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Abstract

It is well known that the nontrivial solutions of the equation

u′′′′(r) + κu′′(r) + f(u(r)) = 0

blow up in finite time under suitable hypotheses on the initial data, κ and f . These
solutions blow up with large oscillations. Knowledge of the blow-up profile of these
solutions is of great importance, for instance, in studying the dynamics of suspension
bridges. The equation is also commonly referred to as extended Fisher-Kolmogorov
equation or Swift-Hohenberg equation.

In this paper we provide details of the blow-up profile. The key idea is to relate
this blow-up profile to the existence of periodic solutions for an auxiliary equation.

Keywords: Suspension bridges, Fisher-Kolmogorov, Swift-Hohenberg, blow-up profile,
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1 Introduction

This paper is devoted to the study of the blow-up profile of solutions of

u′′′′(r) + κu′′(r) + f(u(r)) = 0 , (1.1)

where κ ∈ R and f is a locally Lipschitz nonlinear function. Equation (1.1) arises in several
contexts. Depending on the value of κ and on the form of f , many authors refer to (1.1) as
extended Fisher-Kolmogorov equation or Swift-Hohenberg equation. This equation serves
as a model for pattern formation in many physical, chemical or biological systems, and is
often used to investigate localization and spreading of deformation of a strut confined by
an elastic foundation. We refer to the book by Peletier and Troy [18] for more applications
of (1.1), and for further references. Equation (1.1) is also connected to the dynamics of
suspension bridges through a model proposed by Lazer and McKenna [16]. For further
details and references on this subject, we also refer to the works [11, 12, 2, 1] which
contain a new point of view on the mathematical explanation of instability (and collapse)
of suspension bridges.

Much attention has received the case of the nonlinearity being superlinear, namely

there exist q > 1 and c > 0 such that f(t)t ≥ c |t|q+1 for any t ∈ R , (1.2)

and, in particular, the case
f(t) = µt+ |t|q−1t ,

with µ ∈ R. In [7], the authors prove the following result.
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Theorem 1.1 ([7]). Let q > 1 and u be a global solution of

uu′′′′(r) + |u(r)|q+1 ≥ 0, r ∈ R ,

then u ≡ 0.

The previous theorem implies that, if f ∈ Liploc(R) satisfies (1.2) and u solves

u′′′′(r) + f(u(r)) = 0 (1.3)

with non trivial initial conditions, then u cannot exist on the whole real line, that is u
blows up in finite (forward and/or backward) time.

In [3], the authors prove that:

Theorem 1.2 ([3]). Let u be a solution of (1.1) which blows up at time T > 0. Then

lim inf
r→T

u(r) = −∞, lim sup
r→T

u(r) = +∞.

Much effort has been devoted to understanding in detail the behavior of these widely
oscillating solutions, for instance the distance between consecutive zeros, the distance
between consecutive local extrema as well as the values attained at those extrema, e.g.
see [11, 12].

The main purpose of this paper is to draft a global picture of the behavior of solutions
of (1.1) by investigating their blow-up profile. We will preliminarily focus our attention
on a prototype case, namely

u′′′′(r) + |u(r)|q−1 u(r) = 0. (Uq)

We will give several general results on solutions of (Uq) for all q > 1, but will be able
to obtain the strongest results by restricting ourselves to some special values of q. We
believe that the reason for this disparity is solely technical, and that the general picture is
much the same for all values of q > 1. This claim will be supported by numerical evidence,
see Section 6.

Here below we disclose, in a simplified form, one of the main results of this paper.

Theorem 1.3. There exist a τ -periodic function γ : R→ R, a set Ω ⊂ R4 unbounded, arc-
connected, symmetric with respect to the origin, with non-empty interior, and a constant
a > 0, such that, for any solution u of

u′′′′(r) + u3(r) = 0 (1.4)

with initial condition in Ω, we have, up to a phase-shift of γ,∣∣∣∣u(r)− 1

(T − r)2
γ

(
ln

(
T

T − r

))∣∣∣∣ < c(T − r)a, for all r ∈ [0, T ) ,

for some T, c > 0 that depend on the initial condition. Moreover, the function γ satisfies:

i) γ(s+ τ/2) = −γ(s), for all s ∈ R;
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ii) γ vanishes exactly twice on [0, τ).

Details on how the set Ω and the periodic function γ are constructed, information on
how the blow-up time T depends on the initial conditions, as well as tight estimates on τ
and a, will be given in Section 2 and Section 3, whereas an extensive version of Theorem
1.3 will be given in Section 3. Before then, we want to emphasize that Theorem 1.3 gives
insight into the nature of the qualitative behavior predicted by Theorem 1.2 for a (fairly
large) family of solutions of (1.4), see Figure 1.

Further refinements will allow us to extend the results of Theorem 1.3 to a wider
class of equations. For instance, via a continuation argument which is presented in full
generality in the Appendix, we are able to extend the validity of Theorem 1.3 to values q
in a neighborhood of 3. Moreover, we will also prove the following two results.

Theorem 1.4. There exist µ0 > 0 and Ω ⊂ R4 open set such that, if u is a solution of

u′′′′(r) + µu(r) + u3(r) = 0 (1.5)

with initial condition in Ω and |µ| < µ0, then the conclusions of Theorem 1.3 hold.

Theorem 1.5. There exist a τ -periodic function γ : R→ R, κ0 > 0, an open set Ω ⊂ R4

and a > 0 such that, for any solution u of

u′′′′(r) + κu′′(r) + u3(r) = 0 (1.6)

with initial condition in Ω and |κ| < κ0, we have that u blows up at T > 0 and up to a
phase-shift of γ,∣∣∣∣(T − r)2u(r)− γ

(
ln

(
T

T − r

))∣∣∣∣ < c(T − r)a, for all r ∈ [0, T ) ,

for some T, c > 0 that depend on the initial condition. Moreover, the function γ satisfies
i) and ii) of Theorem 1.3.

The impact of this results is connected to the simplicity of the equations under scrutiny,
and more important to their implications for the study of stability of suspension bridges.
In fact, solutions u of (1.1) represent the vertical displacement of the bridge. Our results
provide a precise blow-up rate for a “measure” of vertical displacement as well as vertical
acceleration of the bridge, see Proposition 3.7. Again, we refer the interested reader to the
papers [11, 12] for a detailed description of this phenomenon. Furthermore, Theorem 1.5
gives a partial answer to some questions posed in [12] about the behavior of solutions of
(1.6) for κ > 0, see Section 5. In this direction see also the recent papers [10, 19, 8].

Before diving into the details, we want to present the general strategy behind the proof
of our results. The main idea lies in the following ansatz:

u solves (Uq) and blows up at T ⇒ u has the form u(r) =
c

(T − r)η
w(ϕ(r)) (1.7)

where ϕ is a suitable change of variable and w is a function defined on [0 +∞). Ideally,
the purpose of this transformation is to damp the oscillations in u and scale T to +∞,
see Figure 1. Much effort will be devoted to studying the differential equation satisfied
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Figure 1: On the left a solution u of (Uq) that blows up at finite time T = 1, on the right
the function w obtained by appropriately re-scaling/damping u as indicated in (1.7).

by w, that will be referred to as the “auxiliary equation”, and labelled as (Wq). Note
that knowledge about the existence of non-trivial bounded solutions for (Wq) immediately
translates into a picture of the blow-up behavior for solutions u of (Uq). In fact, we will
prove that, for q in a neighborhood of 3, (Wq) admits a periodic solution. We also wish
to point out that there is actually a strong interplay between equations (Uq) and (Wq)
so that we often resorted to one in order to obtain information on the other.

Besides playing a key role in the theoretical analysis of this paper, the transformation
(1.7) turns out to be of great help also in the numerical investigation of equation (Uq), as
it renders a problem which is generally much easier to treat numerically. We will elaborate
more on this matter in Section 6.

The proof of existence of a periodic solution requires several distinct steps. The first
step is to setup an equivalent formulation of the form F (x) = 0 (where F : X → Y with
X and Y two infinite dimensional Banach spaces) whose solution x ∈ X corresponds to
the targeted periodic solution. Setting up the operator F requires expanding the solution
using Fourier series. A point x ∈ X identifies the period and the Fourier coefficients of the
periodic solution. The next step is to consider a finite dimensional Galerkin projection of
F , to apply Newton’s method on it and to obtain a numerical approximation x̄ of F = 0.
With the help of the computer, we then construct an injective approximate inverse A
of DF (x̄) so that AF : X → X. We define a Newton-like operator T : X → X by
T (x) = x−AF (x), and we aim at obtaining

(a) the existence of x̃ ∈ X such that T (x̃) = x̃, or equivalently (since A is injective) such
that F (x̃) = 0;

(b) the existence of an explicit and small r > 0 such that ‖x̃− x̄‖X ≤ r.

The existence of x̃ ∈ X and of r is obtained by applying the radii polynomial approach
which is Newton-Kantorovich type argument. The radii polynomials provide an efficient
mean of determining a closed ball Bx̄(r) ⊂ X of radius r centered at the numerical
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approximation x̄ on which the Newton-like operator T (x) = x − AF (x) is a contraction.
Once the assumptions are satisfied, we obtain the proof of existence of the periodic solution.

The radii polynomial approach was introduced in [5] to study equilibria of PDEs. Since
then, it was adapted to many different situations, e.g. to the study of higher-dimensional
PDEs [9], delay equations [17], Euler-Lagrange equations [4], radially symmetric localized
solutions of PDEs [22] and many more. In these previous work, the computer-assisted
proofs were all obtained in Banach spaces of solutions with low regularity. In the context of
the present work, we use heavily the rigorous numerical method of [15], which adapted the
radii polynomial approach to prove existence of analytic solutions of differential equations,
and in particular analytic periodic solutions. In this case, the Banach space X is a weighed
`1 space consisting of Fourier coefficients decaying exponentially fast to 0.

We notice that for q = 3 our solutions are analytic, and this allows us to use the above
mentioned rigorous numerical method. Moreover, since we are looking for a periodic
solution possessing some specified symmetries (see i) of Theorem 1.3), we seek existence
of fixed points of T in a proper subspace inheriting these symmetries. Let us mention that
we had to adapt slightly the approach of [15] in order to show that the fixed point has the
proper symmetry. See Sections 4 for more details.

Finally, we point out that the reasons why we deal with a single specific value of q
relies on the fact that, in order to apply the rigorous numerical method, we have to fix
the parameters of the equation under study, and work out ad hoc estimates. We are
convinced that the rigorous numerical method employed in this paper can be adapted to
get similar results for any q > 1 odd (and consequently, by continuation arguments, to
open neighborhoods of any such q).

A plan of this paper is as follows. In Section 2 we introduce the transformation hinted
at in (1.7), and give several preliminary results about equations (Uq) and (Wq). In
Section 3 we present the main results of the paper, chiefly concerned with the blow-up
profile of solutions of (Uq). Section 4 is devoted to the computer assisted proof of existence
of a periodic solution of (Wq), and to some of its relevant properties such as symmetries,
zeros, and stability. In Section 5 we show how some of the main results obtained in
Section 3 for (Uq) can be appropriately extended to some instances to the more general
equation (1.1). In Section 6 we present some numerical experiments aimed at clarifying
how the idea behind the ansatz (1.7) is also of practical help in the numerical investigation
of (1.1), and conclude with two conjectures. Finally, in the appendix we present a general
result on persistence of periodic solutions under perturbations where one is interested in
retaining certain symmetries.

Notations. For convenience, here we list the notations used in this paper in the same
order as they appear.

u0 The vector of initial conditions for equation

u′′′′ (r) + |u(r)|q−1u(r) = 0. (Uq)

φ(·,u0) The solution of (Uq) with initial condition u0.

(R−, R+) The lifespan of φ(·,u0).
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Φ(·,u0) The solution of (Uq) with initial condition u0 in the phase space R4.

O(u0) The orbit trought u0, O(u0) := {Φ(r,u0) : r ∈ (R−, R+)}.
η 4

q−1 .

ϕ(r) ϕ(r) := − ln(1− r), see (2.4).

ϕ−1(s) ϕ−1(s) = 1− e−s, see (2.4).

N(w) c0w + c1w
′ + c2w

′′ + c3w
′′′, where

c0 := 8
(q + 3) (3 q + 1) (q + 1)

(q − 1)4
, c1 := 2

(3 q + 5)
(
q2 + 10 q + 5

)
(q − 1)3

,

c2 :=
11 q2 + 50 q + 35

(q − 1)2
, c3 := 2

3 q + 5

q − 1
.

(2.6)

w0 The initial condition for the auxiliary equation

w′′′′ +N(w) + |w|q−1w = 0. (Wq)

ψ(·,w0) The solution of (Wq) with initial condition w0.

Ψ(·,u0) The solution of the auxiliary equation (Wq) with initial condition w0 in
phase space R4.

(S−, S+) The lifespan of Ψ(·,w0).

D(α) The matrix diag([αη, αη+1, αη+2, αη+3]), see (2.8).

uα(r) αηu(αr).

J


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

. The matrix defined in (2.12).

L


1 0 0 0
−η 1 0 0
η2 −2η − 1 1 0
−η3 3η2 + 3η + 1 −3η − 3 1

. The matrix defined in (2.14).

DM
⋃
p∈M

⋃
α>0D(α)p.

γ A non trivial periodic solution of (Wq).

Γ O(γ), the orbit of the periodic solution γ.

B {w0 ∈ R4 : Ψ(s,w0)→ 0 as s→ +∞}, that is the basin of attraction of the
origin for the problem (Wq).

gaugeM (p) sup{α > 0 : D(α)p ∈M}.
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2 Preliminary results and an auxiliary problem

In this Section we present several preliminary results and introduce a transformation that
will be key in proving the main results of this paper.

Let u0 ∈ R4, with φ(·,u0) we denote the solution of

u′′′′ (r) + |u(r)|q−1u(r) = 0 (Uq)

with initial condition [u(0), u′(0), u′′(0), u′′′(0)] = u0. The maximal interval of existence
(or lifespan) of u(·) = φ(·,u0) will be denoted by (R−, R+) = (R−(u0), R+(u0)).

The scalar equation (Uq) can be canonically recast as a first order vector equation in its
phase coordinates u(r) = [u0(r), u1(r), u2(r), u3(r)] := [u(r), u′(r), u′′(r), u′′′(r)], namely

u′(r) = f(u(r)) :=


u1(r)
u2(r)
u3(r)

− |u0(r)|q−1 u0(r)

 . (2.1)

The solution of (2.1) with initial condition u0 ∈ R4 will be denoted by Φ(·,u0), and
the family of maps {Φ(r, ·)}r will be referred to as its flow. By virtue of the equivalence
of (Uq) and (2.1), we will refer to both as (Uq).

For any u0 ∈ R4, the set

O(u0) = {Φ(r,u0) : r ∈ (R−, R+)}

will be referred to as the orbit of (Uq) through u0. If u = φ(·,u0), we may also write
O(u) instead of O(u0). A set M ⊂ R4 will be said invariant with respect to (Uq) if

u0 ∈M =⇒ O(u0) ⊂M .

Throughout the rest of the paper, for any q > 1, we set η := 4
q−1 . Given a solution u

of (Uq), we consider the following transformation:

w(s) = e−ηsu(1− e−s) , (2.2)

or, equivalently,

u(r) =

(
1

1− r

)η
w

(
ln

(
1

1− r

))
. (2.3)

Setting
s = ϕ(r) = − ln(1− r), with inverse r = ϕ−1(s) = 1− e−s, (2.4)

it follows that the transformations (2.2) and (2.3) are valid for ϕ−1(s) ∈ (R−, R+).
Therefore, if u and w are related by (2.2), then u is a solution of (Uq) if and only if w

is a solution of the following equation

w′′′′ +N(w) + |w|q−1w = 0, (Wq)

where
N(w) := c0w + c1w

′ + c2w
′′ + c3w

′′′ , (2.5)
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c0 := 8
(q + 3) (3 q + 1) (q + 1)

(q − 1)4
, c1 := 2

(3 q + 5)
(
q2 + 10 q + 5

)
(q − 1)3

,

c2 :=
11 q2 + 50 q + 35

(q − 1)2
, c3 := 2

3 q + 5

q − 1
.

(2.6)

Letting w(s) = [w0(s), w1(s), w2(s), w3(s)] := [w(s), w′(s), w′′(s), w′′′(s)], equation
(Wq) can be rewritten in vector form as

w′(s) = g(w(s)) :=


w1(s)
w2(s)
w3(s)

−N(w)(s)− |w0(s)|q−1w0(s)

 , (2.7)

where N(w) := c0w0 + c1w1 + c2w2 + c3w3.
For solutions of (Wq) we will adopt notations similar to those introduced for (Uq), but

the solutions will be denoted by ψ(·,w0) (or Ψ(·,w0)), and their lifespan by (S−, S+) =
(S−(w0), S+(w0)). Analogously, we shall refer indifferently to (Wq) or to (2.7) as (Wq).

We point out that, throughout the whole paper, we will reserve the letters u and w
for solutions of, respectively, (Uq) and (Wq), and omit to reference the relevant equation
whenever no confusion arises. Moreover, by periodic solution or τ -periodic function we
always mean a nontrivial periodic function with least period τ > 0.

Clearly, if u and w are related through the transformation (2.2), then their lifespan
are related by the function ϕ defined in (2.4).

Remark 2.1. Let u = u(r) be a solution of (Uq), and let w = w(s) be the corresponding
solution of (Wq) defined as in (2.2). Then we have:

i) if u blows up at R+ < 1, then w blows up at S+ = ln
(

1
1−R+

)
<∞;

ii) if u blows up at finite R+ ≥ 1, or u exists for all r ≥ 0, then w exists for all s ≥ 0;
in particular, if R+ > 1 (possibly R+ = +∞), then w → 0 exponentially as s→ +∞.

Viceversa: Let w = w(s) be a solution of (Wq), and let u = u(r) be the corresponding
solution of (Uq) defined as in (2.3). Then we have:

iii) if w blows up at S+ <∞, then u blows up at R+ = 1− e−S+ < 1;

iv) if w exists for all s ≥ 0, then R+ ≥ 1;

v) if w exists for all s ≥ 0, and lim sup
s→+∞

|w(s)| > 0, then u blows up at R+ = 1;

vi) if w exists for all s ∈ R, w is bounded on R, and lim sup
s→+∞

|w(s)| > 0, then u has

lifespan (−∞, 1), and u→ 0 as r → −∞.

Now, for each α > 0, we define:

D(α) :=


αη 0 0 0
0 αη+1 0 0
0 0 αη+2 0
0 0 0 αη+3

 . (2.8)
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The following remark clarifies the role played by the matrixD when we rescale solutions
of (Uq) by

r 7−→ αr .

Remark 2.2. Let u be a solution of (Uq). Then, for any α > 0, the function uα defined
as

uα(r) := αηu(αr)

is a solution of (Uq). More precisely, if u(r) = φ(r,u0), then uα(r) = φ(r,D(α)u0). In
vector form, we have

D(α)Φ(αr,u0) = Φ(r,D(α)u0). (2.9)

Finally, if the lifespan of u is (R−, R+), then the lifespan of uα is
(
R−
α ,

R+

α

)
.

Remark 2.3. Let u be a solution of (Uq) that blows up at T > 0. As observed in the
previous remark, uT blows up at 1. Therefore, using (2.2), we have that

w(s) = T ηe−ηsu(T (1− e−s)) (2.10)

solves (Wq) for all s ≥ 0. Viceversa, if w solves (Wq) for all s ≥ 0 and lim sup
s→+∞

|w(s)| > 0,

then

u(r) =

(
1

T − r

)η
w

(
ln

(
T

T − r

))
(2.11)

solves (Uq) and blows up at T > 0.

We conclude this subsection with a remark on the effect of the change of variables

r 7−→ −r

on solutions of (Uq). Let

J :=


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 . (2.12)

Remark 2.4. For any u0 ∈ R4, we have R−(Ju0) = −R+(u0), R+(Ju0) = −R−(u0),
and

Φ(r, Ju0) = Φ(−r,u0), r ∈ (R−(Ju0), R+(Ju0)).

2.1 Some explicit computations about the transformation

In this subsection we state some explicit computations that will be useful throught the
rest of the paper. Let u = φ(·,u0) and w = ψ(·,w0) be solutions of, respectively, (Uq)
and (Wq) related by (2.2). Then, by repeated differentiation of (2.2), we obtain:

w(s) = e−ηsu(ϕ−1(s)) ,

w′(s) =− ηe−ηsu(ϕ−1(s)) + e−(η+1)su′(ϕ−1(s)) ,

w′′(s) = η2e−ηsu(ϕ−1(s))− (2η + 1)e−(η+1)su′(ϕ−1(s)) + e−(η+2)su′′(ϕ−1(s)) ,

w′′′(s) =− η3e−ηsu(ϕ−1(s)) + (3η2 + 3η + 1)e−(η+1)su′(ϕ−1(s))+

− (3η + 3)e−(η+2)su′′(ϕ−1(s)) + e−(η+3)su′′′(ϕ−1(s)) ,

10



where we recall that η =
4

q − 1
, and that ϕ (and consequently ϕ−1) has been defined in

(2.4).
We can write the relations above as

w(s)
w′(s)
w′′(s)
w′′′(s)

 =


1 0 0 0
−η 1 0 0
η2 −2η − 1 1 0
−η3 3η2 + 3η + 1 −3η − 3 1




e−ηsu(ϕ−1(s))

e−(η+1)su′(ϕ−1(s))

e−(η+2)su′′(ϕ−1(s))

e−(η+3)su′′′(ϕ−1(s))

 . (2.13)

Finally, letting

L :=


1 0 0 0
−η 1 0 0
η2 −2η − 1 1 0
−η3 3η2 + 3η + 1 −3η − 3 1

 , (2.14)

and making use of (2.8), we can rewrite (2.13) in compact form as

w(s) = LD(e−s)u(ϕ−1(s)) = LD(1− ϕ−1(s))u(ϕ−1(s)). (2.15)

In particular, setting r = s = 0, we get the following relation for the vectors of initial
conditions u0 and w0:

w0 = Lu0. (2.16)

By inverting the relation (2.15) we obtain

u(r) = D

(
1

1− r

)
L−1w(ϕ(r)). (2.17)

From (2.15) and (2.17) we easily deduce the following.

Proposition 2.5. Let w0 ∈ R4. Then we have

Ψ(s,w0) = LD(e−s)Φ(ϕ−1(s), L−1w0), for all s ∈ (S−, S+). (2.18)

Let u0 ∈ R4. Then we have

Φ(r,u0) = D

(
1

1− r

)
L−1Ψ(ϕ(r), Lu0), for all r ∈ (R−,min{1, R+}). (2.19)

2.2 Invariant sets

Let M ⊂ R4, by DM we denote the collection of the supports of all the curves α > 0 7→
D(α)p, p ∈M , that is

DM :=
⋃
p∈M

⋃
α>0

D(α)p . (2.20)

For u0 ∈ R4, the set DO(u0) can be parametrized as

(α, r) ∈ (0,+∞)× (R−(u0), R+(u0)) 7−→ D(α)Φ(r,u0). (2.21)

If u0 6= 0, we can say more.
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Proposition 2.6. For any u0 6= 0, DO(u0) is a regular 2-dimensional manifold which is
invariant with respect to (Uq).

Proof. The parametrization (2.21) is regular and it defines a 2-dimensional manifold pro-
vided that, for any given (α, r) ∈ (0,+∞)×(R−(u0), R+(u0)), there exists a 2-dimensional
tangent space, i.e. the vectors

∂

∂α
D(α)Φ(r,u0),

∂

∂r
D(α)Φ(r,u0)

are linearly independent. Clearly, none of the two vectors can be zero since u0 6= 0 and α 6=
0. Arguing by contradiction, assume that at a point (α0, r0) ∈ (0,+∞)×(R−(u0), R+(u0))
those vectors are parallel, i.e. there exists ν ∈ R, ν 6= 0, such that

∂

∂α
D(α)Φ(r,u0) = ν

∂

∂r
D(α)Φ(r,u0) .

Then, r0 is a solution of the following system of equations
ηu(r) = να0u

′(r),
(η + 1)u′(r) = να0u

′′(r),
(η + 2)u′′(r) = να0u

′′′(r),
(η + 3)u′′′(r) = να0u

′′′′(r),

where u(r) = φ(r,u0). Using all the equations above, and the fact that u solves (Uq), we
have

u(r0) =
(να0)4

η(η + 1)(η + 2)(η + 3)
u(4)(r0) = − (να0)4

η(η + 1)(η + 2)(η + 3)
|u(r0)|q−1 u(r0).

This is possible if and only if u(r0) = 0, which forces all derivatives of u to be zero at
r = r0 as well, and this contradicts u0 = 0.

Next, in order to prove the invariance of the manifold with respect to (Uq), consider
p ∈ DO(u0), i.e. p = D(α0)Φ(r0,u0) for some (α0, r0). In light of Remark 2.2, we have

Φ(r,p) = Φ(r,D(α0)Φ(r0,u0)) = D(α0)Φ(α0r,Φ(r0,u0)) = D(α0)Φ(α0r + r0,u0) ,

which, by construction, belongs to DO(u0). 2

The previous proposition generalizes to the following result.

Proposition 2.7. Let M ⊂ R4 be invariant with respect to (Uq), then also DM is in-
variant with respect to (Uq).

Proof. Let p ∈ DM , i.e. p = D(α0)p0 for some α0 > 0 and p0 ∈ M . Since M is
invariant, O(p0) ⊂M , and hence DO(p0) ⊂ DM . But p ∈ DO(p0), so the claim follows
from Proposition 2.6. 2

With additional information on the blow-up time of a given solution of (Uq) we can
construct more invariant sets for (Uq) and (Wq).

Proposition 2.8. Let w0 6= 0 and assume R+(L−1w0) ≤ 1. Then, the set LDL−1O(w0)
is a 2-dimensional manifold invariant with respect to (Wq).
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Proposition 2.9. Let M⊂ R4 be invariant with respect to (Wq) and such that, for any
w0 ∈M, we have R+(L−1w0) ≤ 1.

Then, DL−1M is invariant with respect to (Uq).

The proofs of the two propositions above rely on the following lemma, and we postpone
their proof to that of the lemma.

Lemma 2.10. Let w0 ∈ R4, w0 6= 0. Then:

i) O(w0) ⊂ LDO(L−1w0),

ii) LDO(L−1w0) is invariant with respect to (Wq),

iii) DL−1O(w0) ⊂ DO(L−1w0),

iv) if R+(L−1w0) ≤ 1, then

DL−1O(w0) = DO(L−1w0). (2.22)

Proof. Let w(s) = Ψ(s,w0) be defined for s ∈ (S−, S+), and set u0 = L−1w0 and
M = DO(L−1w0). We begin recalling thatM is a 2-dimensional manifold invariant with
respect to (Uq) (see Proposition 2.6).

i) Let p ∈ O(w0), i.e. p = Ψ(s0,w0) for some s0 ∈ (S−, S+). Let r0 = ϕ−1(s0) and
α0 = 1− r0. Note that, by the definition of ϕ in (2.4), we have r0 < 1, hence α0 > 0.

From (2.18), we have

p = Ψ(s0,w0) = LD(e−s0)Φ(ϕ−1(s0), L−1w0) = LD(1− r0)Φ(r0,u0) =

= LD(α0)Φ(r0,u0) ∈ LM,

and hence the claim follows.

ii) Let p ∈ LM. We have to show that Ψ(s,p) ∈ LM, for any s ∈ (S−, S+). Let
p0 = L−1p ∈M, s ∈ (S−, S+), r = ϕ−1(s), and recall that r < 1. From (2.18), we have

Ψ(s,p) = LD(e−s)Φ(ϕ−1(s), L−1p) = LD(1− r)Φ(r,p0).

The claim will follow once we show that D(1 − r)Φ(r,p0) ∈ M. To this end, observe
that, since p0 ∈ M and M is invariant with respect to (Uq), we have that Φ(r,p0) =
D(α1)Φ(r1,u0), for some suitable α1 and r1, and hence

D(1− r)Φ(r,p0) = D(1− r)D(α1)Φ(r1,u0) = D(α2)Φ(r1,u0) ∈M,

with α2 = (1− r)α1 > 0.

iii) It follows applying first L−1 to both sides of inclusion in i), and then D.

iv) We only need to show thatM⊂ DL−1O(w0). Let p ∈M, that is p = D(α0)Φ(r0,u0),
for some α0 and r0. Since r0 < R+(u0) ≤ 1, we can write s0 = ϕ(r0). Setting α1 = α0e

s0 ,
we have

D(α0)Φ(r0,u0) = D(α1)D(e−s0)Φ(ϕ−1(s0), L−1w0),

13



which belongs to DL−1O(w0) since the set DL−1O(w0) can be written as

DL−1O(w0) =
⋃
α>0

⋃
s∈(S−,S+)

D(α)L−1Ψ(s,w0) =
⋃
α,s

D(α)D(e−s)Φ(ϕ−1(s), L−1w0).

This concludes the proof. 2

Proof of Proposition 2.8. The fact that LDL−1O(w0) is invariant with respect to (Wq)
is a consequence of ii) and iv) in Lemma 2.10. As for LDL−1O(w0) being a 2-dimensional
manifold, it follows from the fact that it is the image of a regular 2-dimensional manifold
(see Proposition 2.6) under the (linear) invertible map L. 2

Proof of Proposition 2.9. Using the fact that M is invariant with respect to (Wq),
i.e. w0 ∈M if and only if O(w0) ⊂M, we can write DL−1M as

DL−1M =
⋃

w0∈M
DL−1w0 =

⋃
w0∈M

DL−1O(w0).

By (2.22) we obtain

DL−1M =
⋃

w0∈M
DO(L−1w0).

Proposition 2.6 assures that the manifolds DO(L−1w0) are invariant with respect to (Uq),
therefore, since we have written DL−1M as the union of sets which are invariant with
respect to (Uq), the proof is concluded. 2

Corollary 2.11. Assume that (Wq) has a nontrivial periodic solution γ, and let Γ = O(γ)
be its orbit. Then, LDL−1Γ is a 2-dimensional manifold invariant with respect to (Wq).

The manifold LDL−1Γ plays an important role in the study of (Wq), most notably it
provides information about the unstable manifold associated to a periodic solution γ. See
the next subsection, and in particular Corollary 2.14.

Proof. The proof follows from Proposition 2.8 once we note that, if w0 ∈ Γ, then
u = φ(·, L−1w0) is a solution of (Uq) that blows up at 1 (see Remark 2.1). 2

Proposition 2.12. Assume that (Wq) has a nontrivial periodic solution γ, and let Γ =
O(γ) be its orbit. Then, DL−1Γ and JDL−1Γ are invariant with respect to (Uq).

The manifolds DL−1Γ and JDL−1Γ will be helpful in studying solutions of (Uq) which
vanish as |r| → +∞. See Theorem 3.4.

Proof. We prove that DL−1Γ is invariant with respect to (Uq). The rest of the claim
follows by inverting the direction of time, see Remark 2.4.

Let u0 ∈ DL−1Γ, i.e. u0 = D(α)L−1γ(s0) for some α > 0 and s0 ∈ R. By virtue of
Remark 2.2 and relation 2.18, we have

Φ(r,u0) = Φ(r,D(α)L−1γ(s0)) = D(α)Φ(αr, L−1γ(s0)) =

= D(α)D
(
(1− αr)−1

)
Ψ(ϕ(αr),γ(s0)),

(2.23)

for αr < min{1, R+(L−1γ(s0))}. Now recall that R+(L−1γ(0)) = 1 (see v) of Remark
2.1), and therefore R+(u0) = 1/α. Hence, we have that relation (2.23) holds for r < 1/α
and, since Ψ(·,γ(s0)) is periodic, the claim follows. 2
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2.3 On the unstable manifold for the auxiliary equation

Here we present a theorem that concerns the stability of bounded solutions of (Wq) on
(−∞, 0]. Ultimately, this result will provide a characterization of the unstable manifold
for a periodic solution of (Wq), see Section 2.5.

Theorem 2.13. Let w0 ∈ R4, w0 6= 0 and consider Ψ(·,w0). Assume that S−(w0) =
−∞, and that Ψ(·,w0) is bounded on (−∞, 0].

Then, for any p ∈ LDL−1O(w0), Ψ(·,p) approaches Ψ(·,w0) with asymptotic phase
as s→ −∞. More precisely, there exists c > 0 such that

‖Ψ(s,p)−Ψ(s− s0,w0)‖ ≤ ces, for all s ∈ (−∞,− |s0|], (2.24)

where s0 is implicitly given by p = LD(α)L−1Ψ(ln(α)− s0,w0).
Moreover, if Ψ(·,w0) is τ -periodic, and p 6∈ O(w0), then there exist s̄ = s̄(w0) ∈ R

and a vector v = v(w0) ∈ R4, v 6= 0, such that

Ψ(s̄− nτ,p)−Ψ(s̄− nτ − s0,w0)

e−nτ
→ (1− α)es̄

α
v , for n→ +∞. (2.25)

Proof. Notice that the equation p = LD(α)L−1Ψ(ln(α) − s0,w0) admits a solution.
Indeed, let p0 ∈ O(w0) be such that p = LD(α)L−1p0, then clearly we can find an s0 ∈ R
such that p0 = Ψ(ln(α)− s0,w0).

For any s ≤ 0, let r = ϕ−1(s) := 1−e−s, and note that r ≤ 0. Using (2.18) and (2.19),
we obtain

Ψ(s,p) = LD(e−s)Φ(ϕ−1(s), L−1p) = LD(e−s)Φ(ϕ−1(s), D(α)L−1p0) =

= LD(e−s)D(α)Φ(αϕ−1(s), L−1p0) = LD(e−s)D(α)Φ(αr, L−1p0) =

= LD(e−s)D(α)D

(
1

1− αr

)
L−1Ψ(ϕ(αr),p0).

Observing that

D(e−s)D(α)D

(
1

1− αr

)
= D

(
αe−s

1− α(1− e−s)

)
= D

((
1− α− 1

α
es
)−1

)
,

ϕ(αr) = − ln(1− αr) = − ln(1− α+ αe−s) = s− lnα− ln

(
1− α− 1

α
es
)
,

and
Ψ(s,p0) = Ψ(s,Ψ(ln(α)− s0,w0)) = Ψ(s+ ln(α)− s0,w0),

we have

Ψ(s,p) = LD

((
1− α− 1

α
es
)−1

)
L−1Ψ

(
s− lnα− ln

(
1− α− 1

α
es
)
,p0

)

= LD

((
1− α− 1

α
es
)−1

)
L−1Ψ

(
s− s0 − ln

(
1− α− 1

α
es
)
,w0

)
.
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Now, for the sake of brevity, we set x = x(s) := α−1
α es, and observe that x → 0 as

s → −∞. Adding and subtracting Ψ(s − s0 − ln(1 − x),w0), and writing Ψ(·,w0) =
LL−1Ψ(·,w0), we have

Ψ(s,p)−Ψ(s− s0,w0) =

= L
[
D
(
(1− x)−1

)
L−1Ψ(s− s0 − ln(1− x),w0)− L−1Ψ(s− s0 − ln(1− x),w0)

]
+Ψ(s− s0 − ln(1− x),w0)−Ψ(s− s0,w0)

= L
[
D
(
(1− x)−1

)
− I4

]
L−1Ψ(s− s0 − ln(1− x),w0)

+Ψ(s− s0 − ln(1− x),w0)−Ψ(s− s0,w0), (2.26)

where I4 is the 4× 4 identity matrix. Passing to the norm, we have

‖Ψ(s,p)−Ψ(s− s0,w0)‖
≤ ‖L‖

∥∥D ((1− x)−1
)
− I4

∥∥ ∥∥L−1
∥∥ ‖Ψ(s− s0 − ln(1− x),w0)‖

+ ‖Ψ(s− s0 − ln(1− x),w0)−Ψ(s− s0,w0)‖
≤ c ‖Ψ(·,w0)‖∞

∥∥D ((1− x)−1
)
− I4

∥∥+
∥∥Ψ′(·,w0)

∥∥
∞ |ln(1− x)| ,

where we have used the Mean Value Theorem and the fact that also Ψ′(·,w0) is bounded
in (−∞,− |s0|].

Since

lim
x→0

1

x

(
D
(
(1− x)−1

)
− I4

)
=


η 0 0 0
0 η + 1 0 0
0 0 η + 2 0
0 0 0 η + 3

 =: Λ,

we conclude that
‖Ψ(s,p)−Ψ(s− s0,w0)‖ ≤ c |x| ≤ ces

for −s large, and hence, possibly with a suitable replacement of the constant c, for any
s ≤ − |s0|.

To conclude the proof, let Ψ(·,w0) be τ -periodic, and p 6∈ O(w0). Clearly we must
have α 6= 1, and hence x(s) 6= 0 for all s. Let s̄ ∈ R be such that

v := LΛL−1Ψ(s̄− s0,w0) + Ψ′(s̄− s0,w0) 6= 0. (2.27)

Note that a such a value s̄ must exist, otherwise the vector Ψ(·,w0) would solve the linear
differential equation (2.27), and hence its components would be exponentials, contradicting
the hypothesis that Ψ(·,w0) is periodic.

Now, set sn := s̄ − nτ , and consequently xn := x(sn) = α−1
α esn . Plugging s = sn in

(2.26), we obtain

Ψ(sn,p)−Ψ(sn − s0,w0)

= L
[
D
(
(1− xn)−1

)
− I4

]
L−1Ψ(sn − s0 − ln(1− xn)),w0)

+Ψ(sn − s0 − ln(1− xn),w0)−Ψ(sn − s0,w0)

= L
[
D
(
(1− xn)−1

)
− I4

]
L−1Ψ(s̄− s0 − ln(1− xn)),w0)

+Ψ(s̄− s0 − ln(1− xn),w0)−Ψ(s̄− s0,w0).
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The last chain of equalities implies that

Ψ(sn,p)−Ψ(sn − s0,w0)

xn
→ LΛL−1Ψ(s̄− s0,w0) + Ψ′(s̄− s0,w0) = v 6= 0 ,

as n→ +∞, which is the claim. 2

Corollary 2.14. Assume that (Wq) admits a non trivial periodic solution γ. Then, γ
has an unstable manifold that contains the 2-dimensional manifold LDL−1O(γ).

2.4 On the basin of attraction of the origin for the auxiliary equation

Let A := g′(0), where g is the right hand side of equation (Wq). We have that

A =


0 1 0 0
0 0 1 0
0 0 0 1
−c0 −c1 −c2 −c3

 , (2.28)

where the cj ’s are defined in (2.6). Direct computation shows that the eigenvalues of A
are

λ1 = −η, λ2 = −η − 1, λ3 = −η − 2, λ4 = −η − 3 .

Since all the eigenvalues of A strictly negative, the origin is an asymptotically stable
equilibrium for (Wq), and its basin of attraction

B := {w0 ∈ R4 : Ψ(s,w0)→ 0 as s→ +∞}

is an open set. We also recall that both B and its boundary ∂B are invariant with respect
to (Wq). See for instance [21].

It turns out that investigating the properties of B is of exceptional help in gaining
knowledge of the blow-up time of solutions of (Uq). In this section we collect several
results about B, particularly about ∂B and its relation with the lifespan of solutions of
(Uq).

First, we introduce the notion of gauge of a point with respect to a set. For a set
M ⊂ R4, M 6= ∅, and for any given p ∈M we define

gaugeM (p) := sup{α > 0 : D(α)p ∈M}, (2.29)

with the agreement that gaugeM (p) = −∞ when the sup is taken over the empty set.
The following proposition reveals the key role played by the function gauge in the

study of the blow-up time of solutions of (Uq).

Proposition 2.15. For any u0 ∈ R4, we have:

gaugeL−1B(u0) = R+(u0).
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Proof. Let u0 ∈ R4, and α > 0 be such that D(α)u0 ∈ L−1B, then from iv) of Remark
2.1 we have R+(D(α)u0) ≥ 1, and therefore

R+(u0) = αR+(D(α)u0) ≥ α.

Taking the supremum, we obtain

gaugeL−1B(u0) ≤ R+(u0).

To establish the converse inequality, we begin by considering the case R+(u0) < +∞. To
simplify the notation, let T := R+(u0), so that R+(D(T )u0) = 1. For any β > 1, we have

R+(D(T/β)u0) = β > 1,

which, in light of ii) of Remark 2.1, implies

D(T/β)u0 ∈ L−1B.

Hence, we have
T

β
≤ gaugeL−1B(u0), for any β > 1.

Letting β ↘ 1, we obtain
T ≤ gaugeL−1B(u0),

and the claim follows. The case R+(u0) = +∞ follows easily by observing that, in such
case, we would as well have gaugeL−1B(u0) = +∞. 2

We conjecture (see Section 6) that ∂B completely characterizes the set of initial con-
ditions that lead to blow-up at time R+ = 1 in (Uq). We are unable to prove this fact,
but, instead, present two results (Propositions 2.16 and 2.17) which provide partial steps
in that direction.

Proposition 2.16. Let u0 ∈ R4. Then,

i) if R+(u0) = 1, then Lu0 ∈ ∂B;

ii) if Lu0 ∈ ∂B, then R+(u0) ≤ 1;

iii) if Lu0 ∈ ∂B and LD(α)u0 ∈ B for any α ∈ [0, 1), then R+(u0) = 1.

Proof. i) Let u0 ∈ R4 be such that R+(u0) = 1. Recall that, for any α > 0, we have

R+(D(α)u0) =
R+(u0)

α
=

1

α
.

If α > 1, we have R+(D(α)u0) < 1, which implies that LD(α)u0 6∈ B. On the other hand,
if α < 1, we have R+(D(α)u0) > 1, and hence LD(α)u0 ∈ B. Since LD(α)u0 → Lu0 as
α→ 1, we have Lu0 ∈ ∂B.

ii) Let u0 ∈ L−1∂B. This means that there exist points u1 ∈ L−1B arbitrary close to u0.
For these points, from Proposition 2.15, we have R+(u1) ≥ 1. It follows from the lower
semicontinuity of u 7→ R+(u) that R+(u0) ≤ 1.

iii) Let u0 ∈ L−1∂B and assume LD(α)u0 ∈ B for any α ∈ [0, 1). From the last as-
sumption, it follows that R+(u0) = gaugeL−1B u0 ≥ 1. This, together with ii), proves the
claim. 2
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Proposition 2.17. Let w0 ∈ R4.

i) If w0 ∈ B, then LD(α)L−1w0 ∈ B for all α ∈ [0, 1];

ii) if w0 ∈ ∂B, then one of the following two alternatives holds:

a) LD(α)L−1w0 ∈ B for all α ∈ [0, 1);

b) there exists 0 < α0 < 1 such that

LD(α)L−1w0 ∈ ∂B for all α ∈ [α0, 1],

LD(α)L−1w0 ∈ B for all α ∈ [0, α0).

Proof. i) Recalling Remarks 2.1 and 2.2, the claim follows by observing that

R+(D(α)L−1w0) =
R+(L−1w0)

α
> 1,

for all α ∈ (0, 1).

ii) Assume that w0 ∈ ∂B, and that a) does not hold. Let

α0 = sup{α > 0 : LD(α)L−1w0 ∈ B} = gaugeL−1B(L−1w0).

Using the hypotheses, and recalling i) and the fact that B is open, we easily argue that
0 < α0 < 1, and LD(α)L−1w0 ∈ B for all α ∈ [0, α0). Since w0 ∈ ∂B, there exists a
sequence (wn)n ⊂ B such that wn → w0 as n → +∞. Now, let α ∈ [α0, 1]. Again, from
i) and the fact that B is open, one can argue that

LD(α)L−1w0 6∈ B,
LD(α)L−1wn ∈ B for any n,

LD(α)L−1wn → LD(α)L−1w0 as n→ +∞.

It follows that LD(α)L−1w0 ∈ ∂B for all α ∈ [α0, 1]. This completes the proof. 2

Remark 2.18. Part i) of Proposition 2.16 can be rephrased as

{u0 ∈ R4 : R+(u0) = 1} ⊂ L−1∂B.

Alternative ii), b) of Proposition 2.17 is the only obstruction towards proving that

{u0 ∈ R4 : R+(u0) = 1} = L−1∂B. (2.30)

We believe that ii), b) does not occur (see Conjecture 2), in which case, i) and iii) of
Proposition 2.16 would imply (2.30).

In the remaining part of this subsection, we present some results which hold true
under the additional hypothesis that (Wq) admits a non-trivial periodic solution γ. This
hypothesis is motivated by the results in the next section. First, we observe that the
(possible) stable manifold of γ must be contained in ∂B. This fact if a straightforward
consequence of Remarks 2.18 and 2.1.
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Remark 2.19. Let γ be a nontrivial periodic solution of (Wq), and let S be its stable
manifold. Then

S ⊂ {w0 ∈ R4 : R+(L−1w0) = 1} ⊂ ∂B.

Last, we conclude with considerations on the size of B. Under the hypothesis that (Wq)
admits a non-trivial periodic solution, the basin of attraction of the origin is unbounded,
and contains an unbounded 2-dimensional manifold.

Proposition 2.20. Let γ be a nontrivial periodic solution of (Wq), and let Γ = O(γ).
Then,

LDJL−1Γ ⊂ B.

This fact is a direct consequences of Corollary 2.14 and of the following proposition.

Proposition 2.21. Let γ be a nontrivial periodic solution of (Wq), and let U be its
unstable manifold. Then

LJL−1U ⊂ B.

Proof. Let w0 ∈ LJL−1U , i.e. LJL−1w0 ∈ U , and let Γ = O(γ). By definition of
unstable manifold, we have that Ψ(s, LJL−1w0) approaches Γ as s → −∞, and hence it
is bounded for s ∈ (−∞, 0]. By (2.19), we immediately have that Φ(r, JL−1w0) vanishes
as r → −∞, and hence, by (2.4), Φ(r, L−1w0) vanishes as r → +∞. The claim follows by
(2.18). 2

2.4.1 An explicit estimate on the blow-up time

Here we provide an explicit lower bound on the blow-up time for solutions of (Uq) by
constructing an open set (a “ball” in an appropriate metric) contained in B.

First, note that A, defined in (2.28), is a companion matrix. Consequently, its eigen-
vectors are given by the columns of the following Vandermonde matrix

V :=


1 1 1 1
λ1 λ2 λ3 λ4

λ2
1 λ2

2 λ2
3 λ2

4

λ3
1 λ3

2 λ3
3 λ3

4

 , (2.31)

where the λi’s are the eigenvalues of A arranged in decreasing order.
From now on, we denote with ‖·‖1 the 1-norm defined as

‖w‖1 :=
3∑
j=0

|wj | ,

and let
B1(r) := {z ∈ R4 : ‖z‖1 < r}

the ball of radius r in 1-norm.
We have the following

20



Proposition 2.22. V B1

((
3

q − 1

) 1
q−1

)
⊂ B.

Proof. Let V be as in (2.31). We can write

V −1AV =


−η 0 0 0
0 −η − 1 0 0
0 0 −η − 2 0
0 0 0 −η − 3

 =: Λ. (2.32)

Now define z(s) := V −1w(s). If w(·) solves (Wq), then

z′ = Λz− V −1


0
0
0

|w0|q−1w0

 = Λz− |w0|q−1w0 c4 , (2.33)

where c4 =
[
1/6 −1/2 1/2 −1/6

]T
is the last column of V −1. Next, since w = V z,

denoting by r1 =
[
1 1 1 1

]
the first row of V , we have that w0 = r1 · z, and therefore

(2.33) can be written as
z′ = Λz− |r1 · z|q−1 (r1 · z) c4. (2.34)

Here below we show that, if z is a solution of (2.34) with initial data z(0) = z0 such that

‖z0‖1 <
(

3
q−1

)1/(q−1)
, then z→ 0 as s→ +∞, from which the claim immediately follows.

Let p > 1 and denote with ‖z‖p the p-norm of z, that is ‖z‖p :=
(∑3

j=0 |zj |
p
)1/p

.

In the following, we denote by zp−1 the vector with entries (|zj |p−2 zj)j=0,1,2,3. By direct
computation, we have

d

ds

1

p
||z||pp = zp−1 · z′ = zp−1 · Λz− |r1 · z|q−1 (r1 · z) (zp−1 · c4). (2.35)

Applying Hölder’s inequality with exponents p and p′, we obtain

d

ds

1

p
||z||pp ≤ −η ||z||

p
p + ‖r1‖qp′ ‖z‖

q
p

∥∥zp−1
∥∥
p′
‖c4‖p =

= ‖z‖pp
(
−η + ‖r1‖qp′ ‖z‖

q−1
p ‖c4‖p

)
.

Therefore, if

‖z‖p < Rp :=

(
η

‖r1‖qp′ ‖c4‖p

) 1
q−1

,

then ‖z‖pp is decreasing, and by Gronwall’s Lemma we obtain that ‖z‖p → 0 as s→ +∞.

Writing Bp(r) := {z ∈ R4 : ‖z‖p < r}, we have that

V Bp(Rp) ⊂ B.
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Finally, let ‖z0‖1 <
(

3
q−1

) 1
q−1

. Since, as p → 1, Rp →
(

3
q−1

)1/(q−1)
and ‖·‖p → ‖·‖1,

we have that, for p sufficiently close to 1, z0 ∈ Bp(Rp), and this concludes the proof. 2

Proposition 2.22 translates into the following estimate for the blow-up time of solutions
of (Uq).

Corollary 2.23. Let u0 ∈ R4. If α > 0 is such that

D(α)u0 ∈ L−1V B1

((
3

q − 1

) 1
q−1

)
, (2.36)

then R+(u0) ≥ α. Therefore, setting

B∗ = B1

((
3

q − 1

) 1
q−1

)
,

we have
R+(u0) ≥ gaugeL−1V B∗(u0).

We point out that gaugeL−1V B∗(u0) provides an explicit –computable–, although cer-
tainly not sharp, lower bound of the blow-up time of the solution of (Uq) going through
u0.

2.5 Main results for the auxiliary equation

The main result of this section is the following theorem, which establishes existence and
stability properties of a periodic solution of equation (Wq) when q = 3.

Theorem 2.24. Let q = 3. Then,

A) there exists a (nontrivial) τ -periodic solution γ of equation (Wq), with

τ ∈ [1.908097232050663, 1.908097232051545] ;

B) the periodic solution γ enjoys the following properties:

i) γ(s+ τ/2) = −γ(s), for all s ∈ R ,
ii) each of the first two components of γ has exactly two distinct zeros inside [0, τ)

and they are simple;

C) the periodic solution γ possesses a 3-dimensional stable manifold S, such that any
solution Ψ(·,w0), with w0 ∈ S, approaches asymptotically Γ = O(γ) in forward time.
More precisely, for any w0 ∈ S, there exist s0 ∈ [0, τ) and c > 0 such that

‖Ψ(s,w0)− γ(s− s0)‖ ≤ ce−λs, for all s ≥ 0 ,

where λ = 7− 4.395973655577130× 10−10;
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D) the periodic orbit γ possesses a 2-dimensional unstable manifold U , such that any
solution Ψ(·,w0), with w0 ∈ U , approaches asymptotically Γ = O(γ) in backward
time. More precisely, for any w0 ∈ U , there exist s0 ∈ [0, τ) and c > 0 such that

‖Ψ(s,w0)− γ(s− s0)‖ ≤ ces, for all s ≤ 0 ;

Moreover, U = LDL−1Γ;

E) S and U intersect transversally along Γ.

The proofs of some facts stated in the above theorem rely on some results given in the
next section.

Proof. Part A) is essentially contained in Theorem 4.14. Part B) follows from Theorems
4.14, 4.15 and 4.16. Parts C) and E) are standard consequences of the hyperbolicity
of γ proved in Theorem 4.17. In particular, the value of λ is related to the smallest
interval that is guaranteed to contain the largest negative Floquet exponent of γ, see end
of Section 4. The last thing we need to show is D). It follows from Theorem 2.13 that the
unstable manifold of γ contains LDL−1Γ. But, by virtue of Corollary 2.11, LDL−1Γ is a
2-dimensional manifold that contains Γ, Therefore U and LDL−1Γ must coincide. 2

The next theorem shows that the results of Theorem 2.24 hold essentially unchanged
for q in a neighborhood of 3.

Theorem 2.25. There exists a neighborhood (q−, q+) of 3 such that, for any q ∈ (q−, q+),
the following holds.

A) there exists a (nontrivial) τq-periodic solution γq of equation (Wq);

B) the periodic solution γq enjoys the following properties:

i) γq(s+ τq/2) = −γq(s), for all s ∈ R ,
ii) each of the first two components of γq has exactly two distinct zeros inside [0, τq)

and they are simple;

C) the periodic solution γq possesses a 3-dimensional manifold Sq, such that any solution
Ψ(·,w0), with w0 ∈ Sq, approaches asymptotically Γq = O(γq) in forward time. More
precisely, for any w0 ∈ Sq, there exist s0 ∈ [0, τq) and c > 0 such that∥∥Ψ(s,w0)− γq(s− s0)

∥∥ ≤ ce−λqs, for all s ≥ 0 ,

where λq belongs to an appropriate neighborhood of λ given in C) of Theorem 2.24.

D) the periodic solution γq possesses 2-dimensional unstable manifold, such that any solu-
tion Ψ(·,w0), with w0 ∈ Uq, approaches asymptotically Γq = O(γq) in backward time.
More precisely, for any w0 ∈ Uq, there exist s0 ∈ [0, τq) and c > 0 such that∥∥Ψ(s,w0)− γq(s− s0)

∥∥ ≤ ces, for all s ≤ 0 ;

Moreover, Uq = LDL−1Γq;
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E) Sq and Uq intersect transversally along Γq.

Finally, τq, γq, Sq, Uq and λq depend smoothly on q.

Proof. We first note that the map w 7→ g(w) = gq(w) defined in (2.7) is C1 with
respect to q. Because of the hyperbolicity and symmetry B), i) of the periodic solution
γ of Theorem 2.24, we are in the position to apply Theorem A.1 in the Appendix, which
renders a family of periodic solutions γq that satisfy B), i). The remaining part follows
from the smoothness of γq with respect to q, and from the considerations in Remark A.3.2

Remark 2.26. We point out that, by continuity of τq and λq with respect to q, for q
close to 3 we have that τq and λq are close, respectively, to the values of τ and λ given in
Theorem 2.24.

Remark 2.27. Note that B), i) of Theorem 2.25 implies that each Γq = O(γq) is sym-
metric with respect to the origin, i.e. Γq = −Γq.

3 Main theorem

This section contains the main results of this paper, mainly concerned with the behavior
of solutions u = u(r) of (Uq) as r approaches the endpoints of the maximal interval of
existence of u. The first theorem provides a detailed characterization of the blow-up profile
for solutions of (Uq) having initial condition inside a certain subset of R4 when q is in an
appropriate neighborhood of 3.

Theorem 3.1. Let D = D(α), L and D be as in, respectively, (2.8), (2.14) and (2.20).
Let q ∈ (q−, q+), let γq be the τq-periodic function and Sq ⊂ R4 be the 3-dimensional
manifold established in Theorem 2.25. Set

Ωq := DL−1Sq. (3.1)

Then,

A) the set Ωq is unbounded, arc-connected, symmetric with respect to the origin, with
non-empty interior, and invariant with respect to (Uq);

Moreover, if u = u(r) is the solution of (Uq) with initial condition u(0) = u0 ∈ Ωq, then

B) u blows up at 0 < T < +∞, where T is such that LD(T )u0 ∈ Sq,

C) there exists an asymptotically periodic function w : [0,+∞)→ R such that

u(r) = (T − r)−
4
q−1 w

(
ln

(
T

T − r

))
; (3.2)

D) w approaches exponentially γq with asymptotic phase, that is there exist s0 ∈ [0, τq)

and λq >
4

q − 1
such that

|γq(s− s0)− w(s)| ≤ ce−λqs; (3.3)
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E) let (zj)j be the sequence of positive consecutive zeros of u. Then, for j sufficiently
large, zj is simple,

T − zj+1

T − zj
→ e−τq/2 as j → +∞, (3.4)

zj+1 − zj
zj − zj−1

→ e−τq/2 as j → +∞, (3.5)

and there exist c2 > c1 > 0 such that

c1 ≤ |zj+1 − zj |
4
q−1 Mj ≤ c2, (3.6)

where Mj := max{|u(r)| : zj < r < zj+1}.

Remark 3.2. We point out that, in light of Remark 2.26, for q close to 3, we have τq
belongs to a neighborhood of 1.90809723205 and λq belongs to a neighborhood of 7.

Remark 3.3. Combining C) and D) of the theorem above, we have that, if u solves (Uq)
with initial condition u0 ∈ Ωq, then there exists s0 ∈ [0, τq) such that∣∣∣∣u(r)− (T − r)−

4
q−1 γ

(
ln

(
T

T − r

)
− s0

)∣∣∣∣ < c(T − r)a, for all r ∈ [0, T ) . (3.7)

Note that, while T , s0 and c depend on the initial condition u0, a > 0 does –not– depend
on u0. In fact, we have a < min{|λ|1 , |λ|2} − η where the λj’s are the negative Floquet
exponents associated to Sq (see Section 4); for q close to 3, one can choose a close to 5. The
inequality above shows that solutions whose initial condition lies in Ωq blow-up according
to a precise profile (modulo the phase-shift s0). Figure 2 provides a visual elucidation this
fact.

Figure 2: Convergence of some solutions of (Uq) to their blow-up profile.

Proof. The proof relies to large extent on Theorem 2.25, which establishes, for all q ∈
(q−, q+), the existence of a τq-periodic solution γq for (Wq) which possesses a 3-dimensional
stable manifold Sq.
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B), C), D) Let u(r) = φ(r,u0), with u0 ∈ Ωq. By definition, there exists T > 0 such that
LD(T )u0 ∈ Sq. Now, let w(s) = φ(s, LD(T )u0). Then, (3.3) follows directly from C) of
Theorem 2.25, while (3.2) follows by virtue of (2.19) and Remark 2.2. The fact that w(s)
approaches a non-trivial periodic function as s → +∞ implies that u blows-up at T (see
Remark 2.1).

A) The set Ωq = DL−1Sq is clearly unbounded since each “fiber” DL−1w0, with w0 ∈ Sq,
is such. Since Sq is connected, and hence L−1Sq is connected, the arc-connectedness
follows from the fact that each fiber is an arc connecting a point not in L−1Sq to L−1Sq.
The symmetry of Ωq with respect to the origin comes from the analogous property of Sq,
which, in turn, is a consequence of Remark 2.27 and of the fact that, if w solves (Wq) with
initial condition w0, then −w solves (Wq) with initial condition −w0. The invariance of
Ωq with respect to (Uq) is a consequence of Proposition 2.9, where the hypothesis that
R+(L−1w0) ≤ 1 is satisfied for all w0 ∈ Sq by virtue of v) in Remark 2.1. Finally, lets
show that the interior of Ωq is not empty. Let Γq = O(γq) be the orbit of γq in R4. For
each point in Γq, the tangent bundle of Sq and that of the unstable manifold Uq span
the whole R4. By continuity, they must remain transverse in a small neighborhood of Γq.
Since the unstable manifold is given by LDL−1Γq (see Corollary 2.14), and L is invertible,
also DL−1Γq (which is contained in Ωq) and L−1Sq are transverse along L−1Γq, from which
the claim follows.

E) Throughout the rest of the proof, we let

ϕ(r) := ln

(
T

T − r

)
, for 0 ≤ r < T, (3.8)

whose inverse is given by

ϕ−1(s) := T (1− e−s), for s ≥ 0. (3.9)

Consider γq and assume, without loss of generality, that γq(0) = 0. Then, by virtue of
B) of Theorem 2.25, the sequence of consecutive zeros of γq is given by (jτq/2)j , and all
are simple.

From (2.11), we have that u(zj) = 0 if and only if w(sj) = 0, where sj := ϕ(zj);
furthermore, (sj)j is a sequence of consecutive zeros of w. Since w(s)− γq(s− s0)→ 0 as
s→ +∞, we have that γq(sj − s0)→ 0 as j → +∞ which implies that there exists ν ∈ Z
such that

sj − s0 − (j + ν)τq/2→ 0 as j → +∞. (3.10)

By direct computation, one obtains

u′(zj) = (T − zj)−η−1
[
ηw(sj) + w′(sj)

]
= (T − zj)−η−1w′(sj).

Combining w′(sj) − γ′q(sj − s0) → 0 as j → +∞ with (3.10), we obtain that w′(sj) −
γ′q((j+ ν)τq/2)→ 0. Hence, recalling the symmetry property of γq (see B), i) of Theorem
2.25), we conclude that |w′(sj)| →

∣∣γ′q(0)
∣∣ 6= 0 as j → +∞. This implies that |w′(sj)| 6= 0

for j sufficiently large, from which it follows that zj is a simple zero of u for j sufficiently
large.
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Relation (3.4) comes from

sj+1 − sj = ϕ(zj+1)− ϕ(zj) = ln

(
T − zj
T − zj+1

)
,

and
sj+1 − sj − τq/2→ 0 as j → +∞, (3.11)

the last one being a direct consequence of (3.10).

Taking into account (3.11), we have

zj+1 − zj
zj − zj−1

eτq/2 =
ϕ−1(sj+1)− ϕ−1(sj)

ϕ−1(sj)− ϕ−1(sj−1)
eτq/2 =

e−sj − e−sj+1

e−sj−1 − e−sj
eτq/2 = (3.12)

= esj−1−sj+τq/2 1− esj−sj+1

1− esj−1−sj → 1 as j → +∞, (3.13)

which is (3.5).

In order to prove (3.6), we argue as follows. For any j, let mj ∈ (zj , zj+1) be such that
|u(mj)| = Mj , kj := ϕ(mj) ∈ (sj , sj+1), and αj := kj − sj . Notice that, because of (3.11),
(αj)j is bounded.

Now, observe that

zj+1 − zj
T −mj

=
ϕ−1(sj+1)− ϕ−1(sj)

T − ϕ−1(kj)
=
e−sj − e−sj+1

e−kj
= eαj

(
1− esj−sj+1

)
,

which, taking into account (3.11), assures that there exist two constants c̃2 > c̃1 > 0 such
that

c̃1 <
zj+1 − zj
T −mj

< c̃2, for j sufficiently large.

Next, since

|zj+1 − zj |ηMj = |zj+1 − zj |η |u(mj)| =
∣∣∣∣zj+1 − zj
T −mj

∣∣∣∣η |w(kj)| ,

we have that

c̃1 |w(kj)| < |zj+1 − zj |ηMj < c̃2 |w(kj)| , for j sufficiently large.

To conclude the proof, it suffices to prove that the sequence (w(kj))j is bounded and
definitively away from zero.

The boundedness of (w(kj))j is a consequence of the fact that w is asymptotically
periodic.

Arguing by contradiction, assume that there is a subsequence (kji)i such that w(kji)→
0 as i→ +∞. Up to a subsequence, we can choose the sequence (ji)i so that the (ji + ν)’s
are all even or all odd. Assume that each ji + ν is even (the case “ji + ν odd” is similar,
and its details will be omitted). Direct computation yields

0 = u′(mj) = (T −mj)
−η−1

[
ηw(kj) + w′(kj)

]
.
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Since (w(kji))i vanishes as i → +∞, necessarily (w′(kji))i must do the same. From the

fact that, for β = 0, 1, w(β)(s)−γ(β)
q (s−s0)→ 0 as s→ +∞ we get that γ

(β)
q (kji−s0)→ 0

as i → +∞. Up to a subsequence, we can assume αji = kji − sji to be convergent, say
αji → d as i→ +∞. Using the fact that γq is τq-periodic and that each ji + ν is even, we
can write

γ(β)
q (kji − s0) = γ(β)

q (sji + αji − s0) = γ(β)
q (sji − s0 − (ji + ν)τq/2 + αji),

for β = 0, 1. Letting i→ +∞, and taking into account (3.10), we have that

0 = γ(β)
q (d), for β = 0, 1.

That is, γq has a non-simple zero. This is a contradiction, and concludes the proof. 2

Next, we turn our attention to solutions of (Uq) whose lifespan is unbounded. We know
that any non-trivial solution u = u(r) of (Uq) cannot be globally defined (see Theorem
1.1). It could, however, be the case that blow-up occurs only in forward (or backward)
time. If u is a non-trivial solution of (Uq) that is defined, say, for all r ≥ 0, then Gazzola
and Pavani show (see [12]) that u must vanish for r → +∞. The next theorem not only
shows that there is no lack of those solutions, but also provides a precise characterization
of their asymptotic behavior.

Theorem 3.4. Let (q−, q+) and Uq be as in Theorem 2.25 and let q ∈ (q−, q+). For any
u0 ∈ R4, let u = u(r) be the solution φ(r,u0) of (Uq). Then:

A) if u0 ∈ L−1Uq, u0 6= 0, then R−(u0) = −∞, T := R+(u0) < +∞ and∣∣∣u(j)(r)
∣∣∣ < C

(T − r)
4
q−1

+j
, for all r ≤ 0 and j = 0, 1, 2, 3 ,

in particular, Φ(r,u0)→ 0 as r → −∞ ;

B) if u0 ∈ JL−1Uq, u0 6= 0, then R+(u0) = +∞, T = R−(u0) > −∞ and∣∣∣u(j)(r)
∣∣∣ < C

(T + r)
4
q−1

+j
, for all r ≥ 0 and j = 0, 1, 2, 3 ;

in particular, Φ(r,u0)→ 0 as r → +∞ .

Proof. First, note that A) and B) are specular, i.e. one follows from the other by
reversing the direction of r (this is the role played by J , see Remark 2.4). Therefore, we
only prove A).

We recall that Uq is the 2-dimensional unstable manifold of the τq-periodic solution γq
of (Wq) established in Theorem 2.25, and that Uq = LDL−1Γq, where Γq = O(γq). Let
u0 ∈ L−1Uq = DL−1Γq, u0 6= 0. By definition, there exists T > 0 such that LD(T )u0 ∈ Γq.
This means that φ(s, LD(T )u0) = γq(s− s0) for some s0 ∈ [0, τq). Then, from (2.19) and
Remark 2.2, we deduce that

u(r) = (T − r)−
4
q−1 γq

(
ln

(
T

T − r

)
− s0

)
. (3.14)
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Figure 3: A solution (solid line) that vanishes in forward time enclosed in its envelope
(dotted line).

This yields the desired inequality for j = 0. Differentiating, we get the claim for j = 1, 2, 3.
2

From (3.14) we see that solutions that vanish as s→ ±∞ do so by means of damped
oscillations. Figure 3 depicts one of those solutions.

3.1 Preserved quantities

As observed in [18], equation (Uq) has a first integral, or energy identity,

E(u) :=
1

2
u′′2 − u′u′′′ − F (u(r)) = constant = Eu, (3.15)

where F ′ = f . Clearly the constant Eu depends on the solution u, and hence on the initial
condition: Eu = Eu(u0).

Furthermore defining
H := u′u′′ − uu′′′, (3.16)

one can recognize that H along the nontrivial solutions of (Uq) is increasing. Indeed, since

H′(r) = u′′2 + uu′′′′ = u′′2 + u f(u) ≥ 0

we have that H is non decreasing. Writing H as

H(r) = H(0) +

∫ r

0
u′′2(s)ds+

∫ r

0
u(s) f(u(s))ds.

one recognizes that, if u is non-trivial, then H is strictly increasing (see also [11]). Com-
bining this last fact with [12, Lemma 9], one obtains the following proposition, the proof
of which is straightforward and, therefore, omitted.
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Proposition 3.5. A solution u of (Uq) blows up at R+ <∞ if and only if there exists r0

such that H(r0) > 0. Moreover, if H(r0) > 0 for some r0, then H(r)→ +∞ as r → R+.

A consequence of the proposition above is that the set of initial conditions that lead
to blow-up in finite forward time is open.

Theorem 3.6. The sets {u0 ∈ R4 : R+(u0) < +∞}, {u0 ∈ R4 : R−(u0) > −∞} and
{u0 ∈ R4 : −∞ < R−(u0) < R+(u0) < +∞} are open.

Proof. Clearly it suffices to prove the claim for the first set. Let u0 ∈ R4 be such that
R+(u0) < +∞. Throughout this proof, to highlight the dependence of H on u0, we will
write H(r) = H(Φ(r,u0)). By Proposition 3.5, we have that O(u0) must eventually enter
the region where H > 0, i.e. H(Φ(r0,u0)) > 0 for some r0. Observing that H(Φ(r0, ·))
is well defined and continuous in a neighborhood of u0, we have that H(Φ(r0, ·)) must
remain positive in a suitable neighborhood of u0. The claim follows appealing again to
Proposition 3.5. 2

Proposition 3.5 also states that, if blow-up occurs at R+ < +∞, then H diverges as
r approaches R+. The following result provides, under suitable hypotheses on the initial
condition, an estimate on the order of infinity of H.

Proposition 3.7. Assume that (Wq) admits a periodic solution possessing a stable man-
ifold S. Let u = Φ(·,u0) be a solution of (Uq)and let H be defined as in (3.16). If
u0 ∈ DL−1S, then there exist c2 > c1 > 0 such that

c1(R+ − r)−
3q+5
q−1 < H(r) < c2(R+ − r)−

3q+5
q−1 , for r close to R+. (3.17)

This result is based on a counterpart of E and H for solutions of (Wq) that we present
below. In what follows, we denote with A and B the following matrices

A :=


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 , B :=


0 0 0 0
0 0 0 −1
0 0 1 0
0 −1 0 0

 ,

and notice that the energies E and H can be written, respectively, as

E =
1

2
uTBu− 1

q + 1
|u0|q+1 = Eu(u0), H =

1

2
uTAu. (3.18)

Proposition 3.8. Let w = Ψ(·,w0) be a solution of (Wq). Then

A) There exists a constant Ew = Ew(w0) ∈ R such that the identity

1

2
wT (s)L−1TBL−1w(s)− 1

q + 1
|w0(s)|q+1 = Ewe

−4 q+1
q−1

s
(3.19)

holds for any s ∈ (S−, S+).1 Moreover,

1 The identity (3.19) can be written explicitly as

1

2
w2

2 − η2

2

(
3 + 4η + η2

)
w0

2 − η
(
2 (1 + η)w2 +

(
3 + 2 η2 + 6 η

)
w1 + w3

)
w0 +

−1

2
w1

(
2(η + 2)w2 +

(
2 η2 + 3 + 8 η

)
w1 + 2w3

)
− 1

q + 1
|w0|q+1 = Ewe

−(2η+4)s

30



i) the constants Ew(w0) and Eu(u0) coincide provided that w0 = Lu0,

ii) if w is periodic, then Ew(w0) = 0.

B) If w0 6= 0, the quantity

1

2
[w(s)TL−1TAL−1w(s)]e

3q+5
q−1

s
=: h(s)e

3q+5
q−1

s
(3.20)

is strictly increasing2. Moreover,

i) if Φ(·, L−1w0) blows up at R+(L−1w0) ≤ 1, then

w(s)TL−1TAL−1w(s) > 0, for s close to S+(w0),

ii) if w is periodic then

wTL−1TAL−1w > c > 0, for all s ∈ R.

iii) let γ be a periodic solution of (Wq); if Ψ(·,w0) approaches γ with asymptotic
phase as s→ +∞, then

w(s)TL−1TAL−1w(s) > c > 0 for s sufficiently large.

Proof. Combining (3.18), (2.19), and the fact that

D(α)BD(α) = α2η+4B,

we obtain (3.19) and the claim A), i). The claim A), ii) follows observing that the left
hand side of (3.19) is periodic, while the right hand side is strictly monotone for Ew 6= 0.

To prove the claims in B), first we notice that, since ϕ−1(s) is increasing, alsoH(ϕ−1(s))
is increasing. Combining (3.18), (2.19), and the fact that

D(α)AD(α) = α2η+3A,

we obtain that (3.20) is increasing. Proposition 3.5 yields

lim
r→R+

H(r) = +∞

and hence
lim
s→S+

H(ϕ−1(s)) = +∞.

From which B), i) follows. The claim B), ii) is a direct consequences of B), i) and of the
periodicity of w. The claim B), iii) follows from B), ii) since w(s) gets arbitrarily close
to γ for s large enough. 2

Proof of Proposition 3.7. Without loss of generality, we may assume that R+ = 1. We

have that H(r) = h(s)e
3q+5
q−1

s
, where h(s) is bounded from below as stated in Proposition

3.8, and from above since w(s) approaches the periodic solution as s → +∞. The claim
follows noticing that es = (R+ − 1)−1. 2

2 Or, explicitly, the quantity

e
3q+5
q−1

s [ w2w1 + w1
2 + 2η w1

2 − 2η (1 + η)w0
2 − (4η w1 + w3 + (2 η + 3)w2 + 2w1)w0

]
is increasing.
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Remark 3.9. From A), ii) we have that the orbit corresponding to any possible periodic
solution of (Wq) must lie on the manifold given by

1

2
wT (s)L−1TBL−1w(s)− 1

q + 1
|w0(s)|q+1 = 0.

4 Rigorous numerics for the periodic solution and the Flo-
quet exponents

In this section we consider the equation (Wq) with q = 3, namely

w′′′′ + 14w′′′ + 71w′′ + 154w′ + 120w + w3 = 0. (4.1)

Denote by w(t) an a priori unknown 2π
ω -periodic solution to this system. Denote its

Fourier expansion as

w(t) =
∑
k∈Z

ake
iωkt. (4.2)

The unknowns for this problem are the frequency ω and the sequence of Fourier co-
efficients a = {ak}k∈Z of the periodic solution w(t). Since the differential equation (4.1)
is analytic, any periodic solution is analytic. This implies that the Fourier coefficients of
w(t) decay exponentially fast to 0. Therefore, the infinite dimensional vector of unknowns
x

def
= (ω, a) is an element of the infinite dimensional space

X
def
= C× `1ν , (4.3)

where
`1ν

def
= {a = {ak}k∈Z | ak ∈ C and ‖a‖ν <∞} , (4.4)

with
‖a‖ν

def
=
∑
k∈Z
|ak|ν|k|, (4.5)

for some fixed weight ν ≥ 1. Note that with ν = 1 the space `1ν is the classical Wiener
algebra.

We denote by x = (ω, a) an element of X and endow the space with the norm

‖x‖X = max (|ω|, ‖a‖ν) . (4.6)

Lemma 4.1. The function space `1ν as defined in (4.4) is a Banach algebra under discrete
convolution, that is it is a Banach space and for any a, b ∈ `1ν , a∗ b = {(a∗ b)k}k∈Z defined
by

(a ∗ b)k
def
=

∑
k1+k2=k

ak1bk2 (4.7)

satisfy a ∗ b ∈ `1ν and ‖a ∗ b‖ν ≤ ‖a‖ν‖b‖ν .
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Proof. We omit the proof that X is a Banach space. Let a, b ∈ `1ν , that is ‖a‖ν , ‖b‖ν <∞.
Consider a ∗ b defined component-wise by (4.7). Then,

‖a ∗ b‖ν =
∑
k∈Z
|(a ∗ b)k|ν|k| =

∑
k∈Z

∣∣∣∣∣∣∣∣
∑

k1+k2=k

k1,k2∈Z

ak1bk2

∣∣∣∣∣∣∣∣ ν
|k|

≤
∑
k∈Z

∑
k1+k2=k

k1,k2∈Z

|ak1 ||bk2 |ν|k| ≤
∑
k∈Z

∑
k1+k2=k

k1,k2∈Z

|ak1 |ν|k1||bk2 |ν|k2|

≤

∑
k1∈Z
|ak1 |ν|k1|

∑
k2∈Z
|bk2 |ν|k2|

 = ‖a‖ν‖b‖ν .

That shows that X is a Banach algebra.

Plugging (4.2) in the differential equation (4.1), we obtain that∑
k∈Z

(
µk(ω)ak + (a3)k

)
eiωkt = 0, (4.8)

where
µk(ω)

def
= ω4k4 − 14iω3k3 − 71ω2k2 + 154iωk + 120, (4.9)

and
(a3)k

def
=

∑
k1+k2+k3=k

ak1ak2ak3 . (4.10)

Therefore, given x ∈ X, define the operator F1(x) = {(F1(x))k}k∈Z component-wise by

(F1(x))k
def
= µk(ω)ak + (a3)k. (4.11)

Throughout this section, we denote by conj(z) the complex conjugate of the complex
number z ∈ C. From the previous discussion, we have the following result.

Lemma 4.2. Fix an exponential decay rate ν > 1. If x = (ω, a) ∈ R×`1ν solves F1(x) = 0,
then the relation (4.8) is satisfied for all t ∈ R, that is the function w(t) as defined by
(4.2) is a 2π

ω -periodic solution of (4.1). Moreover, if the sequence of Fourier coefficients
a = (ak)k∈Z of (4.2) satisfy a−k = conj(ak), then the periodic solution w(t) is real.

The idea of the rigorous numerical method is to compute a numerical approximation
x̄ of F1 = 0 and then use the Contraction Mapping Theorem (CMT) to show that close to
x̄, there exists x̃ ∈ X such that F1(x̃) = 0. The CMT requires to have a locally isolated
solution. Note that periodic solutions of the form x = (ω, a) given by w(t) represented
by (4.2) are not isolated as any time shift of the form w(t + τ) still provides a periodic
solution. In order to isolate the periodic solution in the function space X, we therefore set
a phase condition. We impose that the solution u given by (4.2) satisfies

∑
|k|≤3 ak = 0,

that is we impose that

F0(x)
def
=
∑
|k|≤3

ak = 0. (4.12)
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Note that F0(x) is a rough approximation for the value w(0) =
∑

k∈Z ak. Given any
x ∈ X, recall (4.12) and (4.11), and set

F (x)
def
=

(
F0(x)
F1(x)

)
. (4.13)

We will need some basis tools from functional analysis to show that we have a con-
traction.

4.1 Basic functional analytic background

Recall the classical fact that the dual space of `11, which is denoted (`11)∗, is the space
`∞. Similarly if ν > 1 then the dual of `1ν is a weighted “ell-infinity” space which we
define now. For a bi-infinite sequence of complex numbers c = {ck}k∈Z, the ν-weighted
supremum norm is defined by

‖c‖∞ν
def
= sup

k∈Z

|ck|
ν|k|

. (4.14)

Let
`∞ν = {c = {ck}k∈Z | ck ∈ C ∀ k ∈ Z, and ‖c‖∞ν <∞} . (4.15)

The key to the proof that `∞ν = (`1ν)∗ is the following bound which is itself useful in the
sequel.

Lemma 4.3. Suppose that a ∈ `1ν and c ∈ `∞ν . Then∣∣∣∣∣∑
k∈Z

ckak

∣∣∣∣∣ ≤∑
k∈Z
|ck||ak| ≤ ‖c‖∞ν ‖a‖ν .

The following results states that `∞ν is the dual of `1ν , in the sense of isometric isomor-
phism. It follows that any linear functional on `1ν can be represented as an element of `∞ν ,
and that the operator norm can be computed by taking the weighted “ell-infinity” norm
of the corresponding sequence.

Theorem 4.4. For any ν ≥ 1 we have that (`1ν)∗ ∼= `∞ν .

A related result, which is not usually stated but which is useful in the work to follow,
is the following isometric isomorphism theorem for linear maps from C into `1ν .

Lemma 4.5. The set B(C, `1ν) of bounded linear maps from C into `1ν is isometrically
isomorphic to `1ν . Specifically l ∈ B(C, `1ν) if and only if there exists a ∈ `1ν so that
l(z) = za, for all z ∈ C. Moreover ‖l‖B(C,`1ν) = ‖a‖ν .

The following result is a consequence of Lemma 4.3, and provides a useful and explicit
bound on the norm of an “eventually diagonal” linear operator on `1ν . The proof is a direct
computation.

Corollary 4.6. Let A(m) be an (2m− 1)× (2m− 1) matrix with complex valued entries,
{δk}|k|≥m a bi-infinite sequence of complex numbers and δm > 0 a real number such that

|δk| ≤ δm, for all |k| ≥ m.
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Given a = (ak)k∈Z ∈ `1ν , denote by a(m) = (a−m+1, . . . , a−1, a0, a1, . . . , am−1) ∈ C2m−1.
Define the map A : `1ν → `1ν by

[A(a)]k =

{
[A(m)a(m)]k, |k| < m

δkak, |k| ≥ m.

Then A is a bounded linear operator and

‖A‖B(`1ν ,`
1
ν) ≤ max(K, δN ),

where

K
def
= max
|n|<m

1

ν|n|

∑
|k|<m

|Ak,n|ν|k|. (4.16)

4.2 Rigorous computation of the periodic solution

We are ready to present the rigorous computational method to find a nontrivial zero of
(4.13) This approach requires first the computation of a numerical approximation that is
obtained by computing on a finite dimensional projection. Given a = (ak)k∈Z ∈ `1ν denote
by aF = (ak)|k|<m ∈ C2m−1 a finite part of a of size 2m− 1. Consider a finite dimensional

projection F (m) of (4.13) given by

F (m)(ω, aF ) =

(
F0(ω, aF )

F
(m)
1 (ω, aF )

)
, (4.17)

where F
(m)
1 (ω, aF ) ∈ C2m−1 corresponds of the finite part of F1 of size 2m − 1, that is

F
(m)
1 = {(F (m)

1 )k}|k|<m. More explicitly,

(F1)
(m)
k (x(m)) = µk(ω)ak +

∑
k1+k2+k3=k

|ki|<m

ak1ak2ak3 .

We have that F (m) : C×C2m−1 → C×C2m−1, and we seek a numerical solution of the
finite dimensional problem F (m) = 0 using Newton’s method. Let x̄ = (ω̄, ā) ∈ C×C2m−1

be the approximate solution of F (m) so obtained, with ā ∈ C2m−1.
We would now like to employ some kind of Newton-Kantorovich argument in order

to establish the existence of a true solution of F near x̄. We now look for zeros of F in
X. Note that it is not the case that F maps X into itself. This is because a differential
operator is in general unbounded on `1ν . In order to overcome this problem we look for an
injective linear smoothing operator A : X → X having that

AF (x) ∈ X, (4.18)

for all x ∈ X in some neighborhood of x̄, and also that

‖I −A ·DF (x̄)‖X � 1. (4.19)

Equation (4.18) says that A is a smoothing operator, which sends F (x) back into the space
X as defined in (4.3). Equation (4.19) says that A is a left approximate inverse for DF (x̄).
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Note that the approximate inverse condition need only hold for the Frechet derivative at x̄,
while the smoothing condition must apply in a neighborhood of the approximate solution.

The choice of the approximate inverse A is presented in Section 4.2.2. For now we take
A as given and define the Newton-like operator by

T (x) = x−AF (x) (4.20)

for x in some neighborhood of x̄.
The injectivity of A implies that x is a solution of F (x) = 0 if and only if it is a

fixed point of T . Moreover since T now maps X back into itself we study Equation (4.20)
via the contraction mapping theorem applied on closed balls centered at the numerical
approximation x̄.

Recall the definition of the norm on X in (4.6), denote by B(r) = {x : ‖x‖X ≤ r} ⊂ X
the closed ball of radius r in X and denote

Bx̄(r)
def
= x̄+B(r). (4.21)

Given x̄ = (ω̄, ā), with ā = (ā−m+1, . . . , ā−1, ā0, ā1, . . . , ām−1), define the bounds

Y = (Y0, Y1)

Z(r) = (Z0(r), Z1(r))
(4.22)

with Y0, Z0(r) ∈ R and Y1 = ((Y1)k)k∈Z, Z1(r) = ((Z1(r))k)k∈Z satisfying

|[T (x̄)− x̄]0| ≤ Y0 and sup
b,c∈B(r)

|DT0(x̄+ b)c| ≤ Z0(r) (4.23)

|([T (x̄)− x̄]1)k| ≤ (Y1)k and sup
b,c∈B(r)

|[D(T1)k(x̄+ b)c]| ≤ (Z1(r))k.

The proof of the following result can be found in [15].

Proposition 4.7. Consider the bounds Y and Z(r) as (4.22) and satisfying the component-
wise inequalities (4.23). If ‖Y ‖X +‖Z(r)‖X < r, then T : Bx̄(r)→ Bx̄(r) is a contraction.
Moreover, there exists a unique x̃ ∈ Bx̄(r) such that F (x̃) = 0.

Consider an upper bound Y1 such that ‖Y1‖ν ≤ Y1 and an upper bound Z1(r) such
that ‖Z1(r)‖ν ≤ Z1(r). The previous remark justifies the following definition.

Definition 4.8. Given the bounds Y and Z(r) satisfying (4.23) we define the radii poly-
nomials p0 and p1 by

p0(r)
def
= Z0(r)− r + Y0 (4.24)

p1(r)
def
= Z1(r)− r + Y1. (4.25)

The next result (for the proof see [15]) shows that the radii polynomials provide an
efficient strategy for obtaining sets on which the corresponding Newton-like operator T as
defined in (4.20) is a contraction mapping.
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Proposition 4.9. Fix ν ≥ 1 an exponential decay rate and construct the radii polynomials
p0(r) and p1(r) of Definition 4.8. Define

I def
= {r > 0 | p0(r) < 0}

⋂
{r > 0 | p1(r) < 0}. (4.26)

If I 6= ∅, then I is an open interval, and for any r ∈ I, there exists a unique x̃ ∈ Bx̄(r)
such that F (x̃) = 0.

We will therefore demonstrate the existence of a periodic solution of (4.1) by con-
structing the radii polynomials of Definition 4.8, and by applying Proposition 4.9. The
construction of the polynomials will use the results of Section 4.1 and will require some
computations using MATLAB and interval arithmetic.

4.2.1 Symmetry of the fixed points of T

We are interested in showing the existence of a periodic solution u given by (4.2) that is
real and that satisfies the symmetry property

a2j = 0, ∀ j ∈ Z. (4.27)

To do this, we design the method so that fixed points of T are in the symmetry space

Xsym
def
= R× ˜̀1

ν , (4.28)

where
˜̀1
ν

def
=
{
a ∈ `1ν | a−k = conj(ak) ∀ k ∈ Z, and a2j = 0 ∀ j ∈ Z

}
. (4.29)

Remark 4.10. The condition a−k = conj(ak) is imposed in the function space `1ν because
we want u to be a real periodic solution, that is conj(w(t)) = w(t).

Lemma 4.11. Assume that x̄ ∈ Xsym and consider the closed ball Bx̄(r) ⊂ X as in (4.21).
Define T as in (4.20) and assume that the approximate inverse A satisfies

AF : Xsym → Xsym. (4.30)

Assume that T : Bx̄(r) → Bx̄(r) is a contraction, and let x̃ ∈ X the unique fixed point of
T in Bx̄(r) which exists by the CMT. Then, x̃ ∈ Xsym.

Proof. By (4.30), T : Xsym → Xsym. Using that x̄ ∈ Xsym ∩ Bx̄(r), and that Xsym is a
closed subset of X, we obtain that

x̃ = lim
n→∞

Tn(x̄) ∈ Xsym.

We now introduce an approximate inverse operator A that satisfies (4.30).
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4.2.2 Definition of the approximate inverse operator A

In this section, we define an approximate inverse A for DF (x̄) so that (4.30) holds. We
begin the process assuming the existence of x̄ = (ω̄, ā) ∈ Xsym so that F (x̄) ≈ 0. The
Fréchet derivative DF (x̄) can be visualized as

DF (x̄) =

[
0 DaF0(x̄)

∂ωF1(x̄) DaF1(x̄)

]
,

since ∂ωF0(x̄) = 0, and where
∂ωF1(x̄) : R→ `1ν ,

DaF0(x̄) : `1ν → R is a linear functional

DaF1(x̄) : `1ν → `1ν′ is a linear operator with ν ′ < ν.

We first approximate DF (x̄) with the operator

A†
def
=

[
0 A†a,0

A†ω,1 A†a,1

]
,

which acts on b = (b0, b1) component-wise as

(A†b)0 = A†a,0 · b1
def
= Da(m)F0(x̄) · b(m)

1

(A†b)1 = A†ω,1b0 +A†a,1b1 ∈ `
1
ν′ ,

where A†ω,1 = ∂ωF
(m)
1 (x̄) and A†a,1b1 ∈ `1ν′ is defined component-wise by

(
A†a,1b1

)
k

=

{ (
Da(m)F

(m)
1 (x̄)b

(m)
1

)
k
, |k| < m

µk(ω̄)(b1)k, |k| ≥ m.

Let A(m) a finite dimensional approximate inverse of DF (m)(x̄) which is obtained
numerically and which has the decomposition

A(m) =

[
A

(m)
ω,0 A

(m)
a,0

A
(m)
ω,1 A

(m)
a,1

]
∈ C2m×2m,

where A
(m)
ω,0 ∈ R, A

(m)
a,0 ∈ C1×(2m−1), A

(m)
ω,1 ∈ C(2m−1)×1 and A

(m)
a,1 ∈ C(2m−1)×(2m−1).

Assume moreover that A(m) satisfies the following symmetry assumptions:

1. (A
(m)
a,0 )−j = conj

(
(A

(m)
a,0 )j

)
, j = −m+ 1, . . . ,m− 1,

2. (A
(m)
ω,1 )−k = conj

(
(A

(m)
ω,1 )k

)
, k = −m+ 1, . . . ,m− 1,

3. (A
(m)
a,1 )−k,−j = conj

(
(A

(m)
a,1 )k,j

)
, k, j = −m+ 1, . . . ,m− 1, (4.31)

4. (A
(m)
ω,1 )2k = 0, ∀ 2k ∈ {−m+ 1, . . . ,m− 1},

5. (A
(m)
a,1 )2k,2j+1 = 0, ∀ 2k, 2j + 1 ∈ {−m+ 1, . . . ,m− 1}.

38



A consequence of assumption 1. of (4.31) is that (A
(m)
a,0 )0 ∈ R while a consequence of

assumption 2. is that (A
(m)
ω,1 )0 ∈ R.

By approximate inverse we mean that for some ε with 0 < ε� 1,∣∣∣∣∣∣IC2m −A(m)DF (m)(x̄)
∣∣∣∣∣∣ ≤ ε.

We define the approximate inverse A of the infinite dimensional operator DF (x̄) by

A
def
=

[
Aω,0 Aa,0
Aω,1 Aa,1

]
,

where A acts on b = (b0, b1) ∈ X = C× `1ν component-wise as

(Ab)0 = A
(m)
ω,0 b0 +A

(m)
a,0 b

(m)
1

(Ab)1 = A
(m)
ω,1 b0 +Aa,1b1,

where A
(m)
ω,1 ∈ C(2m−1)×1 is understood to be an element of `1ν by padding the tail with

zeros, and Aa,1b1 ∈ `1ν is defined component-wise by

(Aa,1b1)k =


(
A

(m)
a,1 b

(m)
1

)
k
, |k| < m

1

µk(ω̄)
(b1)k, |k| ≥ m.

Let us now verify that (4.18) holds.

Lemma 4.12. Let x ∈ X. Then AF (x) ∈ X.

Proof. Consider x = (ω, a) ∈ X and let F (x) = (F0(x), F1(x)), with F0(x) given in (4.12)
and F1(x) given in (4.11). For sake of simplicity of the presentation, we denote F0 = F0(x)
and F1 = F1(x).

We need to show that ‖(AF (x))1‖ν <∞. Since

lim
k→±∞

µk(ω)

µk(ω̄)
=
(ω
ω̄

)4
<∞,

there exists C <∞ such that∣∣∣∣µk(ω)

µk(ω̄)

∣∣∣∣ , ∣∣∣∣ 1

µk(ω̄)

∣∣∣∣ < C, for all |k| ≥ m.
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Then,

‖(AF (x))1‖ν =
∑
k∈Z
|((AF (x))1)k| ν

|k| =
∑
k∈Z

∣∣∣(A(m)
ω,1 F0 +Aa,1F1

)
k

∣∣∣ ν|k|
≤

∑
|k|<m

∣∣∣∣(A(m)
ω,1

)
k,1

∣∣∣∣ |F0|ν|k| +
∑
|k|<m

∣∣∣(A(m)
a,1 F

(m)
1

)
k

∣∣∣ ν|k|
+
∑
|k|≥m

∣∣∣∣ 1

µk(ω̄)
(µk(ω)ak + (a3)k)

∣∣∣∣ ν|k|
≤

∑
|k|<m

∣∣∣∣(A(m)
ω,1

)
k,1

∣∣∣∣ |F0|ν|k| +
∑
|k|<m

∣∣∣(A(m)
a,1 F

(m)
1

)
k

∣∣∣ ν|k|
+C

∑
|k|≥m

|ak| ν|k| + C
∑
|k|≥m

∣∣(a3)k
∣∣ ν|k|

≤
∑
|k|<m

∣∣∣∣(A(m)
ω,1

)
k,1

∣∣∣∣ |F0|ν|k| +
∑
|k|<m

∣∣∣(A(m)
a,1 F

(m)
1

)
k

∣∣∣ ν|k|
+C‖a‖ν + C‖a‖3ν <∞,

where we used the fact that ‖a3‖ν ≤ ‖a‖3ν , because `1ν is a Banach algebra.

Let us show that the operator A that we defined above satisfies the symmetry assump-
tion (4.30).

Lemma 4.13. Let x ∈ Xsym. Then AF (x) ∈ Xsym.

Proof. Let x = (ω, a) ∈ Xsym = R × ˜̀1
ν , with ˜̀1

ν as defined in (4.29). This implies that
a−k = conj(ak) and a2k = 0 for all k ∈ Z. Denote F0 = F0(x) and F1 = F1(x).

We begin the proof by showing that the operator F preserves the symmetry conditions,
that is we show that F0 ∈ R, (F1)−k = conj((F1)k) and (F1)2k = 0.

Recalling the definition of the Poincaré phase condition (4.12),

F0 =
∑
|k|≤3

ak = a−3 + a−1 + a1 + a3 = conj(a3) + conj(a1) + a1 + a3 ∈ R.

Also, from (4.9), we see that µ−k(ω) = conj (µk(ω)). Then,

(F1)−k = µ−k(ω)a−k +
∑

k1+k2+k3=−k
ak1ak2ak3

= conj (µk(ω)ak) +
∑

k1+k2+k3=k

a−k1a−k2a−k3

= conj (µk(ω)ak) +
∑

k1+k2+k3=k

conj(ak1)conj(ak2)conj(ak3)

= conj ((F1)k) .

Now,

(F1)2k = µ2k(ω)a2k + (a3)2k = µ2k(ω)(0) +
∑

k1+k2+k3=2k

ak1ak2ak3 = 0, (4.32)
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since the condition k1 + k2 + k3 = 2k implies that there exists i ∈ {1, 2, 3} such that ki is
even.

The second part of the proof is to show that AF preserves the symmetry conditions,
that is (AF (x))0 ∈ R, ((AF (x))1)−k = conj (((AF (x))1)k) and ((AF (x))1)2k = 0.

Combining that A
(m)
ω,0 , F0 ∈ R, (F1)−k = conj ((F1)k) and assumption 1 of (4.31), we

have that

(AF (x))0 = A
(m)
ω,0 F0 +A

(m)
a,0 F

(m)
1

= A
(m)
ω,0 F0 +

m−1∑
k=−m+1

(A
(m)
a,0 )k(F1)k

= A
(m)
ω,0 F0 +

−1∑
k=−m+1

(A
(m)
a,0 )k(F1)k + (A

(m)
a,0 )0(F1)0 +

m−1∑
k=1

(A
(m)
a,0 )k(F1)k

= A
(m)
ω,0 F0 + (A

(m)
a,0 )1,0(F1)0 +

m−1∑
k=1

(
conj

(
(A

(m)
a,0 )k(F1)k

)
+ (A

(m)
a,0 )k(F1)k

)
∈ R.

By assumptions 2 and 3 of (4.31), for |k| < m, we have

((AF (x))1)−k =
(
A

(m)
ω,1 F0 +Aa,1F1

)
−k

=
(
A

(m)
ω,1

)
−k
F0 +

(
A

(m)
a,1 F

(m)
1

)
−k

=
(
A

(m)
ω,1

)
−k
F0 +

m−1∑
j=−m+1

(A
(m)
a,1 )−k,j(F1)j

=
(
A

(m)
ω,1

)
−k
F0 +

m−1∑
j=−m+1

(A
(m)
a,1 )−k,−j(F1)−j

= conj
((
A

(m)
ω,1

)
k
F0

)
+

m∑
j=−m

(A
(m)
a,1 )k,j(F1)j

= conj (((AF (x))1)k) ,

and for |k| ≥ m, we have

((AF (x))1)−k =
(
A

(m)
ω,1 F0 +Aa,1F1

)
−k

= (Aa,1F1)−k =
1

µ−k(ω̄)
(F1)−k = conj (((AF (x))1)k) .

That shows that ((AF (x))1)−k = conj (((AF (x))1)k) for all k. It remains to show that
((AF (x))1)2k = 0.

By assumptions 4 and 5 in (4.31), and using (4.32), we get that for |k| < m,

((AF (x))1)2k =
(
A

(m)
ω,1 F0 +Aa,1F1

)
2k

=
(
A

(m)
ω,1

)
2k
F0 +

(
A

(m)
a,1 F

(m)
1

)
2k

=

m−1∑
j=−m+1

(A
(m)
a,1 )2k,j(F1)j =

m−1∑
j=−m+1

j odd

(A
(m)
a,1 )2k,j(F1)j = 0,
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and for |k| ≥ m,

((AF (x))1)2k =
1

µ2k(ω̄)
(F1)2k = 0.

Having defined A satisfying (4.30) we can now define the Newton-like operator as in
(4.20) and use the radii polynomial approach to prove existence of a non trivial fixed point
of T , by applying Proposition 4.9.

4.2.3 Construction of the radii polynomials for the periodic solution

We begin the construction of the radii polynomials (4.24) and (4.25) by constructing the
bounds Y0,Y1 such that

|(T (x̄)− x̄)0| = |(AF (x̄))0| ≤ Y0

||(T (x̄)− x̄)1||ν = ||(AF (x̄))1||ν ≤ Y1.

The upper bound Y0 can be obtained by computing the finite sum

|(AF (x̄))0| =
∣∣∣A(m)

ω,0 F0(x̄) +A
(m)
a,0 F

(m)
1 (x̄)

∣∣∣
with interval arithmetic. To obtain Y1, realize that

||(T (x̄)− x̄)1||ν = ||(AF (x̄))1||ν
= ||Aω,1F0(x̄) +Aa,1F1(x̄)||ν
=
∑
k∈Z
|[Aω,1F0(x̄)]k + [Aa,1F1(x̄)]k| ν|k|

=
m−1∑

k=−m+1

∣∣∣[A(m)
ω,1 F0(x̄)]k + [A

(m)
a,1 F

(m)
1 (x̄)]k

∣∣∣ ν|k| + ∑
|k|≥m

|[Aa,1F1(x̄)]k| ν|k|,

where the first summand is finite and the second summand, since āk = 0 for |k| ≥ m,
satisfies ∑

|k|≥m

|[Aa,1F1(x̄)]k| ν|k| =
∑
|k|≥m

∣∣∣∣ 1

µk(ω̄)

(
µk(ω̄)āk + (ā3)k

)∣∣∣∣ ν|k|
=

∑
m≤|k|<3m−2

1

|µk(ω̄)|
∣∣(ā3)k

∣∣ ν|k|.
We are done by setting

Y0
def
=

∣∣∣A(m)
ω,0 F0(x̄) +A

(m)
a,0 F

(m)
1 (x̄)

∣∣∣ (4.33)

Y1
def
=

m−1∑
k=−m+1

∣∣∣[A(m)
ω,1 F0(x̄)]k + [A

(m)
a,1 F

(m)
1 (x̄)]k

∣∣∣ ν|k| (4.34)

+
∑

m≤|k|<3m−2

1

|µk(ω̄)|
∣∣(ā3)k

∣∣ ν|k|.
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The next step in the construction of the radii polynomials (4.24) and (4.25) is to
construct the bounds Z0(r),Z1(r). Let b, c ∈ B(r) ⊂ X. Then

DT (x̄+ b)c = [I −ADF (x̄+ b)]c = [I −AA†]c−A[DF (x̄+ b)−A†]c. (4.35)

We first bound the quantities involved in the first term of (4.35). Let B
def
= I − AA†,

which we express as

B =

[
Bω,0 Ba,0
Bω,1 Ba,1

]
.

By definition of B, [(Bc)1]k = 0 for |k| ≥ m and c ∈ B(r) ⊂ R× `1ν . Define

Z
(0)
0

def
= |Bω,0|+

(
max
|k|<m

|(Ba,0)k|
ν|k|

)
(4.36)

Z
(0)
1

def
=

∑
|k|<m

|(Bω,1)k|ν|k| + max
|n|<m

1

ν|n|

∑
|k|<m

|(Ba,1)k,n|ν|k|. (4.37)

Now, recalling (4.14) and Lemma 4.3, we have that

|(Bc)0| =

∣∣∣∣∣Bω,0c0 +
∑
k∈Z

(Ba,0)k(c1)k

∣∣∣∣∣ ≤ (|Bω,0|+ ‖Ba,0‖∞ν ) r = Z
(0)
0 r.

Recalling Lemma 4.5, Corollary 4.6 and (4.16), we get that

‖(Bc)1‖ν = ‖Bω,1c0 +Ba,1c1‖ν ≤
(
‖Bω,1‖ν + ‖Ba,1‖B(`1ν ,`

1
ν)

)
r ≤ Z(0)

1 r.

We therefore have all estimates to bound the first term of (4.35). Next, we bound the
quantities involved in the second term. Denote b = (b0, b1) ∈ B(r) ⊂ X = C × `1ν . For
j = 0, 1, let zj

def
=
(
[DF (x̄+ b)−A†]c

)
j

and set z
def
= (z0, z1). Recalling (4.12), we get

that if m > 3, then z0 = 0. Set b̃ = (b̃0, b̃1) and c̃ = (c̃0, c̃1) such that b = (b̃0r, b̃1r) and
c = (c̃0r, c̃1r). Hence, b̃, c̃ ∈ B0(1) ⊂ X. Denote x̄ = (ω̄, ā). For j = 1,

z1(r) =

5∑
i=1

z1,ir
i

where each component of z1,i = ((z1,i)k)k∈Z is given component-wise by

(z1,1)k =

{
3(ā2c̃I1)k, |k| < m
3(ā2c̃1)k, |k| ≥ m

and

(z1,2)k =
(
12k4ω̄2 − 84ik3ω̄ − 142k2

)
b̃0c̃0āk + 6(āb̃1c̃1)k

+
(
4k4ω̄3 − 42ik3ω̄2 − 142k2ω̄ + 154ik

) (
c̃0(b̃1)k + b̃0(c̃1)k

)
(z1,3)k =

(
12k4ω̄ − 42ik3

)
b̃20c̃0āk + 3(b̃21c̃1)k +

(
12k4ω̄2 − 84ik3ω̄ − 142k2

)
b̃0c̃0(b̃1)k(

6k4ω̄2 − 42ik3ω̄ − 71k2
)
b̃20(c̃1)k

(z1,4)k =
(
4k4ω̄ − 14ik3

)
b̃30(c̃1)k +

(
12k4ω̄ − 42ik3

)
b̃20c̃0(b̃1)k + 4k4b̃30c̃0āk

(z1,5)k = k4b̃40(c̃1)k + 4k4b̃30c̃0(b̃1)k.
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Recalling that z0 = 0, the second term of (4.35) is A[DF (x̄ + b) − A†]c = Az given
component-wise (j = 0, 1) by(

A[DF (x̄+ b)−A†]c
)
j

= (Az)j = Aa,jz1.

Defining the following vectors will be useful when constructing upper bounds for |(Az)j |
for the cases j = 0, 1.

Ã
(m)
a,0 =

{(
12k4ω̄2 − 84ik3ω̄ − 142k2

)
(A

(m)
a,0 )k

}
|k|<m

B̃
(m)
a,0 =

{(
4k4ω̄3 − 42ik3ω̄2 − 142k2ω̄ + 154ik

)
(A

(m)
a,0 )k

}
|k|<m

C̃
(m)
a,0 =

{(
12k4ω̄ − 42ik3

)
(A

(m)
a,0 )k

}
|k|<m

D̃
(m)
a,0 =

{(
6k4ω̄2 − 42ik3ω̄ − 71k2

)
(A

(m)
a,0 )k

}
|k|<m

Ẽ
(m)
a,0 =

{(
4k4ω̄ − 14ik3

)
(A

(m)
a,0 )k

}
|k|<m

F̃
(m)
a,0 =

{
k4(A

(m)
a,0 )k

}
|k|<m

.

Case 1: a bound on |(Az)0| = |Aa,0z1| = |A(m)
a,0 z

(m)
1 |.

A
(m)
a,0 z

(m)
1 =

5∑
i=1

(
A

(m)
a,0 z

(m)
1,i

)
ri

= A
(m)
a,0

{
3(ā2c̃I1)k

}
|k|<m r

+

(
Ã

(m)
a,0

{
b̃0c̃0āk

}
|k|<m

+ 6A
(m)
a,0

{
(āb̃1c̃1)k

}
|k|<m

+ B̃
(m)
a,0

{(
c̃0(b̃1)k + b̃0(c̃1)k

)}
|k|<m

)
r2

+

(
C̃

(m)
a,0

{
b̃20c̃0āk

}
|k|<m

+ 3A
(m)
a,0

{
(b̃21c̃1)k

}
|k|<m

+ Ã
(m)
a,0

{
b̃0c̃0(b̃1)k

}
|k|<m

+ D̃
(m)
a,0

{
b̃20(c̃1)k

}
|k|<m

)
r3

+

(
Ẽ

(m)
a,0

{
b̃30(c̃1)k

}
|k|<m

+ C̃
(m)
a,0

{
b̃20c̃0(b̃1)k

}
|k|<m

+ 4F̃
(m)
a,0

{
b̃30c̃0āk

}
|k|<m

)
r4

+

(
F̃

(m)
a,0

{
b̃40(c̃1)k

}
|k|<m

+ 4F̃
(m)
a,0

{
b̃30c̃0(b̃1)k

}
|k|<m

)
r5.

Let ωI
def
=
{
ν−k

}
|k|≥m, and let

Z
(1)
0

def
= 3|A(m)

a,0 |
{

(|ā|2|ωI |)k
}
|k|<m (4.38)

Z
(2)
0

def
= ‖Ã(m)

a,0 ‖
∞
ν ‖ā‖ν + 6‖A(m)

a,0 ‖
∞
ν ‖ā‖ν + 2‖B̃(m)

a,0 ‖
∞
ν (4.39)

Z
(3)
0

def
= ‖C̃(m)

a,0 ‖
∞
ν ‖ā‖ν + 3‖A(m)

a,0 ‖
∞
ν + ‖Ã(m)

a,0 ‖
∞
ν + ‖D̃(m)

a,0 ‖
∞
ν (4.40)

Z
(4)
0

def
= ‖Ẽ(m)

a,0 ‖
∞
ν + ‖C̃(m)

a,0 ‖
∞
ν + 4‖F̃ (m)

a,0 ‖
∞
ν ‖ā‖ν (4.41)

Z
(5)
0

def
= 5‖F̃ (m)

a,0 ‖
∞
ν . (4.42)
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Note that |b̃0|, ‖b̃1‖ν , |c̃0|, ‖c̃1‖ν ≤ 1. Using Lemma 4.3, we get that

|(Az)0| =
∣∣∣A(m)

a,0 z
(m)
1

∣∣∣
≤ 3|A(m)

a,0 |
{

(|ā|2|ωI |)k
}
|k|<m r

+
(
‖Ã(m)

a,0 ‖
∞
ν ‖ā‖ν + 6‖A(m)

a,0 ‖
∞
ν ‖ā‖ν + 2‖B̃(m)

a,0 ‖
∞
ν

)
r2

+
(
‖C̃(m)

a,0 ‖
∞
ν ‖ā‖ν + 3‖A(m)

a,0 ‖
∞
ν + ‖Ã(m)

a,0 ‖
∞
ν + ‖D̃(m)

a,0 ‖
∞
ν

)
r3

+
(
‖Ẽ(m)

a,0 ‖
∞
ν + ‖C̃(m)

a,0 ‖
∞
ν + 4‖F̃ (m)

a,0 ‖
∞
ν ‖ā‖ν

)
r4

+5‖F̃ (m)
a,0 ‖

∞
ν r

5

=
5∑
i=1

Z
(i)
0 ri.

Case 2: a bound on ‖(Az)1‖ν = ‖Aa,1z1‖ν .
Define the linear functionals

Ãa,1 =
{

12k4ω̄2 − 84ik3ω̄ − 142k2
}
k∈Z

B̃a,1 =
{

4k4ω̄3 − 42ik3ω̄2 − 142k2ω̄ + 154ik
}
k∈Z

C̃a,1 =
{

12k4ω̄ − 42ik3
}
k∈Z

D̃a,1 =
{

6k4ω̄2 − 42ik3ω̄ − 71k2
}
k∈Z

Ẽa,1 =
{

4k4ω̄ − 14ik3
}
k∈Z

F̃a,1 =
{
k4
}
k∈Z .

Let

Z
(1)
1

def
= 3

m−1∑
k=−m+1

(
|A(m)

a,1 |(|ā|
2ωI)F

)
k
ν|k| +

3

|µm(ω̄)|
‖ā‖2ν (4.43)

Z
(2)
1

def
=

∥∥∥A(m)
a,1

∥∥∥
B(`1ν ,`

1
ν)

( m−1∑
k=−m+1

∣∣12k4ω̄2 − 84ik3ω̄ − 142k2
∣∣ |āk|ν|k| (4.44)

+6‖ā‖ν + 2‖B̃a,1‖∞ν
)

(4.45)

Z
(3)
1

def
=

∥∥∥A(m)
a,1

∥∥∥
B(`1ν ,`

1
ν)

( m−1∑
k=−m+1

∣∣12k4ω̄ − 42ik3
∣∣ |āk|ν|k| (4.46)

+3 + ‖Ãa,1‖∞ν + ‖D̃a,1‖∞ν
)

(4.47)

Z
(4)
1

def
=

∥∥∥A(m)
a,1

∥∥∥
B(`1ν ,`

1
ν)

(
‖Ẽa,1‖∞ν + ‖C̃a,1‖∞ν + 4

m−1∑
k=−m+1

k4|āk|ν|k|
)

(4.48)

Z
(5)
1

def
=

∥∥∥A(m)
a,1

∥∥∥
B(`1ν ,`

1
ν)

(
5‖F̃a,1‖∞ν

)
(4.49)
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First, we have that

‖Aa,1z1,1‖ν =
∑
|k|<m

|(Aa,1z1,1)k| ν|k| +
∑
|k|≥m

|(Aa,1z1,1)k| ν|k|

≤ 3
m−1∑

k=−m+1

(
|A(m)

a,1 |(|ā|
2|c̃I1|)F

)
k
ν|k| + 3

∑
|k|≥m

1

|µk(ω̄)|
∣∣(ā2c̃1)k

∣∣ ν|k|
≤ 3

m−1∑
k=−m+1

(
|A(m)

a,1 |(|ā|
2ωI)F

)
k
ν|k| +

3

|µm(ω̄)|
‖ā‖2ν = Z

(1)
1 .

which is a finite sum that is evaluated using interval arithmetic. Now,

‖Aa,1z1,2‖ν ≤
∥∥∥A(m)

a,1

∥∥∥
B(`1ν ,`

1
ν)
‖z1,2‖ν

≤
∥∥∥A(m)

a,1

∥∥∥
B(`1ν ,`

1
ν)

( m−1∑
k=−m+1

∣∣12k4ω̄2 − 84ik3ω̄ − 142k2
∣∣ |āk|ν|k|

+6‖ā‖ν + 2‖B̃a,1‖∞ν
)

= Z
(2)
1 ,

‖Aa,1z1,3‖ν ≤
∥∥∥A(m)

a,1

∥∥∥
B(`1ν ,`

1
ν)

( m−1∑
k=−m+1

∣∣12k4ω̄ − 42ik3
∣∣ |āk|ν|k|

+3 + ‖Ãa,1‖∞ν + ‖D̃a,1‖∞ν
)

= Z
(3)
1 ,

‖Aa,1z1,4‖ν ≤ Z
(4)
1

‖Aa,1z1,5‖ν ≤ Z
(5)
1 ,

where using Corollary 4.6, we get that∥∥∥A(m)
a,1

∥∥∥
B(`1ν ,`

1
ν)
≤ max
|n|<m

1

ν|n|

∑
|k|<m

∣∣∣∣(A(m)
a,1

)
k,n

∣∣∣∣ ν|k|.
Hence, we get that

‖(Az)1‖ν = ‖Aa,1z1‖ν ≤
5∑
i=1

‖Aa,1z1,i‖ν r
i =

5∑
i=1

Z
(i)
1 ri.

Combining (4.36), (4.37), (4.38), (4.39), (4.40), (4.41), (4.42), (4.43), (4.44), (4.46),
(4.48), (4.49), we set

Z0(r)
def
= Z

(5)
0 r5 + Z

(4)
0 r4 + Z

(3)
0 r3 + Z

(2)
0 r2 +

(
Z

(1)
0 + Z

(0)
0

)
r (4.50)

Z1(r)
def
= Z

(5)
1 r5 + Z

(4)
1 r4 + Z

(3)
1 r3 + Z

(2)
1 r2 +

(
Z

(1)
1 + Z

(0)
1

)
r (4.51)

Using (4.33), (4.34), (4.50) and (4.51), we can define the two radii polynomials as defined
in Definition 4.8.
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4.2.4 Proof of existence of the symmetric periodic solution γ(t)

Using the radii polynomial approach, we have proved the following result.

Theorem 4.14. There exists a periodic solution γ(t) 6= 0 of (4.1) with period τ that
satisfies

τ ∈ [1.908097232050663 , 1.908097232051545].

The periodic solution has a Fourier expansion

γ(t)
def
=
∑
k∈Z

ãke
iω̃kt, t ∈ [0, τ ], (4.52)

where ω̃ is its frequency, ã−k = conj(ãk), and ã2k = 0 for all k ∈ Z, that is γ is a real
τ -periodic symmetric solution of (4.1). We refer to Figure 4 for the graph of the solution.
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Figure 4: Graph of the periodic solution γ given in (4.52).

Proof. Fix ν = 1.3 and let x̄ = (ω̄, ā) ∈ R× C31 as given in Figure 5.
In the separate computer MATLAB program script proof gamma.m available at [6]

which uses the Matlab toolbox INTLAB for reliable computing [20], we construct the two
quintic radii polynomials p0(r) and p1(r) of Definition 4.8, and then apply Proposition 4.9
to show that

I = {r > 0 | p0(r) < 0}
⋂
{r > 0 | p1(r) < 0} 6= ∅.

The program verifies with interval arithmetic that I ⊂ [r− r+] where

r− = 7.595549832526767× 10−13 and r+ = 1.275811117241133× 10−3.

Moreover, for any r ∈ I, there exists a unique x̃ = (ω̃, ã) ∈ Bx̄(r) such that T (x̃) = x̃. We
also have that

‖x− x̃‖X = max (|ω̄ − ω̃|, ‖ā− ã‖ν) ≤ r−. (4.53)
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ω̄

3.292906253223528

k āk
1 1.780548377519241× 10−1 + (1.334498530100925× 10−1)i
3 −1.780548377519304× 10−1 + (6.415134398797947× 10−2)i
5 −1.116766962688650× 10−3 − (5.237561088492284× 10−4)i
7 −1.723996326464334× 10−6 − (6.620322617252511× 10−6)i
9 2.006586787990499× 10−8 − (2.909959121074274× 10−8)i
11 1.732979780563067× 10−10 − (2.102402650424280× 10−11)i
13 6.243643874701474× 10−13 + (5.489211652414192× 10−13)i
15 3.239760646543639× 10−17 + (3.859717081491257× 10−15)i
≥16 0

Figure 5: We show āk for k ≥ 1, as ā−k = conj(āk). Note that all even coefficients are 0.

Since A is an injective linear operator, we get that x̃ is the unique zero of F in Bx̄(r).
Moreover, x̄ ∈ Xsym, and then by Lemma 4.11, x̃ ∈ Xsym. With interval arithmetic, the
program verifies that

τ
def
=

2π

ω̃
∈ [1.908097232050663 , 1.908097232051545].

Since x̃ ∈ Xsym, then ω̃ ∈ R, ã−k = conj(ãk), and ã2k = 0 for all k ∈ Z. By Lemma 4.2,
we get that

γ(t)
def
=
∑
k∈Z

ãke
iω̃kt, t ∈ [0, τ ]

is a real τ -periodic symmetric solution of (4.1).

4.2.5 Studying the zeroes of γ(t) and γ′(t)

In this short section, we demonstrate that γ(t) and γ′(t) only vanish twice on the interval
[0, τ ]. More precisely, we show the following two results.

Theorem 4.15. Consider the periodic solution γ given by (4.52). Then there exist t0, t1 ∈
[0, τ) with t0 < t1 such that γ(t0) = γ(t1) = 0, γ′(t0) 6= 0 and γ′(t1) 6= 0. Moreover,
∀ t ∈ [0, τ) \ {t0, t1}, γ(t) 6= 0.

Theorem 4.16. Consider the periodic solution γ given by (4.52). Then there exist t2, t3 ∈
[0, τ) with t2 < t3 such that γ′(t2) = γ′(t3) = 0, γ′′(t2) 6= 0 and γ′′(t3) 6= 0. Moreover,
∀ t ∈ [0, τ) \ {t2, t3}, γ′(t) 6= 0.

To simplify the proof of Theorem 4.15 and Theorem 4.16, let us rescale time using the
transformation

t̃ =
ω̃

2π
t.

Hence, a new parameterization for the periodic solution (4.52) is given by

γ(t̃) =
∑
k∈Z

ãke
i2πkt̃, t̃ ∈ [0, 1].
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For the proof of the theorems, we will bound the values of γ, γ′ and γ′′ on some time
intervals.

Bound on γ: Since ν = 1.3 ≥ 1 and by (4.53), we have that∣∣∣∣∣∑
k∈Z

(ãk − āk)ei2πkt̃
∣∣∣∣∣ ≤ ‖ã− ā‖1 ≤ ‖ã− ā‖ν ≤ r− = 7.595549832526767× 10−13.

Therefore, the value of γ(t̃) can be enclosed using

γ(t̃) =
∑
k∈Z

(ãk − āk)ei2πkt̃ +
∑
k∈Z

āke
i2πkt̃ ∈ [−r−, r−] +

∑
|k|≤16

āke
i2πkt̃, (4.54)

where the second quantity is easily evaluated using interval arithmetic.
Bound on γ′: Now, since ‖ã−ā‖ν ≤ r−, then for any k ∈ Z, |ãk−āk|ν|k| ≤ ‖ã−ā‖ν ≤ r−,
and therefore

|ãk − āk| ≤
r−

ν|k|
.

Defining

C1
def
= 4π

(
ν

(ν − 1)2

)
r−,

we get that ∣∣∣∣∣∑
k∈Z

i2πk(ãk − āk)ei2πkt̃
∣∣∣∣∣ ≤ 4π

∑
k≥1

k

νk

 r− = C1.

Therefore, the value of γ′(t̃) can be enclosed using

γ′(t̃) =
∑
k∈Z

i2πk(ãk − āk)ei2πkt̃ +
∑
k∈Z

i2πkāke
i2πkt̃

∈ [−C1, C1] +
∑
|k|≤16

i2πkāke
i2πkt̃, (4.55)

where the second quantity is easily evaluated using interval arithmetic.
Bound on γ′′: Letting

C2
def
= 8π2

∑
k≥1

k2

νk

 r− = 8π2 ν(ν + 1)

(ν − 1)3
r−,

we get that ∣∣∣∣∣∑
k∈Z
−(2πk)2(ãk − āk)ei2πkt̃

∣∣∣∣∣ ≤ 8π2

∑
k≥1

k2

νk

 r− = C2.

Then, the value of γ′′(t̃) can be enclosed using

γ′′(t̃) =
∑
k∈Z
−(2πk)2(ãk − āk)ei2πkt̃ +

∑
k∈Z
−(2πk)2āke

i2πkt̃

∈ [−C2, C2] +
∑
|k|≤16

−(2πk)2āke
i2πkt̃, (4.56)
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where the second quantity is easily evaluated using interval arithmetic.
Using the above estimates, we can prove the two above theorems.
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Figure 6: Graph of the derivative γ′(t) of the periodic solution.

Proof of Theorem 4.15. The proof is computer-assisted and is performed by running the
MATLAB program script zeroes of gamma.m available at [6] which uses the Matlab tool-
box INTLAB for reliable computing [20]. The program has 4 parts.

First, consider the mesh

s0 = 0, s1 = .0001, s2 = .001, s3 = .01, s4 = .05, s5 = .2, s6 = .4, s7 = .49, s8 = .499

of the interval [0, .499]. For j = 0, . . . , 7, let sj = [sj , sj+1]. Then we use (4.54) and
interval arithmetic to show that

γ(sj) ∈ [−r−, r−] +
∑
|k|≤16

āke
i2πksj ⊂ (−∞, 0),

for each j = 0, . . . , 7. Second, let s8 = [s8, s9] = [.499, .5], use (4.55) and interval
arithmetic to show that

γ′(s8) ∈ [−C1, C1] +
∑
|k|≤16

i2πkāke
i2πks8 ⊂ (0,∞).

Third, consider the mesh

s9 = .5, s10 = .5001, s11 = .501, s12 = .51, s13 = .59,

s14 = .78, s15 = .95, s16 = .997, s17 = .999
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of the interval [.5, .999]. For j = 9, . . . , 16, let sj = [sj , sj+1]. Then we use (4.54) and
interval arithmetic to show that

γ(sj) ∈ [−r−, r−] +
∑
|k|≤16

āke
i2πksj ⊂ (0,∞),

for each j = 9, . . . , 16. Finally, let s17 = [s17, s18] = [.999, 1], use (4.55) and interval
arithmetic to show that

γ′(s17) ∈ [−C1, C1] +
∑
|k|≤16

i2πkāke
i2πks17 ⊂ (−∞, 0).

Combining the above, we conclude that γ > 0 on [0, .499], γ′ > 0 on [.499, .5], γ < 0 on
[.5, .999] and γ′ < 0 on [.999, 1]. That shows that γ has exactly two distinct zeroes.

Proof of Theorem 4.16. The proof is computer-assisted and is performed by running the
MATLAB program script zeroes of gamma prime.m available at [6]. This program re-
quires the Matlab toolbox INTLAB for reliable computing [20]. The program has 5 parts.

First, consider the mesh

s0 = 0, s1 = .16, s2 = .23, s3 = .25

of the interval [0, .25]. For j = 0, 1, 2, let sj = [sj , sj+1]. Then we use (4.55) and interval
arithmetic to show that

γ′(sj) ∈ [−C1, C1] +
∑
|k|≤16

i2πkāke
i2πksj ⊂ (−∞, 0),

for each j = 0, 1, 2. Second, let s3 = [s3, s4] = [.25, .28], use (4.56) and interval arithmetic
to show that

γ′′(s3) ∈ [−C2, C2] +
∑
|k|≤16

−(2πk)2āke
i2πks3 ⊂ (0,∞).

Third, consider the mesh

s4 = .28, s5 = .38, s6 = .56, s7 = .69, s8 = .74,

of the interval [.28, .74]. For j = 4, 5, 6, 7, let sj = [sj , sj+1]. Then we use (4.55) and
interval arithmetic to show that

γ′(sj) ∈ [−C1, C1] +
∑
|k|≤16

i2πkāke
i2πksj ⊂ (0,∞),

for each j = 4, 5, 6, 7. Fourth, let s8 = [s8, s9] = [.74, .78], use (4.56) and interval
arithmetic to show that

γ′′(s8) ∈ [−C2, C2] +
∑
|k|≤16

−(2πk)2āke
i2πks8 ⊂ (−∞, 0).

Finally, consider the mesh
s9 = .78, s10 = .88, s11 = 1
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of the interval [.78, 1]. For j = 9, 10, let sj = [sj , sj+1]. Then we use (4.55) and interval
arithmetic to show that

γ′(sj) ∈ [−C1, C1] +
∑
|k|≤16

i2πkāke
i2πksj ⊂ (−∞, 0),

for j = 9, 10.
Combining the above, we conclude that γ′ < 0 on [0, .25], γ′′ > 0 on [.25, .28], γ′ > 0

on [.28, .74], γ′′ < 0 on [.74, .78] and that γ′ < 0 on [.78, 1]. That shows that γ′ has
exactly two distinct zeroes.

4.3 Rigorous computation of the Floquet exponents

Let γ(t) the real symmetric periodic solution of (4.1) given by (4.52). In this section, we
compute rigorously its Floquet exponents. More precisely, we prove the following result.

Theorem 4.17. Let γ the τ -periodic solution given by (4.52). Define

Γ = {γ(t) : t ∈ [0, τ ]}. (4.57)

Then Γ is a hyperbolic periodic orbit, it has two stable Floquet exponents and one unstable
Floquet exponent. Therefore, attached to Γ, there exist a three-dimensional stable manifold
S = S(Γ) and a two-dimensional unstable manifold U = U(Γ).

The rest of the section presents the proof of Theorem 4.17.
Let us first re-write the fourth order differential equation as a vector field

w′ = g(w)
def
=


w1

w2

w3

−120w0 − w3
0 − 154w1 − 71w2 − 14w3

 ,

where w = (w0, w1, w2, w3) = (w,w′, w′′, w′′′). Let

A(t)
def
= Dg(γ(t)) =


0 1 0 0
0 0 1 0
0 0 0 1

−120− 3γ(t)2 −154 −71 −14


and consider the linear system with τ -periodic coefficients

Φ̇(t) = A(t)Φ(t). (4.58)

An invariant bundle v(t) of the periodic orbit associated to the eigenvalue λ satisfies the
equation

Φ(t)v(0) = eλtv(t). (4.59)

Note that v(t) ∈ R4 is a periodic function with the same period as γ(t). Differentiating
equation (4.59) and using (4.58), we obtain the invariance equation

v̇(t) + λv(t)−A(t)v(t) = 0. (4.60)
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Remark 4.18. Let (λ, v) a solution of the eigenvalue problem (4.60). Then λ is a Floquet
exponent associated to the periodic orbit Γ given by (4.57). The corresponding number
µ

def
= eτλ is a Floquet multiplier associated to Γ. We know that one Floquet multiplier is

always equal to one.

Based on the above remark, the proof of Theorem 4.17 is to find three solutions
(λj , vj(t)) (j = 1, 2, 3) of (4.60) with the radii polynomial approach, and then to determine
the stability of the periodic orbit by studying wether each |eτλj | in inside or outside the
unit circle in the complex plane.

Denote v(t) = (v1(t), v2(t), v3(t), v4(t)), and expand each of its component as

vj(t) =
∑
k∈Z

(aj)ke
iω̃kt, (4.61)

where ω̃ is the frequency of the periodic solution γ as given in Theorem 4.14. Plugging
(4.61) in the invariance equation (4.60), we obtain∑

k∈Z
(iω̃k(a1)k + λ(a1)k − (a2)k) e

iω̃kt = 0∑
k∈Z

(iω̃k(a2)k + λ(a2)k − (a3)k) e
iω̃kt = 0∑

k∈Z
(iω̃k(a3)k + λ(a3)k − (a4)k) e

iω̃kt = 0∑
k∈Z

(
iω̃k(a4)k + λ(a4)k + 120(a1)k + 154(a2)k + 71(a3)k + 14(a4)k + 3(ã2a1)k

)
eiω̃kt = 0,

where ã = (ãk)k∈Z is the infinite dimensional vector of Fourier coefficients of γ as given
in (4.52). The unknowns for this problem are λ and aj = ((aj)k)k∈Z for j = 1, 2, 3, 4. Let
x = (λ, a1, a2, a3, a4), and

f1(x)
def
= iω̃k(a1)k + λ(a1)k − (a2)k

f2(x)
def
= iω̃k(a2)k + λ(a2)k − (a3)k

f3(x)
def
= iω̃k(a3)k + λ(a3)k − (a4)k

f4(x)
def
= iω̃k(a4)k + λ(a4)k + 120(a1)k + 154(a2)k + 71(a3)k + 14(a4)k + 3(ã2a1)k

If (λ, v) is a solution of (4.60), then (λ, cv) is also a solution of (4.60) for any c ∈ C.
Hence, we have to impose a phase condition in order to apply a contraction mapping
argument. We therefore fix the length of the eigenvector at time t = 0 to be approximately
equal to 1 by imposing the condition

f0(x)
def
=

4∑
j=1

((aj)−1 + (aj)0 + (aj)1)2 − 1 = 0.

Finally, we define the operator f = (f0, f1, f2, f3, f4), and look for solutions of

f(x) = 0. (4.62)
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We look for solutions of (4.62) in the space

Xβ def
= C×

(
`1ν
)4
. (4.63)

endowed with the norm

‖x‖βX
def
= max (|λ|, ‖a1‖ν , ‖a2‖ν , ‖a3‖ν , β‖a4‖ν) , (4.64)

where β is a weight to be fixed when performing the computer-assisted proof. We denote
by x = (λ, a1, a2, a3, a4) an element of Xβ.

As in Section 4, we need a good approximate inverse to apply the radii polynomial
approach on problem (4.62).

4.3.1 Definition of the approximate inverse operator A

Assume that using a finite dimensional projection f (m) : C× (C2m−1)4 → C× (C2m−1)4 of

(4.62), we applied Newton’s method to find a numerical solution x̄ = (λ̄, ā
(m)
1 , ā

(m)
2 , ā

(m)
3 , ā

(m)
4 ) =

(λ̄, ā1, ā2, ā3, ā4) ∈ C× (C2m−1)4 such that f (m)(x̄) ≈ 0.
Denote

Df(x̄) =


∂λf0(x̄) Da1f0(x̄) Da2f0(x̄) Da3f0(x̄) Da4f0(x̄)
∂λf1(x̄) Da1f1(x̄) Da2f1(x̄) Da3f1(x̄) Da4f1(x̄)
∂λf2(x̄) Da1f2(x̄) Da2f2(x̄) Da3f2(x̄) Da4f2(x̄)
∂λf3(x̄) Da1f3(x̄) Da2f3(x̄) Da3f3(x̄) Da4f3(x̄)
∂λf4(x̄) Da1f4(x̄) Da2f4(x̄) Da3f4(x̄) Da4f4(x̄)

 ,
where each component of Df(x̄) is a linear operator having that

∂λf0(x̄) : R→ R
∂λfj(x̄) : R→ `1ν for j = 1, 2, 3, 4,

Daif0(x̄) : `1ν → R are linear functionals (i = 1, 2, 3, 4)

Daifj(x̄) : `1ν → `1ν′ are linear operators for i, j = 1, 2, 3, 4 with ν ′ < ν.

We first approximate Df(x̄) with the operator

A†
def
=


A†λ,0 A†a1,0 A†a2,0 A†a3,0 A†a4,0
A†λ,1 A†a1,1 A†a2,1 A†a3,1 A†a4,1
A†λ,2 A†a1,2 A†a2,2 A†a3,2 A†a4,2
A†λ,3 A†a1,3 A†a2,3 A†a3,3 A†a4,3
A†λ,4 A†a1,4 A†a2,4 A†a3,4 A†a4,4

 ,

which acts on b = (b0, b1, b2, b3, b4) component-wise as

(A†b)0 = A†λ,0b0 +
4∑
i=1

A†ai,0bi
def
= ∂λf0(x̄)b0 +

4∑
i=1

Daif0(x̄) · bi

(A†b)j = A†λ,jb0 +

4∑
i=1

A†ai,jbi ∈ `
1
ν′ , (j = 1, 2, 3, 4),
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where for j = 1, 2, 3, 4, A†λ,j = ∂λf
(m)
j (x̄) and A†ai,jbi ∈ `

1
ν′ is defined component-wise by

(
A†ai,jbi

)
k

=

{ (
Daif

(m)
j (x̄)b

(m)
i

)
k
, |k| < m

δi,j(iω̃k)(bi)k, |k| ≥ m.

Let A(m) a finite dimensional approximate inverse of Df (m)(x̄) which is obtained nu-
merically. Define the decomposition

A(m) =



A
(m)
λ,0 A

(m)
a1,0

A
(m)
a2,0

A
(m)
a3,0

A
(m)
a4,0

A
(m)
λ,1 A

(m)
a1,1

A
(m)
a2,1

A
(m)
a3,1

A
(m)
a4,1

A
(m)
λ,2 A

(m)
a1,2

A
(m)
a2,2

A
(m)
a3,2

A
(m)
a4,2

A
(m)
λ,3 A

(m)
a1,3

A
(m)
a2,3

A
(m)
a3,3

A
(m)
a4,3

A
(m)
λ,4 A

(m)
a1,4

A
(m)
a2,4

A
(m)
a3,4

A
(m)
a4,4


∈ C(8m−3)×(8m−3),

where A
(m)
λ,0 ∈ R, A

(m)
ai,0
∈ C1×(2m−1), A

(m)
λ,j ∈ C(2m−1)×1 and A

(m)
ai,j
∈ C(2m−1)×(2m−1). By

approximate inverse we mean that for some ε with 0 < ε� 1,∣∣∣∣∣∣IC(8m−3)×(8m−3) −A(m)Df (m)(x̄)
∣∣∣∣∣∣ ≤ ε.

We define the approximate inverse A of the infinite dimensional operator Df(x̄) by

A
def
=


Aλ,0 Aa1,0 Aa2,0 Aa3,0 Aa4,0
Aλ,1 Aa1,1 Aa2,1 Aa3,1 Aa4,1
Aλ,2 Aa1,2 Aa2,2 Aa3,2 Aa4,2
Aλ,3 Aa1,3 Aa2,3 Aa3,3 Aa4,3
Aλ,4 Aa1,4 Aa2,4 Aa3,4 Aa4,4

 .
A acts on b = (b0, b1, b2, b3, b4) ∈ X = C× (`1ν)4 component-wise as

(Ab)0 = A
(m)
λ,0 b0 +

4∑
i=1

A
(m)
ai,0

b
(m)
i

(Ab)j = A
(m)
λ,j b0 +

4∑
i=1

Aai,jbi ∈ `1ν , (j = 1, 2, 3, 4),

where A
(m)
λ,j ∈ C(2m−1)×1 is understood to be an element of `1ν by padding the tail with

zeros, and Aai,jbi ∈ `1ν is defined component-wise by

(Aai,jbi)k =


(
A

(m)
ai,j

b
(m)
i

)
k
, |k| < m

δi,j
iω̃k

(bi)k, |k| ≥ m.

Having defined A piece by piece, we can now define the Newton-like operator by

T (x) = x−AF (x).

We show existence of fixed points of T again with the radii polynomial approach.
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4.3.2 Construction of the radii polynomials for the Floquet problem

Define the bounds
Y = (Y0, Y1, Y2, Y3, Y4)

Z(r) = (Z0(r), Z1(r), Z2(r), Z3(r), Z4(r))
(4.65)

with Y0, Z0(r) ∈ R and Yj = ((Yj)k)k∈Z, Zj(r) = ((Zj(r))k)k∈Z ∈ `1ν (j = 1, 2, 3, 4) satisfy-
ing

|(T (x̄)− x̄)0| ≤ Y0 and sup
b,c∈B(r)

|DT0(x̄+ b)c| ≤ Z0(r) (4.66)∣∣((T (x̄)− x̄)j)k
∣∣ ≤ (Yj)k and sup

b,c∈B(r)

∣∣(DTj(x̄+ b)c)k
∣∣ ≤ (Zj(r))k, for j = 1, 2, 3, 4.

We begin by showing the following result.

Proposition 4.19. Consider the bounds Y and Z(r) as (4.65) and satisfying the component-

wise inequalities (4.66). If ‖Y ‖βX +‖Z(r)‖βX < r, then T : Bx̄(r)→ Bx̄(r) is a contraction.
Moreover, there exists a unique x̃ ∈ Bx̄(r) such that f(x̃) = 0.

Proof. The ball of radius r centered at 0 in Xβ is given by

B(r) =
{
x = (λ, a1, a2, a3, a4) : ‖x‖βX = max (|λ|, ‖a1‖ν , ‖a2‖ν , ‖a3‖ν , β‖a4‖ν) ≤ r

}
.

First, let x ∈ Bx̄(r) = x̄ + B(r). Then, y
def
= x − x̄ ∈ B(r). There exists ξ0 ∈ [0, 1] such

that

|(T (x)− x̄)0| = |T0(x)− λ̄|
≤ |T0(x)− T0(x̄)|+ |T0(x̄)− λ̄|
= |DT0(x̄+ ξ0y)y|+ |T0(x̄)− λ̄|
≤ Z0(r) + Y0.

Similarly, for each j = 1, 2, 3, 4 and each k ∈ Z, there exists ξ = ξ(k, j) ∈ [0, 1] such that

| ((T (x)− x̄)j)k | = |(Tj(x))k − (āj)k|
≤ | (Tj(x)− Tj(x̄))k |+ |(Tj(x̄))k − (āj)k|
= |(DTj(x̄+ ξy)y)k|+ |(Tj(x̄))k − (āj)k|
≤ (Zj(r))k + (Yj)k,

and then

‖(T (x)− x̄)j‖ν =
∑
k∈Z
|((T (x)− x̄)j)k|ν|k| ≤

∑
k∈Z

((Zj(r))k + (Yj)k)ν
|k| = ‖Yj‖ν + ‖Zj(r)‖ν .

Therefore,

‖T (x)− x̄‖βX = max (|(T (x)− x̄)0|, ‖(T (x)− x̄)1‖ν , ‖(T (x)− x̄)2‖ν ,
‖(T (x)− x̄)3‖ν , β‖(T (x)− x̄)4‖ν)

≤ max (Y0 + Z0(r), ‖Y1‖ν + ‖Z1(r)‖ν , , ‖Y2‖ν + ‖Z2(r)‖ν ,
‖Y3‖ν + ‖Z3(r)‖ν , β(‖Y4‖ν + ‖Z4(r)‖ν))

= ‖Y ‖βX + ‖Z(r)‖βX < r.
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That shows that T (x) ∈ Bx̄(r), that is T : Bx̄(r)→ Bx̄(r). Let us now show that T is
a contraction. Consider x, y ∈ Bx̄(r) such that x 6= y. There exists ξ0 ∈ [0, 1] such that

|(T (x)− T (y))0| = |DT0(ξ0x+ (1− ξ0)y)(x− y)|

=

∣∣∣∣∣DT0(ξ0x+ (1− ξ0)y)(x− y)

(
r

‖x− y‖βX

)∣∣∣∣∣ ‖x− y‖βXr

≤ Z0(r)

r
‖x− y‖βX .

Similarly, for each j = 1, 2, 3, 4 and each k ∈ Z, there exists ξ = ξ(k, j) ∈ [0, 1] such
that

|((T (x)− T (y)j)k| = |(DTj(ξx+ (1− ξ)y)(x− y))k|

=

∣∣∣∣∣
(
DTj(ξx+ (1− ξ)y)(x− y)

(
r

‖x− y‖βX

))
k

∣∣∣∣∣ ‖x− y‖βXr

≤ (Zj(r))k
r

‖x− y‖βX ,

and moreover

‖(T (x)−T (y))j‖ν =
∑
k∈Z
|((T (x)−T (y))j)k|ν|k| ≤

∑
k∈Z

(Zj(r))k
r

‖x−y‖βXν
|k| =

‖Zj(r)‖ν
r

‖x−y‖βX .

Since ‖Y ‖βX + ‖Z(r)‖βX < r, then

κ
def
=
‖Z(r)‖βX

r
< 1. (4.67)

Therefore,

‖T (x)− T (y)‖βX = max (|(T (x)− T (y))0|, ‖(T (x)− T (y))1‖ν , ‖(T (x)− T (y))2‖ν ,
‖(T (x)− T (y))3‖ν , β‖(T (x)− T (y))4‖ν)

≤ max

(
Z0(r)

r
‖x− y‖βX ,

‖Z1(r)‖ν
r

‖x− y‖βX ,
‖Z2(r)‖ν

r
‖x− y‖βX

‖Z3(r)‖ν
r

‖x− y‖βX , β
‖Z4(r)‖ν

r
‖x− y‖βX

)
=
‖Z(r)‖βX

r
‖x− y‖βX

= κ‖x− y‖βX .

This implies that T : Bx̄(r) → Bx̄(r) is a contraction with contraction constant κ < 1
defined by (4.67). By the contraction mapping theorem, there exists a unique x̃ ∈ Bx̄(r)
such that T (x̃) = x̃ = x̃−Af(x̃). A is injective since κ < 1. It follows that there exists a
unique x̃ ∈ Bx̄(r) such that f(x̃) = 0.

Consider bounds Yj such that ‖Yj‖ν ≤ Yj and bounds Zj(r) such that ‖Zj(r)‖ν ≤
Zj(r), for j = 1, 2, 3, 4.
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Definition 4.20. Given the bounds Y and Z(r) satisfying (4.66) we define the five radii
polynomials p0, p1, p2, p3, p4 by

p0(r)
def
= Y0 + Z0(r)− r (4.68)

pj(r)
def
= Yj + Zj(r)− r, j = 1, 2, 3 (4.69)

p4(r)
def
= Y4 + Z4(r)− r

β
. (4.70)

Proposition 4.21. Fix ν ≥ 1 an exponential decay rate and construct the five radii
polynomials p0(r), . . . , p4(r) of Definition 4.20. Define

I def
=

4⋂
j=0

{r > 0 | pj(r) < 0}. (4.71)

If I 6= ∅, then I is an open interval, and for any r ∈ I, there exists a unique x̃ ∈ Bx̄(r)
such that f(x̃) = 0.

Proof. Let r ∈ I 6= ∅. Now since pj(r) < 0 for j = 0, 1, 2, 3, 4, we have that

‖Y ‖βX + ‖Z(r)‖βX = max (|Y0 + Z0(r)|, ‖Y1‖ν + ‖Z1(r)‖ν , , ‖Y2‖ν + ‖Z2(r)‖ν ,
‖Y3‖ν + ‖Z3(r)‖ν , β(‖Y4‖ν + ‖Z4(r)‖ν))

≤ max (Y0 + Z0(r),Y1 + Z1(r),Y2 + Z2(r),

Y3 + Z3(r), β(Y4 + Z4(r))) < r.

Computation of the bounds Y .

The computation of the bound Y0 is easy, as one realizes that

|(Af(x̄))0| =

∣∣∣∣∣A(m)
λ,0 f0(x̄) +

4∑
i=1

A
(m)
ai,0

f
(m)
i (x̄)

∣∣∣∣∣ .
For the computation of the bound Yj for j = 1, 2, 3, 4, we first need to elaborate on

the computation of f4(x̄). Notice that

f4(x̄) = iω̃k(ā4)k + λ(ā4)k + 120(ā1)k + 154(ā2)k + 71(ā3)k + 14(ā4)k + 3(ã2ā1)k,

where ã = (ãk)k∈Z is the infinite vector of nonzero Fourier coefficients of the periodic
solution γ(t) given in (4.52). From (4.53), we get that

‖ã− ā(γ)‖ν ≤ rγ , rγ
def
= 7.595549832526767× 10−13,

where ā(γ) is the numerical data given in Figure 5. Let α
def
= ã− ā(γ) ∈ B0(rγ) ⊂ `1ν . Then,

‖α‖ν ≤ rγ . Let α̃ such that α = α̃rγ so that ‖α̃‖ν ≤ 1 that is α̃ ∈ B0(1) ⊂ `1ν . We have
that

3(ã2ā1)k = 3((ā(γ) + α̃rγ)2ā1)k = 3((ā(γ))2ā1)k + 6(ā(γ)α̃ā1)krγ + 3(α̃2ā1)kr
2
γ .
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Denote

g4(x̄)
def
= iω̃k(ā4)k + λ(ā4)k + 120(ā1)k + 154(ā2)k + 71(ā3)k + 14(ā4)k + 3((ā(γ))2ā1)k

h4(x̄)
def
= 6(ā(γ)α̃ā1)krγ + 3(α̃2ā1)kr

2
γ ,

so that f4(x̄) = g4(x̄) + h4(x̄). The term g4(x̄) is evaluated using interval arithmetic and
the term h4(x̄) is controlled using analytic estimates.

Assume that m ≥ 3mγ − 2 = 46 and assume that

ā
(γ)
k = (ā1)k = 0, for |k| ≥ mγ = 16.

Then, ((ā(γ))2ā1)k = 0, for all |k| ≥ m ≥ 3mγ − 2. Hence for j = 1, 2, 3, 4, we have that

||[T (x̄)− x̄]j ||ν = ||[Af(x̄)]j ||ν
= ||Aλ,jf0(x̄) +Aa1,jf1(x̄) +Aa2,jf2(x̄) +Aa3,jf3(x̄) +Aa4,jf4(x̄)||ν
=
∑
k∈Z
|[Aλ,jf0(x̄)]k + [Aa1,jf1(x̄)]k + [Aa2,jf2(x̄)]k + [Aa3,jf3(x̄)]k + [Aa4,jf4(x̄)]k| ν|k|

≤
∑
|k|<m

∣∣∣[A(m)
λ,j f

(m)
0 (x̄)]k + [A

(m)
a1,j

f
(m)
1 (x̄)]k + [A

(m)
a2,j

f
(m)
2 (x̄)]k

+[A
(m)
a3,j

f
(m)
3 (x̄)]k + [A

(m)
a4,j

g
(m)
4 (x̄)]k

∣∣∣ ν|k| + 3
∑
|k|≥m

∣∣∣∣ δ4,j

iω̃k
((ā(γ))2ā1)k

∣∣∣∣ ν|k|
+ 6

∑
|k|≥m

∣∣∣∣ δ4,j

iω̃k
(ā(γ)α̃ā1)k

∣∣∣∣ ν|k|rγ + 3
∑
|k|≥m

∣∣∣∣ δ4,j

iω̃k
(α̃2ā1)k

∣∣∣∣ ν|k|r2
γ

≤
∑
|k|<m

∣∣∣[A(m)
λ,j f

(m)
0 (x̄)]k + [A

(m)
a1,j

f
(m)
1 (x̄)]k + [A

(m)
a2,j

f
(m)
2 (x̄)]k

+[A
(m)
a3,j

f
(m)
3 (x̄)]k + [A

(m)
a4,j

g
(m)
4 (x̄)]k

∣∣∣ ν|k|
+

6

ω̃m
δ4,j‖ā(γ)‖ν‖ā1‖νrγ +

3

ω̃m
δ4,j‖ā1‖νr2

γ ,

which is evaluated using interval arithmetic.

Computation of the bounds Z.

The next step in the construction of the radii polynomials is to construct the bounds
Z0(r),Z1(r),Z2(r),Z3(r),Z4(r). Let b, c ∈ B(r) ⊂ C× (`1ν)4. Then

DT (x̄+ b)c = [I −A ·Df(x̄+ b)]c = [I −AA†]c−A[Df(x̄+ b)−A†]c. (4.72)

We first bound the quantities involved in the first term of (4.72). Let B
def
= I − AA†,

which we express as

B =


Bλ,0 Ba1,0 Ba2,0 Ba3,0 Ba4,0
Bλ,1 Ba1,1 Ba2,1 Ba3,1 Ba4,1
Bλ,2 Ba1,2 Ba2,2 Ba3,2 Ba4,2
Bλ,3 Ba1,3 Ba2,3 Ba3,3 Ba4,3
Bλ,4 Ba1,4 Ba2,4 Ba3,4 Ba4,4

 .
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Due to the structure of B, we have that [(Bc)j ]k = 0 for |k| ≥ m, j = 1, 2, 3, 4 and
c ∈ B(r) ⊂ C× (`1ν)4. Define

Z
(0)
0

def
= |Bλ,0|+

4∑
i=1

(
max
|k|<m

|(Bai,0)k|
ν|k|

)
(4.73)

Z
(0)
j

def
=

∑
|k|<m

|(Bλ,j)k|ν|k| +
4∑
i=1

max
|n|<m

1

ν|n|

∑
|k|<m

|(Bai,j)k,n|ν|k|
 , (4.74)

for j = 1, 2, 3, 4. Now, recalling (4.14) and Lemma 4.3, we have that

|(Bc)0| =

∣∣∣∣∣Bλ,0c0 +

3∑
i=1

∑
k∈Z

(Bai,0)k(ci)k

∣∣∣∣∣ ≤
(
|Bλ,0|+

4∑
i=1

‖Bai,0‖∞ν

)
r = Z

(0)
0 r.

Thus, for j = 1, 2, 3, 4, recalling Lemma 4.5, Corollary 4.6 and (4.16), we get that

‖(Bc)j‖ν =

∥∥∥∥∥Bλ,jc0 +
4∑
i=1

Bai,jci

∥∥∥∥∥
ν

≤

(
‖Bλ,j‖ν +

4∑
i=1

‖Bai,j‖B(`1ν ,`
1
ν)

)
r ≤ Z(0)

j r,

which bounds the first term of (4.72).
Next, we bound the quantities involved in the second term of (4.72). Denote b =

(b0, b1, b2, b3, b4), c = (c0, c1, c2, c3, c4) ∈ B(r) ⊂ X = C × (`1ν)4. For j = 0, 1, 2, 3, 4, let
zj

def
=
(
[Df(x̄+ b)−A†]c

)
j

and set z
def
= (z0, z1, z2, z3, z4). Then

z0 = 2

4∑
j=1

((bj)−1 + (bj)0 + (bj)1) ((cj)−1 + (cj)0 + (cj)1)

z1 =
{
λ̄(c1)k

}
|k|≥m − {(c2)k}|k|≥m + c0 {(b1)k}k∈Z + b0 {(c1)k}k∈Z

z2 =
{
λ̄(c2)k

}
|k|≥m − {(c3)k}|k|≥m + c0 {(b2)k}k∈Z + b0 {(c2)k}k∈Z

z3 =
{
λ̄(c3)k

}
|k|≥m − {(c4)k}|k|≥m + c0 {(b3)k}k∈Z + b0 {(c3)k}k∈Z

z4 =
{
λ̄(c4)k

}
|k|≥m + 120 {(c1)k}|k|≥m + 154 {(c2)k}|k|≥m + 71 {(c3)k}|k|≥m

+14 {(c4)k}|k|≥m + 3
{

(ã2cI1)k
}
|k|<m + 3

{
(ã2c1)k

}
|k|≥m

+c0 {(b4)k}k∈Z + b0 {(c4)k}k∈Z

The second term of (4.72) is A[Df(x̄+ b)−A†]c = Az given component-wise by

(
A[Df(x̄+ b)−A†]c

)
j

= (Az)j = Aλ,jz0 +
4∑
i=1

Aai,jzi.

Consider b̃ = (b̃0, b̃1, b̃2, b̃3, b̃4), c̃ = (c̃0, c̃1, c̃2, c̃3, c̃4) ∈ B(1) such that b = b̃r and c = c̃r for
r > 0. We now construct an upper bound for |(Az)j | for the cases j = 0, 1, 2, 3, 4.
Case 1: a bound on |(Az)0|. Note first that since ‖b̃j‖ν , ‖c̃j‖ν ≤ 1 for j = 1, 2, 3 and
‖b̃4‖ν , ‖c̃4‖ν ≤ 1

β , then for j = 1, 2, 3, |(b̃j)k|, |(c̃j)k| ≤ 1
ν|k|

for all k ∈ Z and |(b̃4)k|, |(c̃4)k| ≤
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1/β

ν|k|
. Hence,

|z0| ≤ 2

4∑
j=1

(∣∣∣(b̃j)−1

∣∣∣+
∣∣∣(b̃j)0

∣∣∣+
∣∣∣(b̃j)1

∣∣∣) (|(c̃j)−1|+ |(c̃j)0|+ |(c̃j)1|) r2

≤ 2
3∑
j=1

(
1

ν
+ 1 +

1

ν

)(
1

ν
+ 1 +

1

ν

)
r2 + 2

1

β

(
1

ν
+ 1 +

1

ν

)(
1

ν
+ 1 +

1

ν

)
r2

=

(
6 +

2

β

)(
ν + 2

ν

)2

r2.

As before, let α
def
= ã− ā(γ) ∈ B0(rγ) ⊂ `1ν . Then, ‖α‖ν ≤ rγ . Let α̃ such that α = α̃rγ

so that ‖α̃‖ν ≤ 1. We have that

(ã2cI1)F = ((ā(γ) + α̃rγ)2cI1)F = ((ā(γ))2cI1)F + 2(ā(γ)α̃cI1)F rγ + (α̃2cI1)F r
2
γ .

Letting

Z
(1)
0

def
= 3|Aa4,0 · (|ā(γ)|2ωI)F |+ 6‖Aa4,0‖∞ν ‖ā(γ)‖νrγ + 3‖Aa4,0‖∞ν r2

γ (4.75)

Z
(2)
0

def
= |Aλ,0|

(
6 +

2

β

)(
ν + 2

ν

)2

+ 2‖Aa1,0‖∞ν + 2‖Aa2,0‖∞ν (4.76)

+2‖Aa3,0‖∞ν +
2

β
‖Aa4,0‖∞ν ,

we get that

|(Az)0| ≤ |Aλ,0z0|+
4∑
i=1

|Aai,0zi|

≤ |Aλ,0|
(

6 +
2

β

)(
ν + 2

ν

)2

r2 + 2‖Aa1,0‖∞ν r2 + 2‖Aa2,0‖∞ν r2 + 2‖Aa3,0‖∞ν r2

+
2

β
‖Aa4,0‖∞ν r2 + 3|Aa4,0 · (ã2cI1)F |

≤

(
|Aλ,0|

(
6 +

2

β

)(
ν + 2

ν

)2

+ 2‖Aa1,0‖∞ν + 2‖Aa2,0‖∞ν + 2‖Aa3,0‖∞ν +
2

β
‖Aa4,0‖∞ν

)
r2

+
(

3|Aa4,0 · (|ā(γ)|2ωI)F |+ 6‖Aa4,0‖∞ν ‖ā(γ)‖νrγ + 3‖Aa4,0‖∞ν r2
γ

)
r

= Z
(1)
0 r + Z

(2)
0 r2.

Case 2: a bound on ‖(Az)j‖ν , j = 1, 2, 3, 4.

For j = 1, letting

Z
(1)
1

def
=

|λ̄|+ 1

ω̃m
+ 3‖A(m)

a4,1
(|ā(γ)|2ωI)F ‖ν + 6‖Aa4,1‖B(`1ν ,`

1
ν)‖ā(γ)‖νrγ (4.77)

+3‖Aa4,1‖B(`1ν ,`
1
ν)r

2
γ

Z
(2)
1

def
= ‖A(m)

λ,1 ‖ν
(

6 +
2

β

)(
ν + 2

ν

)2

+ 2‖Aa1,1‖B(`1ν ,`
1
ν) (4.78)

+2‖Aa2,1‖B(`1ν ,`
1
ν) + 2‖Aa3,1‖B(`1ν ,`

1
ν) +

2

β
‖Aa4,1‖B(`1ν ,`

1
ν)
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we get that

‖(Az)1‖ν ≤ ‖A(m)
λ,1 ‖ν |z0|+ ‖Aa1,1z1‖ν + ‖Aa2,1z2‖ν + ‖Aa3,1z3‖ν + ‖Aa4,1z4‖ν

≤ ‖A(m)
λ,1 ‖ν

(
6 +

2

β

)(
ν + 2

ν

)2

r2 +
∑
|k|≥m

∣∣∣∣ λ̄iω̃k (c1)k

∣∣∣∣ ν|k| + ∑
|k|≥m

∣∣∣∣ 1

iω̃k
(c2)k

∣∣∣∣ ν|k|
+2‖A(m)

a1,1
‖B(`1ν ,`

1
ν)r

2 + 2‖A(m)
a2,1
‖B(`1ν ,`

1
ν)r

2 + 2‖A(m)
a3,1
‖B(`1ν ,`

1
ν)r

2

+3‖A(m)
a4,1

(ã2cI1)F ‖ν +
2

β
‖A(m)

a4,1
‖B(`1ν ,`

1
ν)r

2

≤ ‖A(m)
λ,1 ‖ν

(
6 +

2

β

)(
ν + 2

ν

)2

r2 +

(
|λ̄|+ 1

ω̃m

)
r

+2

(
‖A(m)

a1,1
‖B(`1ν ,`

1
ν) + ‖A(m)

a2,1
‖B(`1ν ,`

1
ν) + ‖A(m)

a3,1
‖B(`1ν ,`

1
ν) +

1

β
‖A(m)

a4,1
‖B(`1ν ,`

1
ν)

)
r2

+
(

3‖A(m)
a4,1

(|ā(γ)|2ωI)F ‖ν + 6‖A(m)
a4,1
‖B(`1ν ,`

1
ν)‖ā(γ)‖νrγ + 3‖A(m)

a4,1
‖B(`1ν ,`

1
ν)r

2
γ

)
r

= Z
(1)
1 r + Z

(2)
1 r2.

Similarly, for j = 2, letting

Z
(1)
2

def
=

|λ̄|+ 1

ω̃m
+ 3‖A(m)

a4,2
(|ā(γ)|2ωI)F ‖ν + 6‖A(m)

a4,2
‖B(`1ν ,`

1
ν)‖ā(γ)‖νrγ (4.79)

+3‖A(m)
a4,2
‖B(`1ν ,`

1
ν)r

2
γ

Z
(2)
2

def
= ‖A(m)

λ,2 ‖ν
(

6 +
2

β

)(
ν + 2

ν

)2

+ 2‖A(m)
a1,2
‖B(`1ν ,`

1
ν) (4.80)

+2‖A(m)
a2,2
‖B(`1ν ,`

1
ν) + 2‖A(m)

a3,2
‖B(`1ν ,`

1
ν) +

2

β
‖A(m)

a4,2
‖B(`1ν ,`

1
ν),

we get that

‖(Az)2‖ν ≤ Z(1)
2 r + Z

(2)
2 r2.

For j = 3, we let

Z
(1)
3

def
=

|λ̄|+ 1/β

ω̃m
+ 3‖A(m)

a4,3
(|ā(γ)|2ωI)F ‖ν + 6‖A(m)

a4,3
‖B(`1ν ,`

1
ν)‖ā(γ)‖νrγ (4.81)

+3‖A(m)
a4,3
‖B(`1ν ,`

1
ν)r

2
γ

Z
(2)
3

def
= ‖A(m)

λ,3 ‖ν
(

6 +
2

β

)(
ν + 2

ν

)2

+ 2‖A(m)
a1,3
‖B(`1ν ,`

1
ν) (4.82)

+2‖A(m)
a2,3
‖B(`1ν ,`

1
ν) + 2‖A(m)

a3,3
‖B(`1ν ,`

1
ν) +

2

β
‖A(m)

a4,3
‖B(`1ν ,`

1
ν)

to get that

‖(Az)3‖ν ≤ Z(1)
3 r + Z

(2)
3 r2.
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Finally, for j = 4, letting

Z
(1)
4

def
=

|λ̄|/β + 120 + 154 + 71 + 14/β

ω̃m
+ 3‖A(m)

a4,4
(|ā(γ)|2ωI)F ‖ν (4.83)

+6‖A(m)
a4,4
‖B(`1ν ,`

1
ν)‖ā(γ)‖νrγ + 3‖A(m)

a4,4
‖B(`1ν ,`

1
ν)r

2
γ

+
1

ω̃m

(
‖ā(γ)‖2ν + 2‖ā(γ)‖νrγ + r2

γ

)
Z

(2)
4

def
= ‖A(m)

λ,4 ‖ν
(

6 +
2

β

)(
ν + 2

ν

)2

+ 2‖A(m)
a1,4
‖B(`1ν ,`

1
ν) (4.84)

+2‖A(m)
a2,4
‖B(`1ν ,`

1
ν) + 2‖A(m)

a3,4
‖B(`1ν ,`

1
ν) +

2

β
‖A(m)

a4,4
‖B(`1ν ,`

1
ν)

we have that
‖(Az)4‖ν ≤ Z(1)

4 r + Z
(2)
4 r2.

Definition of the radii polynomials for the Floquet problem.

Using the estimates of Section 4.3.2, we can compute bounds Y0, Y1, Y2, Y3, Y4, such
that |(T (x̄)− x̄)0| ≤ Y0 and that ‖(T (x̄)− x̄)j‖ν ≤ Yj for j = 1, 2, 3, 4.

Recall (4.73), (4.75) and (4.76), so that we can define the first radii polynomial by

p0(r) = Y0 +
(
Z

(0)
0 + Z

(1)
0 − 1

)
r + Z

(2)
0 r2. (4.85)

For j = 1, 2, 3, recall (4.74), (4.77), (4.78), (4.79), (4.80), (4.81) and (4.82) to define

p1(r) = Y1 +
(
Z

(0)
1 + Z

(1)
1 − 1

)
r + Z

(2)
1 r2 (4.86)

p2(r) = Y2 +
(
Z

(0)
2 + Z

(1)
2 − 1

)
r + Z

(2)
2 r2 (4.87)

p3(r) = Y3 +
(
Z

(0)
3 + Z

(1)
3 − 1

)
r + Z

(2)
3 r2. (4.88)

Finally, recalling (4.74), (4.83) and (4.84),

p4(r) = Y4 +

(
Z

(0)
4 + Z

(1)
4 − 1

β

)
r + Z

(2)
4 r2. (4.89)

4.3.3 Proof of Theorem 4.17

Fix the geometric decay rate to be ν = 1.3 and the weight β in the Banach space Xβ as
defined in (4.63) to be β = 1/20.

We computed each solution of (4.62) using a finite dimensional reduction of dimension
8(16)−3 = 125, that is we used 16 Fourier coefficients to compute each vi. Using Newton’s
method, we computed four numerical approximations x̄1, x̄2, x̄3, x̄4 ∈ C125 of f(x) = 0
given by (4.62). Denote by λ̄j the first component of x̄j for j = 1, 2, 3, 4. Note that these
(approximate) Floquet exponents are given by

λ̄1 = 1, λ̄2 = 0, λ̄3 = −7, λ̄4 = −8.
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For the proof, we fixed m = 56 > 3mγ − 2 = 46. In a separate computer program
in MATLAB that can be found at [6] and which uses the Matlab toolbox INTLAB for
reliable computing [20], we construct the five quadratic radii polynomials p0(r), . . . , p4(r)
as defined in Section 4.3.2, and then apply Proposition 4.21 to show that

I def
=

4⋂
k=0

{r > 0 | pk(r) < 0} 6= ∅.

For each approximate solution x̄1, x̄2, x̄3, x̄4, the program verifies with interval arithmetic
that I ⊂ [r− r+]. These radii are shown in Figure 7.

approximation r− r+
x̄1 8.418031060851105× 10−10 6.065683532607337× 10−3

x̄2 2.723686358612173× 10−9 2.861864807487595× 10−3

x̄3 4.395973655577131× 10−10 7.100507274414346× 10−4

x̄4 1.007563239163118× 10−10 2.325334375579078× 10−3

Figure 7: For each approximate solution, this figure shows the radii r−, r+ for which it is
proved that I ⊂ [r− r+].

Moreover, for each j = 1, 2, 3, 4, there exists a unique x̃j ∈ Bx̄j (r−) such that T (x̃j) =

x̃j . Denote by λ̃j the first component of x̃j for j = 1, 2, 3, 4 We then have that

|λ̄1 − λ̃1| ≤ 8.418031060851105× 10−10

|λ̄2 − λ̃2| ≤ 2.723686358612173× 10−9

|λ̄3 − λ̃3| ≤ 4.395973655577131× 10−10

|λ̄4 − λ̃4| ≤ 1.007563239163118× 10−10.

Let τ be the period of the periodic solution γ rigorously computed in Section 4. Note that
we have a proof that τ ∈ [1.908097232050663 , 1.908097232051545]. Define the Floquet
multipliers µ1, µ2, µ3 and µ4 by

µj
def
= eλ̃jτ , j = 1, 2, 3, 4. (4.90)

Note that, since the monodromy matrix associated with γ is real, and the balls around
each λ̃j are disjoint, the Floquet exponents, as well as the Floquet multipliers, are real.
Using this fact, by means of interval arithmetic we obtain that

µ1 ∈ [6.740251443896278 , 6.740251465555177]

µ2 ∈ [9.999999948029414 , 1.000000005197059]

µ3 ∈ [1.582221595847551× 10−6 , 1.582221598511634× 10−6]

µ4 ∈ [2.347422210428808× 10−7 , 2.347422211347963× 10−7].

We therefore have the proof of Theorem 4.17. All the steps from this section are
performed by running the computer program script proof Floquet.m available at [6].
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5 Some extensions

In this section we will sketch an argument which allows us to study (1.1) by looking at it
as a perturbation of (Uq).

First, we notice that the invariance described in Remark 2.2, which holds for (Uq),
does not hold for more general forms of (1.1). For this reason, on (1.1) we perform the
change of variables (2.11). With this choice, if u solves (1.1) with initial condition u0,
then the function w solves the equation

w′′′′(s) +N(w)(s) + e−s(η+4)T η+4f
(
T−ηw(s)eηs

)
+ κT 2e−2sM(w)(s) = 0, (5.1)

where N is defined in (2.5) and M is defined as

M(w) := w′′ + (2η + 1)w′ + η(η + 1)w,

with initial condition
w0 = LD(T )u0. (5.2)

In the particular case f = µ |t|p−1 t+ |t|q−1 t, (5.1) becomes

w′′′′(s) +N(w)(s) + |w|q−1w(s)+

+ µ T
4 q−p
q−1 e

−4 q−p
q−1

s |w|p−1w(s) + κ T 2 e−2sM(w)(s) = 0. (5.3)

This equation is autonomous if and only if µ = κ = 0. Note that (5.3) does not admit a
periodic solution if µ 6= 0 or κ 6= 0 since the non-autonomous term is non-periodic. We
are, therefore, forced to modify our approach. Yet, we will be able to do so building upon
the knowledge obtained for the case κ = µ = 0 in Sections 2 and 3. In what follows we
shall make use of the following assumption

(Wq) has a τ − periodic solution γ
which possesses a 3-dimensional stable manifold S
with corresponding Floquet exponents λ1 and λ2.

(5.4)

For the sake of simplicity, we will provide a detailed proof only for the case µ = 0,
namely we will consider the equation

w′′′′(s) +N(w)(s) + |w|q−1w(s) + ` e−2sM(w)(s) + |w|q−1w(s) = 0. (5.5)

The remaining cases (κ = 0, µ 6= 0 and µ 6= 0 6= κ) can be handled similarly, and we will
state the results below but leave the proof to the interested readers.

We begin with a result for (5.5), which will be then translated into a result for the
corresponding form of equation (1.1).

Theorem 5.1. Assume that (5.4) holds. Then there exists a 4-dimensional manifold
S̃ ⊂ R5 containing S × {0} and such that, if (w0, z0) ∈ S̃, then the solution w of (5.5)
with ` = z0 and initial condition w0 approaches exponentially γ with asymptotic phase,
i.e. there exist s0 ∈ [0, τ) and c > 0 such that

|γ(s− s0)− w(s)| ≤ ce−λs, for all s > 0, (5.6)

with λ < min{2, |<(λ1)| , |<(λ2)|}.
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The key idea behind our result is to recast the non-autonomous 4th order equation
(5.5) as an autonomous system, namely:{

w′′′′(s) +N(w)(s) + |w|q−1w(s) + z(s)M(w)(s) + |w|q−1w(s) = 0

z′(s) = −2z(s)
, (5.7)

with initial conditions w(0) = w0 and z(0) = `.
Relabeling the unknown w̃ = (w0, w1, w2, w3, w4) = (w0, w1, w2, w3, z) = (w, z), we

have that the system (5.7) can be stated as

w̃′(s) = g̃(w̃) :=


w1(s)
w2(s)
w3(s)

−w4(s)M(w)(s)−N(w)(s)− |w0(s)|q−1w0(s)
−2w4(s)

 = (5.8)

=


g(w(s))

0

+


0
0
0

−w4(s)M(w)(s)
−2w4(s)

 ,

where g is defined in (2.7). Having assumed that the “unperturbed problem” (Wq), i.e.
(5.5) with ` = 0, admits a periodic solution with a 3-dimensional stable manifold S (see
(5.4)), we will appropriately “grow” S into a 4-dimensional invariant manifold and obtain
asymptotically periodic solutions of (5.8) with |w4(0)| small.

Proof. We begin noticing that the function γ̃ = [γ0, γ1, γ2, γ3, γ4] := [γ, 0] is a periodic
solution of (5.7), and that, if w̃ is a solution of (5.7) with initial condition w̃(0) ∈ S×{0},
then w̃(s) approaches γ̃(s) with asymptotic phase as s → +∞, that is to say that γ̃ has
a stable manifold S̃ which contains the 3-dimensional manifold S × {0}.

Since equation (5.5) and system (5.7) are equivalent, the claim follows by proving that
γ̃ has a 4-dimensional stable manifold S̃.

In order to study the stability of the periodic orbit γ̃ we need to study its Floquet ex-
ponents. Let X̃(t) be the principal matrix solution for the variational equation associated
with γ̃, i.e. the solution of the Cauchy problem

X̃ ′(t) = A0(t)X̃(t), X̃(0) = I5, (5.9)

where
A0(t) := g̃′(γ̃(t)),

and I5 is the 5× 5 identity matrix. Recalling that γ̃4 = 0, we have that

g̃′(γ̃) =

 g′(γ)

0
0
0
0

0 0

+

 0

0
0
0

−M(γ)
0 −2

 . (5.10)
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Evaluating X̃(t) at t = τ we obtain

X̃(τ) =

 X(τ)

∗
∗
∗
∗

0 e−2τ

 . (5.11)

where X(τ) is the monodromy matrix associated with γ.
From this fact we easily recognize that the Floquet exponents associated with γ̃

are those associated with γ along with −2. Therefore, the stable manifold of γ̃ is
4-dimensional. Moreover, because of (5.11), the tangent bundle of S and the vector
[0, 0, 0, 0, 1] are transverse along γ̃. This concludes the proof. 2

Remark 5.2. Under the same hypotheses of Theorem 5.1, and using the same notations
as in its proof, we notice that the 2-dimensional unstable manifold U of γ is contained
in the unstable manifold Ũ for the periodic solution γ̃. Actually, we have U × {0} = Ũ .
Indeed, one inclusion is trivial, whereas the other follows by a dimensional argument.

As a consequence we have that there is no solution of (5.5) with ` 6= 0 approaching γ
as s→ −∞.

As a consequences of Theorem 5.1, we can characterize the blow up profile for some
solutions of the equation

u′′′′(r) + κu′′(r) + |u|q−1 u(r) = 0. (5.12)

Before presenting these results, we set

D̃(α) :=

[
D(α) 0

0 α2

]
=


αη 0 0 0 0
0 αη+1 0 0 0
0 0 αη+2 0 0
0 0 0 αη+3 0
0 0 0 0 α2

 , (5.13)

and

L̃ :=

[
L 0
0 1

]
=


1 0 0 0 0
−η 1 0 0 0
η2 −2η − 1 1 0 0
−η3 3η2 + 3η + 1 −3η − 3 1 0

0 0 0 0 1

 . (5.14)

Theorem 5.3. Assume that (5.4) holds, and let S̃ ⊂ R5 be the 4-dimensional manifold
established in Theorem 5.1. Define Ω̃ := D̃L̃−1S̃.

The set Ω̃, as subset of R5, is unbounded, arc-connected, symmetric with respect to the
hyperplane κ = 0 (that is, if (w0, κ) ∈ Ω̃ then (−w0, κ) ∈ Ω̃) and with non-empty interior
which contains L−1γ.

Let (u0, κ) ∈ Ω̃. Then, the solution u of (5.12) with initial condition u0 blows up at
T > 0, where T is such that L̃D̃(T )(u0, κ) ∈ S̃, and u can be written as in (2.11), that is

u(r) =

(
1

T − r

) 4
q−1

w

(
ln

(
T

T − r

))
, (5.15)
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where w approaches asymptotically the periodic solution γ as in (5.6), with λ < min{2, |<(λ1)| , |<(λ2)|}.
In particular, if q > 3 and 4

q−1 < min{|<(λ1)| , |<(λ2)|}, then there exist s0 > 0 and
c > 0 such that∣∣∣∣∣u(r)−

(
1

T − r

) 4
q−1

γ

(
ln

(
T

T − r

)
− s0

)∣∣∣∣∣ < c(T − r)a, for all r ∈ [0, T ), (5.16)

where a > 0 does not depend on u0 nor on κ.

Proof. Let u0, κ, and u as in the hypotheses of the theorem. Let w be defined by
(5.15), or equivalently by (2.10). As written above, w solves (5.5) with initial condition
w0 = LD(T )u0 and ` = κT 2. That is, w solves (5.5) with (w0, `) ∈ S̃. The first part of
the thesis follows by Theorem 5.1.

The proof of the properties of Ω̃ follows by the same arguments used in the proof of
Theorem 3.1.

The estimate (5.16) is a consequence of (5.6), the transformation (2.11) and the choice
a = λ− η > 0. 2

We recall that assumption (5.4) holds for the values of q considered in Theorem 2.25.
In which case, we have the following

Corollary 5.4. Let q ∈ (q−, q+) be as in Theorem 2.25. Then there exist a τ -periodic
function γ and a 4-dimensional manifold S̃ ⊂ R5 such that, if (u0, κ) ∈ D̃L̃−1S̃, the
solution u of (5.12) with initial condition u0 blows up at T > 0, where T is such that
L̃D̃(T )(u0, κ) ∈ S̃, and u can be written as in (5.15) with w approaching asymptotically
the periodic solution γ as in (5.6), with λ < min{2, |<(λ1)| , |<(λ2)|}.

In particular if q ∈ (3, q+), then (5.16) holds with a > 0 independent of u0 nor of κ
and suitable s0 > 0 and c > 0.

Proof. We can always assume that the Floquet exponents of the stable manifold Sq for
q < q+ are larger than 2 > 4

q−1 (indeed they lie in neighborhoods of 8 and 7). The claim
follows from Theorem 5.3. 2

The proof of Theorem 1.5 follows from the following remark.

Remark 5.5. Let Γ̃ = O(γ̃), that is Γ̃ = Γ × {0} where Γ = O(γ). Since Ω̃ contains
an open set which in turn contains the 1-dimensional compact manifold M := L̃−1Γ̃, by
compactness argument we have that there exists an open neighborhood of M with uniform
radius κ0 > 0. More precisely, for each p ∈ M, the ball B∞(p, κ0) ⊂ R5 (i.e. the ball in
the infinity norm centered at p of radius κ0) is contained in Ω̃, i.e.⋃

p∈M
B∞(p, κ0) ⊂ Ω̃.

Let Ω1 ⊂ R4 be the open set obtained by intersecting
⋃

p∈MB∞(p, κ0) with the hyper-

plane R4 × {κ} with |κ| < κ0, namely

Ω1 × {κ} =
⋃

p∈M
B∞(p, κ0) ∩ (R4 × {κ}).

68



Note that the set Ω1 does not depend on the particular choice of κ since we have used the
ball in the infinity norm and each point p ∈M lies on R4 × {0}.

Finally, we have that, if u0 ∈ Ω1 and |κ| < κ0, then (u0, κ) ∈ Ω̃ and hence, for the
solution of (5.12) with initial condition u0, the conclusions of Theorem 5.3 apply.

Now we consider the problem

w′′′′(s) +N(w)(s) + |w|q−1w(s) + ` e
−4 q−p

q−1
s |w|p−1w(s) = 0, (5.17)

with q > p ≥ 1. Arguing as for Theorem 5.1, we deduce the following results.

Theorem 5.6. Assume that (5.4) holds. Then there exists a 4-dimensional manifold
S̃ ⊂ R5 containing S × {0}, such that if (w0, z0) ∈ S̃, then the solution w of (5.17)
with ` = z0 and initial condition w0 approaches exponentially γ as in (5.6), with λ <
min{4 q−pq−1 , |<(λ1)| , |<(λ2)|}.

Analogously to the previous results, below we give the consequences of Theorem 5.6
for the equation

u′′′′(r) + |u|q−1 u(r) + µ |u|p−1 u(r) = 0. (5.18)

To this end we define

D̃1(α) :=

[
D(α) 0

0 αη(q−p)

]
=


αη 0 0 0 0
0 αη+1 0 0 0
0 0 αη+2 0 0
0 0 0 αη+3 0

0 0 0 0 αη(q−p)

 , (5.19)

Theorem 5.7. Assume that (5.4) holds, and let S̃ ⊂ R5 be the 4-dimensional manifold
established in the Theorem 5.6. Define Ω̃ := D̃L̃−1S̃.

The set Ω̃, as subset of R5, is unbounded, arc-connected, symmetric with respect to the
hyperplane µ = 0 (that is if (w0, µ) ∈ Ω̃ then (−w0, µ) ∈ Ω̃) and with non-empty interior
which contains L−1γ.

Let (u0, µ) ∈ Ω̃. Then the solution u of (5.18) with initial condition u0 blows up at
T > 0, where T is such that L̃D̃(T )(u0, µ) ∈ S̃, and u can be written as in (5.15) with w ap-
proaching asymptotically the periodic solution γ as in (5.6), with λ < min{4 q−pq−1 , |<(λ1)| , |<(λ2)|}.

In particular if q > p+ 1 and 4
q−1 < min{|<(λ1)| , |<(λ2)|}, then there exist s0 > 0 and

c > 0 such that (5.16) holds with a > 0 independent of u0 and µ.

In particular we obtain the following

Corollary 5.8. Let q ∈ (q−, q+) be as in Theorem 2.25. Then there exist a τ -periodic
function γ and a 4-dimensional manifold S̃ ⊂ R5 such that if (u0, µ) ∈ D̃1L̃

−1S̃, then
the solution u of (5.18) with initial condition u0 blows up at T > 0 where T is such that
L̃D̃(T )(u0, µ) ∈ S̃, and u can be written as in (5.15) with w approaching asymptotically
the periodic solution γ as in (5.6), with λ < min{4 q−pq−1 , |<(λ1)| , |<(λ2)|}.

In particular if q > p+ 1, then (5.16) holds with a > 0 independent of u0 and µ, and
suitable s0 > 0 and c > 0.

69



The proofs of the results above are very similar to the ones provided for Theorems 5.1,
5.3 and Corollary 5.4. The proof of Theorem 1.4 is based on arguments similar to those
given in Remark 5.5. We leave them to the interested readers.

Through the same ideas exposed so far in this section, one can obtain several results
by perturbing equation (Uq) (and consequently (Wq)) in different ways.

For instance, we consider as a last example the “doubly perturbed” equation:

u′′′′(r) + κu′′(r) + |u|q−1 u(r) + µ |u|p−1 u(r) = 0. (5.20)

In this case the idea is to embed the corresponding non-autonomous equation in w (see
(5.3)) in an autonomous system of order 6.

In this case, defining, analogously to the previous case, D̃2 and L̃2 as

D̃2(α) :=

D(α) 0 0
0 α2 0

0 0 α
4 q−p
q−1

 and L̃2 :=

L 0 0
0 1 0
0 0 1

 , (5.21)

we obtain the following result.

Theorem 5.9. Assume that (5.4) holds. Then there exists a 5-dimensional manifold
S̃ ⊂ R6 containing S×{(0, 0)} and such that if (u0, κ, µ) ∈ D̃2L̃

−1
2 S̃, then the solution u of

(5.20) with initial condition u0 blows up at T > 0 where T is such that L̃D̃(T )(u0, κ, µ) ∈
S̃, and u can be written as in (5.15) with w approaching asymptotically the periodic solution
γ as in (5.6), with λ < min{2, 4 q−pq−1 , |<(λ1)| , |<(λ2)|}.

In particular if q > p + 1, q > 3 and 4
q−1 < min{|<(λ1)| , |<(λ2)|}, then there exist

s0 > 0, c > 0 such that (5.16) holds with a > 0 independent of u0 and µ.

We leave the proof and the discussion on the convergence to the blow up profile to the
interested readers.

Remark 5.10. Finally, below we list some further perturbations that can be handled with
the same methods presented in this section.

1) The nonlinearity f of (1.1) could be chosen as

f(t) = |t|q−1 t+ µ1 |t|p1−1 t+ µ2 |t|p2 ,

with q > pj ≥ 1 (j = 1, 2). In this case the corresponding non-autonomous equation in w
should be recast into an autonomous system of order 7.

2) More linear perturbations could be obtained by adding further derivatives of u:

u′′′′(r) + µ3u
′′′(r) + µ2u

′′(r) + µ1u
′(r) + µu(r) + |u|q−1 u(r) = 0. (5.22)

3) Further nonlinear perturbations can be studied similarly. For instance, for the equa-
tion

u′′′′(r) + κu′′(r) + |u|q−1 u(r) +G(u, u′, u′′, u′′′)(r) = 0, (5.23)

with
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• G = µuu′, and q > 7/3;

• G = µu′2, and q > 3;

• G = µu′ u′′, and q > 5;

• G = µuu′′, and q > 3;

• more generally, if G is C1 function homogeneous of degree dj with respect to u(j) with
dj = 0 (that is G does not depend on u(j)) or dj ≥ 1, and q > 4d0+3d1+2d2+d3

4−d1−2d2−3d3
> 0;

results similar to the previous ones could be obtained.

6 Numerics and conjectures

We begin this section by showing how applying the transformation (2.11) is also of great
benefit in the numerical investigation of equations of the general type given in (1.1).
Motivated by the results we have obtained in Sections 3 and 5, and by the numerical
experiments reported in [11, 12], we expect many solutions of (1.1) to blow up in finite
time through progressively wider oscillations, for several types of non-linearity f . This
behavior poses several unavoidable difficulties in their numerical integration, which can
be effectively mitigated by turning to an “auxiliary equation” obtained through (2.11).
Below we illustrate this procedure, and prove its usefulness by means of a few examples.

Suppose we consider u0 ∈ R4, and are interested in gaining quantitative, as well as
qualitative, information about the solution u = u(t) of (1.1) having initial condition u0

(e.g., its blow-up time, its blow-up profile, or its sequence of consecutive zeros) by means of
numerical experiments. Assume that u blows up at T < +∞. Instead of working directly
with u and (1.1), we perform the transformation (2.11) and obtain a new differential
equation for w, namely (5.1), which we refer to as the auxiliary equation3. Let wα = wα(s)
be the solution of the auxiliary equation having initial condition LD(α)u0, with α > 0. It
follows from (2.10) that, if α < T , then wα vanishes exponentially as s→ +∞, whereas, if
α > T , then wα blows up in finite time. Ideally, α should be chosen as close as possible to
the blow-up time T (which, of course, is a priori unknown) in order to be able to recover
from wα, through the transformation (2.11), the sought information about u. What we
do in practice is computing the largest floating-point number ᾱ > 0 such that wᾱ(s)→ 0
as s→ +∞. We do this by applying the bisection method to the function

ρ : α ∈ F 7→ ρ(α) :=

{
1 if wα(s)→ 0 as s→ +∞
−1 if wα(s) blows up at S+ < +∞

,

where F represents the set of floating point numbers in use.
Once we have obtained ᾱ, we integrate numerically the auxiliary equation with initial

condition LD(ᾱ)u0, and obtain the sought information about u through (2.11).

Some observations follow in order:

3We recall that this notion has been extensively used throughout the paper. For instance, (Wq) is the
auxiliary equation for (Uq).
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• If we restrict our attention to the equation (Uq) and recall equation (2.29), we can
interpret ᾱ as the “numerical gauge” of u0 with respect to L−1B; in this case, by
Proposition 2.15, it is legitimate to expect ᾱ being a good approximation of the
blow-up time T ;

• For initial conditions u0 that satisfy the typical assumption of many of the theorems
in Sections 3 and 5 (say, those in Ωq of Theorem 3.1), wᾱ is known to converge
asymptotically to a periodic function γ. Numerically, this convergence cannot be
observed as it is hampered by the instability of γ (this justifies the two alternatives
for ρ(α) given above); yet, we expect the outlined procedure to yield results that are
more accurate than the ones we could obtain by working with u;

• We point out that in –all– the experiments we have performed, we have always
observed wᾱ to approach asymptotically a periodic function (before instability would
take over), even in the cases not currently covered by our theory; this suggests that
results stronger than the ones we have been able to prove hold.

Below we present some examples in which, for a given value of u0, we have applied the
procedure outlined above to compute an estimate of the blow-time of u, and of as many
zeros u as we could compute.

All experiments reported have been performed in MATLAB, with floating-point num-
bers represented in the (default) IEEE Standard 754 double-precision format. Numerical
integration of all differential equations has been performed through MATLAB’s solver
ode45 with the tightest absolute/relative possible tolerances.

Example 6.1. For several different combinations of f and κ, we have computed the blow-
up time T and a few consecutive zeros zj of the solution u of equation (1.1) having initial
condition u0 = [1, 0, 0, 0]. The computations have been performed using the procedure
outlined above, and the results are reported in Table 6. The second column of the table can
be compared with [11, Numerical result 5]. We believe our results to be more accurate than
the ones presented there because the auxiliary equation is easier to integrate numerically,
and the transformation (2.11) preserves the relative error in mapping zeros of w (solution
of the auxiliary equation) in zeros of u.

Much of the main results of this paper, collected in Sections 3 and 5, hold under
assumptions that we may recap as follows: (1) initial conditions belong to a specified
subset of R4 (say, Ωq of Theorem 3.1), and (2) q belongs to a certain neighborhood
(q−, q+) of 3. These restrictions on Ωq and q have much to do with the tools that have
been used to prove them. Specifically, the size of Ωq is limited by the fact that the stable
manifold Sq is only guaranteed to be –locally– transversal to the “fibers” generated by D,
whereas the choice of q is influenced by the arguments in Section 4 that require analyticity
of the non-linearity in (Wq) (which only holds if q is an odd integer) and by the fact that
the estimates required to carry out the computer assisted proofs in that section have been
sought only for q = 3.

We believe that the situation is largely that same for all other values of q > 1, and
that all non-trivial solutions blow-up according to the same profile. We conclude this
section by formulating two conjectures. Both are supported my numerical experiments,
and currently remain open.
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f(t) = t3, κ = 0 f(t) = t+ t3, κ = 0 f(t) = t+ t3, κ = 2 f(t) = t+ t3, κ = −2

T 5.951916305391872 5.270364367304759 6.536969879267078 4.620922759247079

z1 2.235187278061087 1.873684837690039 2.008051005605458 1.774393022413332
z2 4.524133986157715 3.967407791337167 4.366943378886131 3.659723928257193
z3 5.401968847922506 4.768530324852534 5.642264262692262 4.255940618753756
z4 5.740088413057987 5.077069010517033 6.188137669652720 4.480626289607646
z5 5.870324771904173 5.195911169058382 6.402357081555895 4.566899868286294
z6 5.920489007203656 5.241686601847287 6.485105553736973 4.600115236864337
z7 5.939811188240718 5.259318310834631 6.516992037647651 4.612908203704770
z8 5.947253675458953 5.266109664694681 6.529274798730553 4.617835728418425
z9 5.950120360947892 5.268725547663634 6.534005897595732 4.619733701754597
z10 5.951224546343381 5.269733129340024 6.535828217327979 4.620464759967336
z11 5.951649854732570 5.270121228061048 6.536530135713155 4.620746347807399
z12 5.951813674347151 5.270270715314329 6.536800499538011 4.620854809367000
z13 5.951876774127930 5.270328294578786 6.536904637850143 4.620896586419438
z14 5.951901078801974 5.270350472869060 6.536944749680997 4.620912678038606
z15 5.951910440437991 5.270359015467930 6.536960199892745 4.620918876183099
z16 5.951914046338187 5.270362305892689 6.536966150980939 4.620921263574620
z17 5.951915435253137 5.270363573293309 6.536968443211705 4.620922183146321
z18 5.951915970233207 5.270364061468682 6.536969326129535 4.620922537345497
z19 5.951916176295987 5.270364249503301 6.536969666210434 4.620922673775378
z20 5.951916255666924 5.270364321930179 6.536969797202256 4.620922726325224
z21 5.951916286238895 5.270364349827450 6.536969847657481 4.620922746566292
z22 5.951916298014560 5.270364360572876 6.536969867091745 4.620922754362714
z23 5.951916302550292 5.270364364711783 6.536969874577403 4.620922757365727
z24 5.951916304297358 5.270364366306000 6.536969877460718 4.620922758522423
z25 5.951916304970290 5.270364366920059 6.536969878571308 4.620922758967957
z26 5.951916305229489 5.270364367156581 6.536969878999084 4.620922759139567
z27 5.951916305329327 5.270364367247684 6.536969879163854 4.620922759205668
z28 5.951916305367781 5.270364367282775 6.536969879227319 4.620922759231129
z29 5.951916305382594 5.270364367296292 6.536969879251766 4.620922759240935
z30 5.951916305388299 5.270364367301497 6.536969879261181 4.620922759244713
z31 5.951916305390498 5.270364367303503 6.536969879264808 4.620922759246167
z32 5.951916305391344 5.270364367304275 6.536969879266205 4.620922759246728
z33 5.951916305391669 5.270364367304573 6.536969879266743 4.620922759246945
z34 5.951916305391795 5.270364367304688 6.536969879266950 4.620922759247027
z35 5.951916305391843 5.270364367304731 6.536969879267030 4.620922759247059
z36 5.951916305391863 5.270364367304748 6.536969879267060 4.620922759247072
z37 5.951916305391869 5.270364367304754 6.536969879267073 4.620922759247076

Table 1: Outcome of the experiments illustrated in Example 6.1.

Conjecture 1. For each q > 1, equation (Wq) admits a periodic solution γq which has
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the following non-trivial Floquet exponents:

λ1(q) = −4
q + 1

q − 1
, λ2(q) = −3q + 5

q − 1
, λ3(q) = 1.

Numerical evidence. To support our conjecture, we have sought numerical evidence for
the existence of a periodic solution of (Wq) for various values of q odd. Namely, for each

q = 5, 7, . . . , 31 we have constructed the finite Galerkin projection F
(m)
q as in (4.17) (keep-

ing 100 Fourier modes) and successfully computed an approximate zero of F
(m)
q though

Newton’s method. Such an approximate zero of F
(m)
q provides numerical evidence for the

existence of a periodic solution γq of (Wq). In Figure 8 we report on the computed period
for each of those solutions, which seems to exhibits logarithmic growth with respect to
q. Next, for each of those periodic solutions, we have computed an approximate mon-
odromy matrix, and consequently computed the corresponding Floquet exponents. Figure
9 shows the remarkable agreement we have found between the expressions provided in the
statement and those obtained from the computations. 2

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

1

2

3

4

5

6

Figure 8: Period of the periodic solutions conjectured in Conjecture 1.

Remark 6.2. We point out that we do not foresee any obstruction in obtaining, for
the values of q reported in Conjecture 1, estimates analogous to the ones presented in
Section 4 . Obtaining (and rigorously verifying) such estimates would turn this “numerical
evidence” into computer assisted proofs of the existence of periodic solutions of (Wq) for
open neighborhoods of those values of q. Seeking such estimates is, however, out of the
scope of this work. We also point out that the expressions of λ1 and λ2 are suggested by
the exponents in (3.19) and (3.20), while the expression for λ3 is suggested by (2.24).

According to Conjecture 1, each of the periodic solutions γq has a 3-dimensional stable
manifold Sq associated to it (once again we recall that, for q ∈ (q−, q+), this is true, see
Theorem 2.25). Below we state the next conjecture, which relates Sq to the boundary of
the basin of attraction of the origin for (Wq).

74



3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

1

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
−7

−6

−5

−4

−3

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
−8

−7

−6

−5

−4

Figure 9: Numerical evidence supporting Conjecture 1. Dotted curves represent the con-
jectured expression for the Floquet exponents, circles represent the result of the com-
putations. Curves appear in the same order (top to bottom) as the exponents in the
conjecture.

Conjecture 2. Let γq be as in Conjecture 1. Then, for each q > 1, the boundary of the
basin of attraction of the origin for (Wq) coincides with the stable manifold Sq associated
to γq.

Numerical evidence. For each q > 1, let Bq ⊂ R4 be the basin of attraction of the
origin for (Wq). Recall that, because of Remark 2.19, we must have Sq ⊂ ∂Bq. The
following experiments support our conjecture that ∂Bq ⊂ Sq. We have performed the
experiment for q = 3. First, we generated 10000 uniformly distributed points on S3, the
unit sphere in R4. Let us denote those points with pj , j = 1, 2, . . . , 10000. For each pj ,
we have computed, using the procedure illustrated at eh beginning of this section, the
largest floating-point number αj > 0 such that D(αj)pj ∈ Bq. Each D(αj)pj is, roughly
speaking, as close as we can get to ∂Bq. Finally, for each j, we integrated numerically
(Wq) starting from the initial condition D(αj)pj ∈ Bq. Each numerical solution was
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observed to quickly convergence to γq (apart from a phase-shift) over a finite interval, and
then vanish exponentially. 2

Remark 6.3. Conjecture 2 would also imply that each γq is the unique periodic solution
of (Wq) .

Remark 6.4. Another consequence of Conjecture 2 would be the following global classifi-
cation of solutions of (Uq). Let u0 ∈ R4, u0 6= 0, then:

R+(u0) = +∞ ⇐⇒ u0 ∈ DJL−1Γq ,

R−(u0) = −∞ ⇐⇒ u0 ∈ DL−1Γq ,

−∞ < R−(u0) < R+(u0) < +∞ ⇐⇒ u0 ∈ DL−1(Sq \ Γq) .

Note that the set of initial conditions u0 ∈ R4 for which the lifetime of the solution φ(·,u0)
is unbounded would be given by the union of two smooth 2-dimensional manifolds embedded
in R4, which has zero Lebesgue measure.

A Stability of symmetric periodic orbits

Let f : R× Rn → Rn be a C1 function, and consider the family of differential equations

y′(t) = f(ε, y(t)). (A.1)

Suppose that y′(t) = f(0, y(t)) admits a τ -periodic solution γ. It is natural to ask
whether (A.1) admits a periodic solution also for |ε| > 0 small enough. Several results
in this direction are available in the literature, e.g. see [13]. A typical case in which the
answer is affirmative is when the periodic orbit γ is hyperbolic. Here, however, we are
interested in problems where the periodic solution γ enjoys some special symmetries, and
our purpose is to investigate whether or not the periodic solutions of (A.1) for |ε| > 0
small inherit the symmetries of γ. In this appendix we present a result in this spirit. We
believe the result to be of independent interest, and, to the best of our knowledge, missing
in the literature.

As is customary, we will consider the linearized problem along the periodic solution
γ of (A.1). In what follows, X(t) stands for the principal matrix solution of the linear
variational equation associated with γ , i.e. X(t) solves the Cauchy problem{

X ′(t) = A0(t)X(t)

X(0) = In
(A.2)

where
A0(t) := fy(0, γ(t))

and In is the n× n identity matrix.

Theorem A.1. Consider (A.1), and suppose that f(ε, ·) is odd for any |ε| small. Assume
that, for ε = 0, (A.1) has a τ -periodic solution γ which enjoys the following property:

γ(t+ τ/2) = −γ(t), for any t ∈ R. (A.3)
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Furthermore, assume that

λ = 1 is a simple eigenvalue of X(τ). (A.4)

Then, for any |ε| small, (A.1) admits a τ∗(ε)-periodic solution γ∗(ε, ·), where τ∗(0) = τ ,
γ∗(·, 0) = γ, τ∗(·) and γ∗(·, ·) are C1 functions of each of their arguments, and

γ∗(ε, t+ τ∗(ε)/2) = −γ∗(ε, t), for any t ∈ R. (A.5)

The main ingredients of the proof of Theorem A.1 will be the Implicit Function The-
orem and the following lemma

Lemma A.2. Assume that all the hypothesis of Theorem A.1 are satisfied. Then

λ = −1 is a simple eigenvalue of X(τ/2),

with γ′(0) as an eigenvector.

Proof. Set v := γ′, and observe that

v′(t) = γ′′(t) = fy(0, γ(t))γ′(t) = A0(t)v(t).

It follows from (A.2) that v(t) = X(t)v(0), for all t ∈ R. Therefore, we have

X(τ/2)v(0) = v(τ/2) = γ′(τ/2) = −γ′(0) = −v(0),

hence −1 is an eigenvalue of X(τ/2) with v(0) = γ′(0) as an eigenvector.
Now, recall that (A.4) holds. We are going to show that

X(τ) = X(τ/2)2, (A.6)

from which, through the relation

X(τ)− λ2In = X(τ/2)2 − λ2In = (X(τ/2)− λIn) (X(τ/2) + λIn),

we immediately obtain that −1 must be a simple eigenvalue of X(τ/2) (if not, then also
1 would not be a simple eigenvalue of X(τ), contradicting (A.4)).

Now, let us show that (A.6) holds. First, we note that A0 is τ/2-periodic. In fact, we
have

A0(t+ τ/2) = fy(0, γ(t+ τ/2)) = fy(0,−γ(t)) = fy(0, γ(t)) = A0(t),

where we have used (A.3) and the fact that fy(ε, ·) is even for |ε| small. Making use of the
semigroup property of fundamental matrix solutions, we can write X(τ) = Z(τ)X(τ/2),
where Z solves {

Z ′(t) = A0(t)Z(t)

Z(τ/2) = In
(A.7)

The conclusion follows by observing that, because of A0(t + τ/2) = A0(t), and through
the change of variables t→ t+ τ/2, we obtain Z(τ) = X(τ/2). 2

Proof of Theorem A.1. Let z := γ′(0) = f(0, γ(0)), and recall that, as shown in Lemma
A.2, z is an eigenvector of X(τ/2) associated to the –simple– eigenvalue −1. Being −1
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simple, we can write Rn = span{z} ⊕ V , where V is an invariant subspace of X(τ/2).
Now, let w ∈ Rn be such that span{w} = V ⊥, and set α := γ(0) · w. Denote by y(ε, t, p)
the solution of (A.1) with initial condition p = y(ε, 0, p), and let F : R×R×Rn → R×Rn
be the function defined as

F (ε, t, p) := (p · w − α, y(ε, t/2, p) + p) . (A.8)

The conclusion of the theorem will follow as an application of the Implicit Function The-
orem (IFT). To this end, first, we observe that

F (0, τ, γ(0)) = (0, 0).

Next, we consider the Jacobian of F with respect to the variable (t, p), and write its action
on a vector (a, v) ∈ R× Rn as

F(t,p)(ε, t, p)(a, v) =
(
v · w, a

2
y′(ε, t/2, p) +∇py(ε, t/2, p)(v) + v

)
.

Evaluating at (0, τ, γ(0)), we obtain

a

2
y′(0, τ/2, γ(0)) =

a

2
γ′(τ/2) = −a

2
γ′(0) = −a

2
z

and
∇py(ε, t/2, p)

∣∣∣
(0,τ,γ(0))

= X(τ/2).

Hence, we have

F(t,p)(0, τ/2, γ(0))(a, v) =
(
v · w, −a

2
z + (X(τ/2) + In)v

)
.

Last, we show that F(t,p)(0, τ/2, γ(0)) is invertible as a linear map from R×Rn onto itself.
To do so, we will show that its kernel is trivial. Suppose that

F(t,p)(0, τ/2, γ(0))(a, v) = (0, 0). (A.9)

Equating the first components in (A.9), we have that v ∈ w⊥ = V . Recalling that V is
invariant under the action of X(τ/2), we obtain

(X(τ/2) + In)v ∈ V. (A.10)

Equating the second components in (A.9), we have −a
2z + (X(τ/2) + In)v = 0, from

which, because Rn = span{z} ⊕ V , it follows that a = 0 and (X(τ/2) + In)v = 0. Since
X(τ/2) + In is invertible from V onto itself (again, because −1 is a simple eigenvalue of
X(τ/2), see Lemma A.2), we conclude that v = 0.

We are finally allowed to apply the IFT, and conclude that there exist ε0 > 0 and C1

maps p = p(ε), τ∗ = τ∗(ε) such that p(0) = γ(0), τ∗(0) = τ , and

y(ε, τ(ε)/2, p(ε)) = −p(ε), (A.11)

for all |ε| < ε0.
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Using (A.11), and the fact that f(ε, ·) is odd, we obtain

y(ε, τ∗(ε), p(ε)) = y(ε, τ∗(ε)/2, y(ε, τ∗(ε)/2, p(ε))) =

= y(ε, τ∗(ε)/2,−p(ε)) = −y(ε, τ∗(ε)/2, p(ε)) = p(ε),

which shows that y(ε, t, p(ε)) is τ∗(ε)-periodic.
We conclude the proof by setting γ∗(ε, t) := y(ε, t, p(ε)), for all |ε| < ε0, and observ-

ing that (A.11) immediately translates into (A.11), while the smoothness of γ∗(·, ·) is a
mere consequence of smoothness of p(ε) and of solutions of (A.1) with respect to initial
conditions. 2

Remark A.3. If X(τ) of Theorem A.1 has no eigenvalues on the unit circle in C besides
λ = 1, then it is a standard fact that stable and unstable manifolds associated to the periodic
solution y∗(ε, ·) are smooth with respect to ε (hence have constant dimension independent
of ε), and intersect transversally along the periodic orbit. See [13].
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