Σ
k−1,I
3 + Σ

k−1,I
1

Σ
k−1,I
1 + Σ

k−1,I
2




Z̃k2 L

α2,M−1
k+1
ωs
k+1

+
α

2,M−1
k−1
ωs
k−1


0

2
2


k = m, . . . ,M − 1

Z̃k1 L

 1
ωs
k+1

 2|σ|
|ρ| + 1
|β|

 +

 0

Σ
k+1
3 + Σ

k+1
1

Σ
k+1
1 + Σ

k+1
2


 + L

 1
ωs
k−1

 2|σ|
|ρ| + 1
|β|

 +

 0

Σ
k−1
3 + Σ

k−1
1

Σ
k−1
1 + Σ

k−1
2




Z̃k2 L

α2,M−1
k+1
ωs
k+1

+
α

2,M−1
k−1
ωs
k−1


0

2
2


k ≥M

Z̃M1 L

(1 + ( M
M−1

)s)

 2|σ|
|ρ| + 1
|β|

 + (1 + ( M
M−1

)s)

 0

Σ
M−1
3 + Σ

M−1
1

Σ
M−1
1 + Σ

M−1
2




Z̃M2 L
[
(1 + ( M

M−1
)s)α

2,M−1
M−1

] 0
2
2



Table 4: Formulas for Z̃l
k

where the absolute value is taken component-wise and for k = m, . . . ,M − 1

Zkl =
1

2k
Z̃kl , for l = 1, 2. (31)

Finally we set

Z̄Ml =
1

2M
Z̃Ml , for l = 1, 2. (32)

Combining the bounds Y0, . . . YM−1 and the bounds (30), (31) and (32) completes the
construction of the radii polynomials defined in (22) and (23).

3.2 The Gray-Scott equation

Consider the Gray-Scott equation re-scaled by a time factor L given by{
v′′1 = L2

(
v1v

2
2 − λ(1− v1)

)
v′′2 = L2

(
1
γ (v2 − v1v

2
2)
)
,

(33)

where γ and λ are real parameters. The Gray-Scott model serves as a model for a contin-
uously fed unstirred autocatalytic reaction. The homoclinic solutions we seek represent
non-trivial stationary spatial patterns in the form of pulses. See [19] and the references
therein for more details on the significance of the equation. Letting u1 = v1, u2 = v′1,
u3 = v2, u4 = v′2 and u = (u1, u2, u3, u4)T , we re-write (33) as the vector field

du

dt
= Ψ(u) =


u2

L2
(
λu1 + u1u

2
3 − λ

)
u4

L2
(

1
γu3 − 1

γu1u
2
3

)
 . (34)
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Hence, the Chebyshev coefficients (8) of (34) are given explicitly by

ck =


(a2)k

L2
(
λ(a1)k + (a1a

2
3)k − λδk,0

)
(a4)k

L2
(

1
γ (a3)k − 1

γ (a1a
2
3)k

)
 , (35)

where δk,0 is the Kronecker delta function and where

(a1a
2
3)k =

∑
k1+k2+k3=k

ki∈Z

(a1)|k1|(a3)|k2|(a3)|k3|.

We are interested in computing symmetric homoclinic orbits at p = (1, 0, 0, 0)T . Con-
sider P (θ) to be a parameterization of the local stable manifold W s

loc(p) at the steady
state p. In order to compute P we employ the parametrization method developed in [20],
[21] and [22]. The philosophy is to use a power series expansion to solve an invariance
equation for P and thereby compute a multivariate polynomial approximation PN to P .
In addition the a-posteriori verification enables to find a domain V and a bound δ such
that ‖P (θ) − PN (θ)‖∞ < δ for all θ ∈ V . For details on the implementation and the
a-posterori verification we refer the reader to [23].

We interpret symmetric homoclinic orbits as solutions of a BVP with the boundary
value u(1) = P (θ), that is u(1) ∈ W s

loc(p). We impose the even symmetry condition
of the orbit (v1, v2) with v′1(−1) = u2(−1) = 0 and v′2(−1) = u4(−1) = 0. Hence, the
boundary condition (10) reads as G(u(−1), u(1)) = (u2(−1), u4(−1))T ∈ R2, p1 = P (θ)
and then the operator (11) is given by

F (θ, u)(t) =


u2(−1)
u4(−1)

u(t) +

∫ 1

t

Ψ(u(s))ds− P (θ)

 . (36)

To obtain the first component η of (12), we use that Tk(−1) = (−1)k for all k ≥ 0 to get

η(θ, a) =

(
(a2)0 + 2

∞∑
k=1

(−1)k(a2)k, (a4)0 + 2

∞∑
k=1

(−1)k(a4)k

)T
. (37)

Together with (35) we obtain an explicit expression f(x) = fγ,λ(x) for the BVP-operator
(12) tailored to the problem of finding even homoclinics in the Gray-Scott system (34).

It is shown in [19] that for parameter values γλ = 1 and λ > 4 there exists a family
of even symmetric homoclinics. More precisely for all (λ, γ) in the parameter set

C0 =

{
(γ,

1

γ
) : 0 < γ <

2

9

}
,

the functions given by

v1(t) = 1− 3γ

1 +Q cosh( t√
γ )

and v2(t) =
3

1 +Q cosh( t√
γ )
, (38)

with Q(γ) =
√

1− 9γ
2 , are even symmetric homoclinic orbits of (34). Furthermore in

Theorem C of [19] it is ensured that the homoclinics persist if λγ = 1 + ε for some
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small ε and in [23] to a certain extent the magnitude of ε for γ = 0.15 is investigated.
More concretely the authors of [23] show in Theorem 1.1 the existence of 30 homoclinic
orbits on the line γ = 0.15 in parameter space. We take a similar approach but extend
the considered region in parameter space. Before presenting the result, note that there
is a theoretical constraint in using the parameterization method to compute W s

loc(p)
in parameter space. This constraint comes from the presence of resonances between the
eigenvalues ± L√

γ and ±
√
λL of DΨ(p). A resonance occurs when λγ = n2 or λγ = (1/n)2

for some n ∈ N. Denote Cn def
= {(λ, γ) : λγ = (n+1)2} for n ≥ 0 and C1/n def

= {(λ, γ) : λγ =
(1/n)2} for n ≥ 2. The parameterization method uses a power series representation of
W s

loc(p) and will fail to converge at resonances. As a matter of fact our rigorous numerical
method combining Chebyshev series and the parameterization method will necessarily
fail at those parameter values located on Cn (n ≥ 1) and C1/n (n ≥ 2).

Let us now formulate a result guaranteeing the existence of 297 homoclinics at the
parameter values γ = 0.14, γ = 0.15 and γ = 0.16, and for several different values of λ.

Theorem 3.2. Define

Λ±I,∆λ
(γ) =

{
(γ, λ) : λ =

1± k∆λ

γ
, k ∈ I

}
,

over an index set I. Let ∆λ = 0.03 and γi = 0.14 + (i − 1)0.01 for i = 1, 2, 3. Set
I+(γi) = {1, . . . , 90} for i = 1, 2, 3 and I−(γi) = {1, . . . ,K−(γi)} where K−(γi) is
specified in Table 5 for i = 1, 2, 3. If

(λ, γ) ∈
3⋃
i=1

Λ+
I+(γi),∆λ

(γi) ∪ Λ−I−(γi),∆λ
(γi),

there exists a ball Bx̄(rγ,λ) ⊂ Xs (with fγ,λ(x̄) ≈ 0) containing a unique solution x̃ =

(θ̃, ã) of fγ,λ(x) = 0 corresponding to an even homoclinic solution of (33).

For a geometric representation of the result of Theorem 3.2, we refer to Figure 3 and
Figure 4.

Beside these rigorously verified homoclinic solutions we investigated a bigger region in
parameter space by constructing the radii polynomials p1(r), . . . , pM (r) without interval
arithmetic and finding an r > 0 such that pi(r) ≺ 0 for all i = 1, . . .M . The results are
marked in black in Figure 5. More precisely set ∆λ = 0.03 and γi = 0.10 + (i − 1)0.1
for i = 1, . . . , 11 and let K±(γi) be specified by Table 5. Define I+

nr(γi) = {1, . . . , 90} ∪
{110, . . . ,K+(γi)} for i ∈ {1, 2, 3, 4, 5, 8, 9, 10, 11}, I+

nr(γi) = {110, . . . ,K+(γi)} for i =
6, 7, 8 and I−nr(γi) = {1, . . . ,K−(γi)}. Note that “nr” stands for non rigorous. We found
symmetric homoclinic solutions for

(γ, λ) ∈
11⋃
i=1

(
Λ+

I+
nr(γi),∆λ

(γi) ∪ Λ−I−nr(γi),∆λ
(γi)

)
.

These computations are carried out by the MATLAB program nonrigoroushomoclin-
ics.m. The rigorous verification of Theorem 3.2 can be found in the MATLAB programs
proofLambdaplusγ.m and proofLambdaminusγ.m with γ = 014, 015, 016, and relies on
Theorem 2.1. All codes can be downloaded from [16]. The programs make use of the
package Intlab [17] for the interval computations and of the package Chebfun [18]. Cheb-
fun is used to compute the Chebyshev coefficients of the exact solutions (38) from which
a continuation is performed. The main prerequisite for applying Theorem 2.1 is the
construction of the radii polynomials (22) and (23). We now give some details on their
derivation.
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Figure 3: Thirty-nine homoclinics from Theorem 3.2, where (λ, γ) ∈ Λ+
{1,...,30},0.03(0.15) on

the left and (λ, γ) ∈ Λ−{1,...,9},0.03(0.15) on the right. The red solution corresponds to the exact

homoclinic given by (38). Each couple (v1, v2) is the center of a ball in function space in which
an exact solution is guaranteed to exist. The blue part over [0, 1

2
] corresponds to the interval

[−1, 1] for the operator (36), which in turn corresponds to the rescaling of [0, L±(0.15)]. The
green part is added by using the conjugacy relation (see equation (57) in [23]) fulfilled by the
parametrization P of W s

loc(p), where we integrate for 2 time units on the time scale of (36) and
then rescale [−1, 3] to the interval [0,1]. The part over [−1, 0] is obtained using the symmetry.

γ 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20
L+(γ) 0.45 0.50 0.55 0.60 0.60 0.60 0.65 0.70 0.75 0.75 0.75
L−(γ) 0.50 0.55 0.55 0.55 0.60 0.70 0.65 0.65 0.70 0.70 0.7
K+(γ) 114 128 143 158 172 187 202 217 231 246 261
K−(γ) 18 16 15 12 11 9 7 6 3 2 1

Table 5: Values of the rescaling factor L and the number of steps K± we take in the λ direction
in dependence of the different values of γ.

3.2.1 Derivation of the bounds required to construct the radii polynomials

We are in the case k0 = −1, p = 2 and n = 4. Consider a dimension m for the Galerkin
projection (15) and an approximation x̄ = (θ̄, ā) = (θ̄, āF , 0∞) such that f (m)(θ̄, āF ) ≈ 0,
where f is the BVP-operator (12), ck is given in (35) and the boundary conditions
η : Xs → Rp is given by (37). For instance if (γ, λ) ∈ Λ+

I+(0.15),∆λ
we choose m = 37

and set L = 0.6. For (γ, λ) ∈ Λ−I−(0.15),∆λ
we choose m = 47 and let L = 0.7. Note

that if we set M = 3m− 2 assumption A1 is satisfied and Y1, . . . , YM can be computed
by (19). The strategy to construct the bounds Z1(r), . . . , ZM−1(r) and Z̄M (r) defined in
(20) and (21) is analogue to the Lorenz example. Note that ξ1, ξ2 in (25) are now given
by ξ1 = r(θ, w) and ξ2 = r(φ, v) with (θ, w), (φ, v) ∈ B(1) ⊂ Xs. In addition we assume
that we have a bound Λ ∈ R4

+ such that for every θ, φ corresponding to ξ1,2

|DP (θ̄ + rθ)φ| � Λ

for all r with 0 < r < r∗, where r∗ is an apriori bound on r that we set to r∗ = 0.004.
The explicit construction of Λ in the context of the Gray-Scott equations is presented in
Section 5 in [23]. In particular, at (γ, λ) ∈ Λ+

I+(0.15),∆λ
we choose N = 13 as the order of

the polynomial approximation PN and at (γ, λ) ∈ Λ−I−(0.15),∆λ
, we choose N = 15.
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Figure 4: (Left) Components v1 (black) and v2 (blue) of the homoclinic solution of Theorem 3.2

corresponding to the parameter value (γ, λ) = (0.15, 1+89(0.03)
0.15

) ∈ Λ+
I+(0.15),0.03

(0.15). The

interval [0, 1] corresponds to the rescaled interval [−1, 1] of (36), corresponding itself in turn
to a rescaling of [0, 0.6]. The interval [−1, 0] is added by symmetry. (Right) The Chebyshev
coefficients of v1 (black) and v2 (blue). Notice the fast decay of the coefficients to zero.
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Figure 5: The green points indicate the region in parameter space at which the rigorous proof
of existence of symmetric homoclinics was obtained by computing the radii polynomials with
interval arithmetic. The red points indicate the region investigated in [23]. The black points are
investigated using the radii polynomials computed without the use of interval arithmetic. Based
on the discussion about resonances, we portrait the curve C1 and C 1

2
at which our rigorous

method will necessarily fail. Note that C0 is the curve on which the exact homoclinics (38) exist.

For more details on the choice of m and N at γ = 0.14, 0.16 we refer to the code
at [16]. A central step is to compute the polynomials Z̃k(r) =

∑3
l=1 Z̃

k
l r
l ∈ R4 and

Z̃M (r) =
∑3
l=1 Z̃

M
l rl ∈ R4 fulfilling the analogue of (28) and (29). We only present Z̃kl

and Z̃Ml for k = 0, . . . ,M − 1 and l = 1, 2, 3 in Tables 6 and 7 in the Appendix.
Our main technical tool to compute these bounds is given by the following Lemma

which is a simplified combination of Lemmas A.3 and A.4 in [4]. In order to explain
its usefulness in our context, we recall that given three sequences a, b, c ∈ Ωs, the cubic
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convolution sums (abc)k can be split as

(abc)k = (abc)Mk +
∑

k1+k2+k3=k

max{|k1|,|k2|,|k3|}≥M
ki∈Z

a|k1|b|k2|c|k3|,

where
(abc)Mk

def
=

∑
k1+k2+k3=k

|ki|≤M,i=1,2,3

ki∈Z

a|k1|b|k2|c|k3|.

One of the aims of the following result is to bound the infinite tail sum.

Lemma 3.1. Let a, b, c ∈ Ωs and M ≥ 6. Set A = ‖a‖s, B = ‖b‖s and C = ‖c‖s. Then

there exist computable numbers ε
(3)
k = ε

(3)
k (M) for k = 0, . . . ,M such that∑

k1+k2+k3=k

max{|k1|,|k2|,|k3|}|≥M+1

ki∈Z

|a||k1||b||k2||c||k3| ≤ 3(ABC)ε
(3)
k .

In addition there is a computable number α
(3)
M−1 such that for k ≥M − 1

∑
k1+k2+k3=k

ki∈Z

|a||k1||b||k2||c||k3| ≤ (ABC)
α

(3)
M−1

ωsk
.

For a proof and for details on the computation see [4] as well as the code at [16].
Defining A1,3 = ‖ā1,3‖s and for i = 1, 3 and j = 3

ΣM−1
ij =

m−1∑
k1=−m+1

m−1∑
k2=−m+1

(|āi|)|k1|(|āj |)|k2|max

{
Ms

(M − 1− k1 − k2)s
, 1

}
completes the ingredients for Tables 6 and 7.

4 Conclusion

Let us conclude this paper by presenting some potential extensions and improvements of
our proposed rigorous computational method to solve IVPs and BVPs of ODEs.

First, our method could probably be generalized to compute rigorously solutions of
higher-order differential equations without re-writing them as first order vector fields.
For example, we believe that computing solutions of BVPs associated to the Gray-Scott
equations (33) could be obtained by integrating twice each equation which could then be
solved rigorously by moving to the space of Chebyshev coefficients. The improvement
would be twofold. First, the linear part of the equations would grow as O(k2) (as opposed
to O(k) in the BVP-operator (12)), hence facilitating the use of a contraction mapping
argument based on a Newton-like operator. Second, the size of the finite dimensional
projection would be twice smaller. A downside is that we would obtain more compli-
cated formulas of the Chebyshev expansions of the equations resulting from the double
integration.
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A second extension of the method would be to use a multiple shooting approach
to solve the integral operators over long periods of time. Indeed, the theory of the
Chebyshev series presented in Section 1 suggests that integrating over long periods of time
(e.g. compute solutions with large scaling factor L) has the disadvantage of bringing the
(potentially existing) poles closer to the ρ-ellipse mentioned in Theorem 1.2. This implies
that the Chebyshev coefficients of the solutions decay to zero at a slow rate. Therefore,
an advantage of a multiple shooting approach based on integrating over many short
intervals (with corresponding short scaling factor L) would push away the poles, hence
bringing a faster decay rate to the Chebyshev coefficients of the solutions. We could
then potentially take smaller Galerkin projection dimensions to perform our rigorous
computations, thanks to the fast decay rates of the solutions on each sub-intervals. The
downside would again be a more complicated formulation of the operators which would
need to take care of solving simultaneously many parallel problems.

A third extension of the method would be to combine the rigorous pseudo arc length
continuation method of [15, 24] to compute global smooth branches of solutions of BVPs.

A fourth and slightly more challenging improvement consists of modifying the pro-
posed approach to vector fields with nonlinearities that are non polynomial. That would
require extending the already existing convolution estimates to the non polynomial case.

A final and most ambitious extension would be to attempt to rigorously compute
solutions of spatially periodic PDEs combining a Chebyshev series expansion in time and
a Fourier series expansion in space.
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A Formulas for Z̃k for k = −1, . . . ,M in the Gray-
Scott equations

We give an overview of the bounds Z̃k for k = −1, . . . ,M involved in the construction of
the radii polynomials for the proof of Theorem 3.2.
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2|v1|

I )Mj + 2(|ā1||ā3||v
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0 + 2(|ā1||w3||v1|)

M
0 )

0

L2

γ

[
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0

L2

γ

[
2(|ā3||w3||v1|)

M
j + 2(|ā3||w1||v3|)

M
j + 2(|ā1||w3||v1|)

M
j

]
 + 2ε

(3)
j


0

L2(4A3 + 2A1)
0

L2

γ
(4A3 + 2A1)




+
2α

(3)
M−1

((M − 1)2 − 1)(s − 1)(M − 2)s−1


0

L2(4A3 + 2A1)
0

L2

γ
(4A3 + 2A1)




Z̃0
3




0

L2((|w3|
2|v3|)

M
0 + 2(|w1||w3||v3|)

M
0 )

0

L2

γ

[
(|w3|

2|v3|)
M
0 + 2(|w1||w3||v3|)

M
0

]
 + 9ε

(3)
0


0
1
0
1
γ

 +
1

2


0

L2((|w3|
2|v3|)

M
1 + 2(|w1||w3||v3|)

M
1 )

0

L2

γ

[
(|w3|

2|v3|)
M
1 + 2(|w1||w3||v3|)

M
1

]
 +

9

2
ε
(3)
1


0

L2

0

L2

γ



+2

M−2∑
j=2

1

j2 − 1




0

L2((|w3|
2|v3|)

M
j + 2(|w1||w3||v3|)

M
j )

0

L2

γ

[
(|w3|

2|v3|)
M
j + 2(|w1||w3||v3|)

M
j

]
 + 9ε

(3)
j


0

L2

0

L2

γ


 +

6α
(3)
M−1

((M − 1)2 − 1)(s − 1)(M − 2)s−1


0

L2

0

L2

γ




Table 6: Formulas for Z̃kl , k = −1, 0

21



k = 1, . . . ,m− 1

Z̃k1




0

L2((|ā3|
2|v1|

I )Mk+1 + 2(|ā1||ā3||v
I
3 |)
M
k+1)

0

L2

γ

[
(|ā3|

2|v1|
I )Mk+1 + 2(|ā1||ā3||v

I
3 |)
M
k+1

]
 + ε

(3)
k+1


0

L2(A3 + 2A1A3)
0

L2

γ
(A3 + 2A1A3)



+


0

L2((|ā3|
2|v1|

I )Mk−1 + 2(|ā1||ā3||v
I
3 |)
M
k−1)

0

L2

γ

[
(|ā3|

2|v1|
I )Mk−1 + 2(|ā1||ā3||v

I
3 |)
M
k−1

]
 + ε

(3)
k−1


0

L2(A3 + 2A1A3)
0

L2

γ
(A3 + 2A1A3)




Z̃k2




0

L2(2(|ā3||w3||v1|)
M
k+1 + 2(|ā3|w1||v3|)

M
k+1 + 2(|ā1||w3||v1|)

M
k+1)

0

L2

γ

[
2(|ā3||w3||v1|)

M
k+1 + 2(|ā3||w1||v3|)

M
k+1 + 2(|ā1||w3||v1|)

M
k+1

]
 + 2ε

(3)
k+1


0

L2(4A3 + 2A1)
0

L2

γ
(4A3 + 2A1)



+


0

L2(2(|ā3||w3||v1|)
M
k−1 + 2(|ā3|w1||v3|)

M
k−1 + 2(|ā1||w3||v1|)

M
k−1)

0

L2

γ

[
2(|ā3||w3||v1|)

M
k−1 + 2(|ā3||w1||v3|)

M
k−1 + 2(|ā1||w3||v1|)

M
k−1

]
 + 2ε

(3)
k−1


0

L2(4A3 + 2A1)
0

L2

γ
(4A3 + 2A1)




Z̃k3




0

L2((|w3|
2|v3|)

M
k+1 + 2(|w1||w3||v3|)

M
k+1)

0

L2

γ

[
(|w3|

2|v3|)
M
k+1 + 2(|w1||w3||v3|)

M
k+1

]
 + 9ε

(3)
k+1


0

L2

0

L2

γ

 +


0

L2((|w3|
2|v3|)

M
k−1 + 2(|w1||w3||v3|)

M
k−1)

0

L2

γ

[
(|w3|

2|v3|)
M
k−1 + 2(|w1||w3||v3|)

M
k−1

]
 +

9ε
(3)
k−1


0

L2

0

L2

γ




m ≤ k ≤M − 1

Z̃k1


1

ωs
k+1


1

L2λ
1

L2

γ

 +


0

L2((|ā3|
2|v1|)

M
k+1 + 2(|ā1||ā3||v3|)

M
k+1)

0

L2

γ

[
(|ā3|

2|v1|)
M
k+1 + 2(|ā1||ā3||v3|)

M
k+1

]
 + ε

(3)
k+1


0

L2(A3 + 2A1A3)
0

L2

γ
(A3 + 2A1A3)



+
1

ωs
k−1


1

L2λ
1

L2

γ

 +


0

L2((|ā3|
2|v1|)

M
k−1 + 2(|ā1||ā3||v3|)

M
k−1)

0

L2

γ

[
(|ā3|

2|v1|)
M
k−1 + 2(|ā1||ā3||v3|)

M
k−1

]
 + ε

(3)
k−1


0

L2(A3 + 2A1A3)
0

L2

γ
(A3 + 2A1A3)




Z̃k2




0

L2(2(|ā3||w3||v1|)
M
k+1 + 2(|ā3|w1||v3|)

M
k+1 + 2(|ā1||w3||v1|)

M
k+1)

0

L2

γ

[
2(|ā3||w3||v1|)

M
k+1 + 2(|ā3||w1||v3|)

M
k+1 + 2(|ā1||w3||v1|)

M
k+1

]
 + 2ε

(3)
k+1


0

L2(4A3 + 2A1)
0

L2

γ
(4A3 + 2A1)



+


0

L2(2(|ā3||w3||v1|)
M
k−1 + 2(|ā3|w1||v3|)

M
k−1 + 2(|ā1||w3||v1|)

M
k−1)

0

L2

γ

[
2(|ā3||w3||v1|)

M
k−1 + 2(|ā3||w1||v3|)

M
k−1 + 2(|ā1||w3||v1|)

M
k−1

]
 + 2ε

(3)
k−1


0

L2(4A3 + 2A1)
0

L2

γ
(4A3 + 2A1)




Z̃k3




0

L2((|w3|
2|v3|)

M
k+1 + 2(|w1||w3||v3|)

M
k+1)

0

L2

γ

[
(|w3|

2|v3|)
M
k+1 + 2(|w1||w3||v3|)

M
k+1

]
 + 9ε

(3)
k+1


0

L2

0

L2

γ

 +


0

L2((|w3|
2|v3|)

M
k−1 + 2(|w1||w3||v3|)

M
k−1)

0

L2

γ

[
(|w3|

2|v3|)
M
k−1 + 2(|w1||w3||v3|)

M
k

]
 +

9ε
(3)
k−1


0

L2

0

L2

γ




k = M

Z̃M1 (1 + ( M
M−1

)s)




1

L2λ
1

L2

γ

 +


0

L2(Σ
M−1
33 + 2Σ

M−1
13 )

0

L2

γ
(Σ
M−1
33 + 2Σ

M−1
13 )




Z̃M2 (1 + ( M
M−1

)s)α
(3)
M−1


0

L2(4A3 + 2A1)
0

L2

γ
(4A3 + 2A1)



Z̃M3 (1 + ( M
M−1

)s)3α
(3)
M−1


0

L2

0

L2

γ



Table 7: Formulas for Z̃kl , k = 1, . . . ,M
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