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Abstract

In this paper, a rigorous method to compute Floquet normal forms of fundamental
matrix solutions of non-autonomous linear differential equations with periodic coeffi-
cients is introduced. The Floquet normal form of a fundamental matrix solution Φ(t)
is a canonical decomposition of the form Φ(t) = Q(t)eRt, where Q(t) is a real periodic
matrix and R is a constant matrix. To compute rigorously the Floquet normal form,
the idea is to use the regularity of Q(t) and to solve simultaneously for R and Q(t)
with the contraction mapping theorem in a Banach space of rapidly decaying coeffi-
cients. The explicit knowledge of R and Q can then be used to construct, in a rigorous
computer-assisted way, stable and unstable bundles of periodic orbits of vector fields.
The new proposed method does not require rigorous numerical integration of the ODE.
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1 Introduction

In his seminal work [?] of 1883, Gaston Floquet studied linear non-autonomous differential
equations of the form

ẏ = A(t)y, (1)

where A(t) is a τ -periodic continuous matrix function of t. More precisely, Floquet intro-
duces a canonical decomposition of the fundamental matrix solutions of (??).

Theorem 1.1. [Floquet Theorem] Let A(t) be a τ -periodic continuous matrix function
and denote by Φ(t) a fundamental matrix solution of (??). Then Φ(t+ τ) is also a funda-
mental matrix solution, Φ(t+ τ) = Φ(t)Φ−1(0)Φ(τ), and there exist a real constant matrix
R and a real nonsingular, continuously differentiable, 2τ -periodic matrix function Q(t) such
that

Φ(t) = Q(t)eRt. (2)
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The proof can be found for instance in [?]. The decomposition (??) is called a Floquet
normal form for the fundamental matrix solution Φ(t). The real time-dependent change of
coordinates z = Q−1(t)y transforms system (??) into a linear constant coefficients system
of the form ż = Rz. A stability theorem demonstrates that the linear stability of the zero
solution of (??) can be determined by the eigenvalues of the so-called monodromy matrix
Φ(τ). While there has been several methods to compute (even rigorously) fundamental
matrix solutions of (??), we are not aware of any rigorous method to compute Floquet
normal forms as introduced in Theorem ??. This is one of the goal of the present work.

The motivation for developing such computational method comes from the study of
dynamical systems, where (??) arises naturally when studying linear stability of periodic
solutions of vector fields ẏ = g(y), where g : Rn → Rn is a smooth map. Assume that Γ
is a τ -periodic orbit of ẏ = g(y) parameterized by γ(t) ∈ Rn (t ∈ [0, τ ]), and define the
τ -periodic matrix function A(t) = ∇g(γ(t)), where ∇g is the Jacobian matrix. Consider
Φ(t) the principal fundamental matrix solution of ẏ = A(t)y = ∇g(γ(t))y, that is the unique
fundamental matrix solution so that Φ(0) = In, and assume that a Floquet normal form
Φ(t) = Q(t)eRt is known. The information from the Floquet normal form can be used to
compute important dynamical properties of Γ: the linear stability of the periodic orbit Γ
can be determined by the eigenvalues of R while the stable and unstable tangent bundles of
Γ can be retrieved from the action of Q(t) (with t ∈ [0, τ ]) on the eigenvectors of R (e.g. see
Theorem ??). Also, using the parameterization method introduced in [?], the higher order
terms of a parameterization of an orientable invariant manifold of a periodic orbit can be
computed efficiently from the action of Q(t) on some given constant vectors. Therefore one
motivation for developing computer-assisted proofs for Floquet normal forms is to compute
rigorously high order parameterizations of invariant manifolds of periodic orbits.

Before proceeding further, let us mention that rigorous methods like the C1-Lohner
algorithm [?] can be used to study the linear stability of periodic orbits. For instance, a
method combining multiple shooting, the interval Krawczyk method and the use of the C1-
Lohner algorithm to integrate the flow was introduced in [?] to obtain rigorous estimates
for the monodromy matrix. An important difference is that our method does not rely
on a rigorous time integration of the flow. Another important motivation for developing
such method is that the computation of invariant bundles of periodic orbits is one of the
key ingredient and one of the main difficulty in applying the parameterization method to
compute invariant manifold of periodic orbits of a concrete equation (e.g. see [?, ?, ?]). In
fact, once the invariant bundles are explicitly known, the computation of higher order terms
is rather straightforward. Hence, we believe that developing a general method to compute
Floquet normal form is important.

Let us now introduce the ideas behind the rigorous method. The first step is to substitute
the Floquet normal form Φ(t) = Q(t)eRt in the differential equation (??). From this, it
follows that (R,Q(t)) is a solution of the differential equation with periodic coefficients
Q̇ = A(t)Q − QR. On the converse, if a real constant matrix R and a 2τ -periodic matrix
function Q(t) solve {

Q̇ = A(t)Q−QR
Q(0) = In,

(3)

then the matrix function Φ(t) := Q(t)eRt is the principal fundamental solution of (??).
Therefore, the problem of computing fundamental matrix solutions in the form Φ(t) =
Q(t)eRt reduces to find (R,Q(t)) satisfying (??). The next step is to introduce a nonlinear
operator f (see Section ?? for details) whose zeros are in one-to-one correspondence with
the solutions of (??). Letting x = (R,Q0,Q1,Q2, . . . ), where the Qk’s are the Fourier
coefficients of Q(t), the problem of computing Floquet normal forms Φ(t) = Q(t)eRt is then
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equivalent to find x such that f(x) = 0. By the a priori knowledge of the smoothness
of Q(t), the Fourier coefficients Qk’s decay fast, meaning that the solutions of f(x) = 0
live in a suitable Banach space Ωs of rapidly decaying coefficients. To prove existence,
in a constructive way, of solutions of the infinite dimensional nonlinear operator equation
f(x) = 0 in Ωs, we use the so-called notion of rigorous numerics. To be more precise,
rigorous numerics aims at constructing algorithms that provide an approximate solution to
a problem together with precise bounds within which the exact solution is guaranteed to
exist in the mathematically rigorous sense. It is worth mentioning that by now, the use
of rigorous numerical methods is a standard approach to study differential equations and
dynamical systems (e.g. see [?, ?, ?, ?]) and that there is a vast literature on rigorous
methods to compute solutions of operators defined on Banach spaces (e.g. see [?, ?, ?] and
the references therein).

Based on the previous discussion, the idea consists of computing a numerical approxi-
mation x̄ of f(x) = 0 and to demonstrate that close to x̄, there exists a genuine solution x∗

of f(x) = 0, corresponding to the Floquet normal form of the principal fundamental matrix
solution Φ(t) of (??). However, since the operator f is infinite dimensional, a finite dimen-
sional approximation of f must be introduced in order to compute an approximate solution
x̄. This is done in Section ??. Once x̄ is computed, a Newton-like operator T : Ωs → Ωs

defined by T (x) = x−Jf(x) is introduced, where J is an injective linear operator which acts
as an approximation for Df(x̄)−1. Since J is injective, the fixed points of T and the zeros of
f are in one-to-one correspondence. Denoting by B(r, s) the closed ball of radius r in Ωs, the
idea is to consider the ball Bx̄(r, s) = x̄+B(r, s) of a priori unknown radius r and to solve
for r for which T : Bx̄(r, s) → Bx̄(r, s) is a contraction (see Section ??). This is done by
deriving a set of sufficient computable conditions in the form of polynomial inequalities, the
so-called radii polynomials {pk(r)}k≥0 (first introduced in [?]), whose successful verification
leads to an application of the Contraction Mapping Theorem (CMT) on T . More precisely,
the radii polynomials {pk(r)}k≥0 are upper bounds satisfying

|(T (x̄)− x̄)k|∞ + sup
b1,b2∈B(r,s)

∣∣∣[DT (x̄+ b1)b2
]
k

∣∣∣
∞
− r

ωsk
≤ pk(r), for all k ≥ 0,

where r
ωsk

represents the radius of the kth component of the ball B(r, s) ⊂ Ωs, and where

pk(r) encloses a defect bound measuring how good the numerical approximation is and a
uniform bound on the norm of DT over the entire ball. The construction of the polynomials
{pk(r)}k≥0 is a combination of analytic estimates and interval arithmetic computations. As
shown in Theorem ??, if one can find r > 0 such that each radii polynomial is negative,
then by the CMT, there exists a unique fixed point of T within Bx̄(r, s). It is important to
note that only the coefficients of the pk’s are computed, and that the value of the radius r
is chosen a posteriori and optimally at the end of the process. This approach is somehow
different from the more standard one of fixing a priori the radius r of the ball, of computing
the necessary bounds and finally to verify the hypotheses of the CMT by verifying a set of
inequalities. The advantage of the radii polynomial approach is twofold. First, most of the
estimates are done analytically and generally, hence providing explicit formulas that can
give insights into the problems under study. Second, costly computations involving interval
arithmetic can be postponed to the very end of the proofs, hence reducing significantly the
computational cost (e.g. see [?, ?]). The radii polynomials are introduced in Section ??,
and we present the explicit bounds in Section ?? that lead directly to their construction.

The numerical results reported in this paper are only for the case when the state space is
three-dimensional and the nonlinearities of the vector fields are quadratic. These restrictions

3



allows on the one hand more complete visualization and on the other hand allows presenting
applications in a simple fashion. Increasing the dimension of the systems is straightforward
and increasing the degree of the polynomial nonlinearities should also be straightforward,
at least theoretically, by applying the analytic estimates of [?]. Let us finally mention that
our method should in principle be applicable to any analytic vector fields even though as of
now, only polynomial vector fields have been considered.

The paper is organized as follows. In Section ??, we introduce the rigorous compu-
tational method to compute Floquet normal forms of fundamental matrix solutions. In
Section ??, we demonstrate how to use the information from Floquet normal forms to com-
pute stable and unstable bundles of periodic orbits of vector field and how to determine
the linear stability properties of periodic orbits using that information. In Section ??, we
combine the ideas of Section ?? and Section ?? to construct rigorously stable and unstable
bundles of some periodic orbits of the Lorenz equations (Section ??) and of the ζ3-model
(Section ??). Finally, in Section ??, we discuss how to recover a posteriori the Floquet
multipliers associated to the periodic orbit γ(t), that is the eigenvalues of the monodromy
matrix.

2 Rigorous computation of Floquet normal forms

In this section, we introduce the rigorous numerical method to compute Floquet normal
forms Φ(t) = Q(t)eRt of fundamental matrix solutions of systems of the form (??). Before
doing that, let us fix some notation that is adopted throughout the paper.

Notation

• Mat(n,R) denotes the space of n× n matrices with real entries.

• In is the n× n identity matrix, 1n is the n× n matrix whose entries are all 1.

Let A,B be matrices with entries A = {ai,j}, B = {bi,j} and let A = (A1, . . . , An),
B = (B1, . . . , Bn) be vectors of matrices.

• ‖A‖∞ is the standard infinity matrix norm: ‖A‖∞ = maxi
∑
j |ai,j |;

• |A| = {|ai,j |} is the matrix of absolute values, where |·| denotes both the real and com-
plex absolute value depending wether ai,j is real or complex, and |A|∞ = maxi,j{|ai,j |}.
For vectors |A| = (|A1|, . . . , |An|) and |A|∞ = max{|A1|∞, . . . , |An|∞}
• ≤cw is the component-wise inequality: A ≤cw B means ai,j ≤ bi,j for any i, j. In case
b is a scalar, A ≤cw b means ai,j ≤ b. In case of vectors A ≤cw B and A ≤cw b extends
as Ak ≤cw Bk and Ak ≤cw b, for any k = 1 . . . n. The same for ≥cw, >cw, <cw;

2.1 Set-up of the operator equation f(x) = 0

As already mentioned in Section ??, the first step is to introduce the nonlinear operator f
whose zeros are in one-to-one correspondence with the solutions of (??).

The computation of the Floquet normal form of the principal fundamental matrix solu-
tion is done by solving system (??) where the unknowns are the 2τ -periodic matrix-valued
function Q(t) and the constant matrix R, while the τ -periodic matrix-valued function A(t)
is known. Let us consider the expansion of Q(t) in Fourier series

Q(t) = Q0 +
∑

k∈Z\{0}
(Qk,1 + iQk,2) eik

2π
2τ t, (4)
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where the Fourier coefficientsQ0,Qk,i ∈Mat(n,R) satisfyQ−k,1 = Qk,1 andQ−k,2 = −Qk,2
for any k ≥ 1. Being τ -periodic, the matrix function A(t) is also 2τ -periodic and therefore
can be expanded as

A(t) = A0 +
∑

k∈Z\{0}
(Ak,1 + iAk,2) eik

2π
2τ t, (5)

where A0,Ak,i ∈Mat(n,R) and A−k,1 = Ak,1 and A−k,2 = −Ak,2. In addition, since A(t)

is τ -periodic, Ak,1 = Ak,2 = 0 for k odd and A2l,i = Âl,i where Âl,i is the l-th Fourier

coefficient of A(t) in the basis {eik
2π
τ t}k. From now on, we use the notation

Ak = Ak,1 + iAk,2

to denote the kth complex Fourier coefficient of A(t), unless it is necessary to separate the
real and imaginary part of the Fourier coefficients of A(t).

Substituting the expansions (??) and (??) in (??) results in an equation of the form
F (t) = 0, where F (t) is a 2τ -periodic matrix function. Expanding F (t) in the Fourier basis

{eik
2π
2τ t}, it follows that solving (??) is equivalent to solve for the unknowns

R,Q0 ∈Mat(n,R) and Qk := (Qk,1,Qk,2) ∈Mat(n,R)2

the infinite dimensional algebraic system

f(R,Q0, . . . ,Qk, . . . ) = 0 (6)

f = (f?, f0, f1, . . . , fk, . . . )

defined by

f? := Q0 + 2
∑
k≥1

Qk,1 − In

f0 := Q0R− (A ∗ Q)0

fk :=

[
fk,1

fk,2

]
=

[
−k 2π

2τQk,2 +Qk,1R− (A ∗ Q)k,1

k 2π
2τQk,1 +Qk,2R− (A ∗ Q)k,2

]
, k ≥ 1,

(7)

where (A∗Q)k,1, (A∗Q)k,2 denote respectively the real and imaginary part of the convolution

(A ∗ Q)k :=
∑

k1+k2=k

(Ak1,1 + iAk1,2)(Qk2,1 + iQk2,2).

Since f?, f0 ∈ Mat(n,R) and fk ∈ Mat(n,R)2 for every k ≥ 1, (??) consists of a system
of n2 real scalar equations for f? = 0, n2 real scalar equations for f0 = 0 and 2n2 real
scalar equations for each fk = 0 (k ≥ 1). More precisely, f? represents the initial condition
Q(0) − In = 0 given by the second component of (??), while f0 and fk correspond to the

inner product in L2
(
[0, 2π

2τ ]
)

of F (t) with each element of the Fourier basis {eik
2π
2τ t}.

Consider the space of unknowns by

X =

{
x = (x0, x1, . . . , xk, . . . ) :

x0 = (R,Q0) ∈Mat(n,R)2

xk = Qk = (Qk,1,Qk,2) ∈Mat(n,R)2, k ≥ 1

}
.

5



Note that f : X → X. As mentioned already in Section ??, solving f(x) = 0 is transformed
into a fixed point problem equation T (x) = x which is solved using the contraction map-
ping theorem (CMT). That requires chosing a suitable Banach subspace of X where the
investigation of existence of fixed points of T is done. Hence, consider the weights

wk =

{
|k| k 6= 0
1 k = 0,

and for any x = (R,Q0,Q1,1,Q1,2, . . . ,Qk,1,Qk,2, . . . ) ∈ X define the s-norm of x by

‖x‖s := sup
k≥0
{|xk|∞wsk} = sup

{
|R|∞, |Q0|∞, sup

k≥1
{|Qk,1|∞wsk, |Qk,2|∞wsk}

}
.

Define Ωs the space of sequences in X with algebraically decaying tails

Ωs = {x ∈ X : ‖x‖s <∞}. (8)

For any s > 0 the space Ωs endowed with the s-norm is a Banach space and the inclusion
Ωs ⊃ Ωs+1 holds. The main motivation of working in Ωs is that smoothness of an integrable
function is equivalent to fast decay of its Fourier coefficients. Indeed a periodic function,
whose series of Fourier coefficients belong to Ωs, is at least of class Cs−1. If A(t) is analytic,
it follows that the solution Q(t) of system (??) is analytic thus the Fourier coefficients of
Q(t) decay faster than any power rate and therefore they belong to Ωs for any s. On the
other hand, even a weaker assumption on the function A(t), for instance that the Fourier
coefficients Ak decay algebraically with power rate s, is sufficient to conclude that the
solution x ∈ Ωs. For all applications presented in this paper, the function A(t) comes from
an independent rigorous computation and its regularity is provided via an explicit knowledge
of the algebraic decay rate of its Fourier coefficients Ak.

Denoting by A = {Ak}k≥0 the sequence of complex Fourier coefficients appearing in
(??), the s-norm of A is given by

‖A‖s = sup
k≥0
{|Ak|∞wsk}. (9)

Lemma 2.1. Assume ‖A‖s? <∞ for s? ≥ 2. Then f maps Ωs in Ωs−1, for any 2 ≤ s ≤ s?.

Proof. Let 2 ≤ s ≤ s? and suppose x ∈ Ωs . Then |Ak|∞ < C1w
−s
k and, from Lemma 2.1

in [?], |(A ∗Q)k|∞ ≤ C2

wsk
. Thus |fk(x)|∞ ≤ C3k|Qk|∞ + C4|Qk|∞ + C2w

−s
k < Cw−s+1

k , for

suitable constants C,Ci. This shows that f(x) ∈ Ωs−1. �

Thus we look for solutions x = (R,Q0,Q1,1,Q1,2, . . . ,Qk,1,Qk,2, . . . ) of (??) within Ωs

for some s ≥ 2. Instead of working directly with f(x) = 0, we introduce a suitable operator
T : Ωs → Ωs whose fixed points are in one-to-one correspondence with the zeros of f , and
we aim at proving the existence and local uniqueness of its fixed points by verifying the
hypothesis of the CMT. More explicitly, in Section ??, we first consider a finite dimensional
projection of (??) in a finite dimensional subspace of Ωs and we compute a numerical solution
x̄. Afterwards, in Section ??, the operator T : Ωs → Ωs is introduced as a modified Newton
operator around x̄ in a way that a fixed point x of T corresponds to a genuine solution of
f(x) = 0. The hope is that if x̄ is a good enough approximation, then T contracts a small
ball Bx̄(r, s) of radius r (a priori unknown) around x̄, proving the existence of a unique
fixed point within Bx̄(r, s). Thus the method aims at detecting a value r and proving that
the operator T satisfies the hypotheses of the CMT on Bx̄(r, s) ⊂ Ωs. Since the proof is a
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combination of analysis and computations, the hypotheses of the CMT needs to be verifiable
on a computer. That can be done by means of the so-called radii polynomials introduced
in Section ??. The radii polynomial consist of a finite number of polynomial inequalities
whose verification is sufficient to conclude that the operator T is a contraction on Bx̄(r, s).
Their construction is performed in Section ?? where we show all the analytical estimates
necessary to end up with a finite number of computable conditions.

2.2 Finite dimensional projection

As mentioned earlier, the fist step involved in the computational method is to consider a
finite dimensional projection and to compute an approximate numerical solution of (??).

For m > 1, consider the finite dimensional space Xm =
∏m
k=1Mat(n,R)2 and define the

projections
Πm : X → Xm

x 7→ Πm(x) = xm = (R,Q0, . . . ,Qm−1)

Π∞m : x 7→ (Qm,Qm+1, . . . )

(10)

so that x = (xm,Π∞m (x)). Denote with 0∞m := Π∞m (0). Moreover let us define the restriction
of f(x) on Xm as the map

f (m) : Xm → Xm

xm 7→ Πmf(xm, 0∞m ).
(11)

For any x ∈ X, the sequence (xm, 0∞m ) ∈ X and the finite dimensional projection Πm applied

to f(x) reads as Πmf(x) = (f?, f0, . . . , fm−1)(x). Since Xm is isomorphic to Rm2n2

, one

has that f (m) : Rm2n2 → Rm2n2

. Suppose that using a Newton-like iterative algorithm, one
computed

x̄ = (R̄, Q̄0, . . . , Q̄m−1) (12)

an approximate zero of f (m), that is f (m)(x̄) ≈ 0. For sake of simplicity of the presentation,
the same notation x̄ is used to identify the vector x̄ ∈ Xm defined in (??) and the sequence
(x̄, 0∞m ) ∈ X. As already mentioned at the end of Section ??, the idea is to consider a
ball Bx̄(r, s) ∈ Ωs centered at the approximate solution x̄ and to show the existence of
a contraction mapping T acting on Bx̄(r, s). Hence, let us now introduce the fixed point
operator T .

2.3 The fixed point operator T and the radii polynomials

In this section, we reformulate the problem of studying the zeros of f(x) by establishing
an equivalent fixed point problem T (x) = x in Ωs, and we introduce the notion of the
so-called radii polynomials, which provide an efficient means of finding a set on which T is
a contraction. More precisely, the operator T is defined as T (x) = x − Jf(x), that is as a

Newton-like operator which depends on an approximation J of Df(x̄)
−1

. The advantage
of considering such approach is that if J is a good enough approximation of the inverse of
Df(x̄), then T has good chances of being a contraction on a small ball centered at x̄. Hence,
the first goal of this section is to define J . In order to do so, we begin by introducing J†

(see (??)) an approximation for Df(x̄) that we then use to construct, with the help of the
computer, the operator J introduced in (??).

In order to write explicitly the action of J on Ωs, it is convenient to represent matrices
in Mat(n,R) as vectors in Rn2

, and to extend this representation to get an isomorphism
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between the space of vectors of N matrices Mat(n,R) to the space RNn2

. With this con-

struction, note that Xm is isomorphic to R2mn2

.
According to the chosen representation, given a vector V = [v1, . . . , vN2n2 ] ∈ R2n2N we

denote by Vk ∈ R2n2

the vector with 2n2 components Vk = [vk2n2+1, vk2n2+2, . . . , v2n2(k+1)].
This choice of notation is motivates as follows. Suppose that V is the vector representation
of the sequence x = (R,Q0,Q1, . . . ,QN−1) ∈ XN , then Vk collects the entries of (R,Q0)
for k = 0 and of Qk = (Qk,1,Qk,2) for k ≥ 1.

Denote by Df (m) the Jacobian of f (m) with respect to xm evaluated at x̄, that is

Df (m) := Df (m)(x̄) =
∂(f?, f0, f1, . . . , fm−1)

∂(R,Q0, . . . ,Qm−1)
(x̄) ∈Mat(2n2m,R).

More explicitely,

Df (m) =



∂f?
∂R

∂f?
∂Q0

∂f0

∂R
∂f0

∂Q0

∂f?
∂Q1,1

∂f?
∂Q1,2

∂f0

∂Q1,1

∂f0

∂Q1,2

. . .

∂f?
∂Qm−1,1

∂f?
∂Qm−1,2

∂f0

∂Qm−1,1

∂f0

∂Qm−1,2

∂f1

∂(R,Q0)
∂f1

∂Q1
. . . ∂f1

∂Qm−1

...
...

...
...

∂fm−1

∂(R,Q0)
∂fm−1

∂Q1
. . . ∂fm−1

∂Qm−1


(x̄) (13)

where for k, j = 1, . . . ,m− 1,

∂fk
∂(R,Q0)

=

[
∂fk,1
∂R

∂fk,1
∂Q0

∂fk,2
∂R

∂fk,2
∂Q0

]
,

∂fk
∂Qj

=

[ ∂fk,1
∂Qj,1

∂fk,1
∂Qj,2

∂fk,2
∂Qj,1

∂fk,2
∂Qj,2

]
,

and each
∂fk,i
∂Qj,l ∈ Mat(n2,R) denotes the Jacobian matrix of the components of fk,i with

respect to the components of Qj,l. Moreover, for k ≥ m, define

Λk :=
∂fk
∂Qk

(x̄) ∈Mat(2n2,R). (14)

Lemma 2.2. Recall (??) and (??), and assume that ‖A‖s < ∞ for some s ≥ 2. Then
there exists K ∈ N such that for any k ≥ K the linear operator Λk is invertible. Moreover,
for any M ≥ K there exists a constant CΛ = CΛ(M) such that

‖Λ−1
k ‖∞ ≤

CΛ

k
, for k ≥M. (15)

Proof. Given an index k, the real and imaginary parts of (A ∗ Q)k can be written as

(A ∗ Q)k,1 = (A0 +A2k,1)Qk,1 +A2k,2Qk,2 +W1,

(A ∗Q)k,2 = A2k,2Qk,1 + (A0 −A2k,1)Qk,2 +W2,

where W1 and W2 do not depend on Qk,1 and Qk,2. Thus, looking at the definition of fk in
(??), it follows that Λk is of the form

Λk =

[
λ1,1 −k 2π

2τ In2 + λ1,2

k 2π
2τ In2 + λ2,1 λ2,2

]
, (16)
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where the entries of λ1,1 and λ2,2 satisfy |λ1,1|∞, |λ2,2|∞ < |R̄|∞ + |A0|∞ + |A2k|∞ and
λ2,1 = λ1,2 satisfy |λ2,1|∞ = |λ1,2|∞ < |A2k|∞. By a row permutation, the invertibility of
Λk is equivalent to the invertibility of

Λ̂k :=

[
k 2π

2τ In2 + λ2,1 λ2,2

λ1,1 −k 2π
2τ In2 + λ1,2

]
. (17)

Since |λ1,1|∞, |λ2,2|∞ < |R̄|∞ + |A0|∞ + |A2k|∞ and |λ1,2|∞ < |A2k|∞, the hypothesis
‖A‖s < ∞ implies that the |λi,j |∞ are uniformly bounded in k and |λ1,2|∞ is decreasing

as k increases. Thus there exists K such that for any k ≥ K the matrix Λ̂k is diagonally
dominant, i.e. |Λ̂k(i, i)| >∑j 6=i |Λ̂k(i, j)| for any i = 1, . . . , 2n2. This is enough to conclude

that Λ̂k is invertible for any k ≥ K. Moreover, it follows (e.g. see from [?]) that

‖Λ̂−1
k ‖∞ ≤ max

i

{
1

|Λ̂k(i, i)| −∑j 6=i |Λ̂k(i, j)|

}
. (18)

Therefore, for any M ≥ K, there exists a constant CΛ = CΛ(M) such that

‖Λ−1
k ‖∞ = ‖Λ̂−1

k ‖∞ ≤
CΛ

k
, ∀k ≥M.

�

A general construction of the constant CΛ is done in the Appendix in Section ?? and its
formula is given by (??). Remark that this construction depends on the uniform bound of
the matrices A2k for k ≥ M . For sake of generality, we considered the weakest hypothesis
‖A‖s∗ < ∞, yielding the formula (??). However, more information about the behavior of
A2k allows constructing a sharper bound CΛ. An example of this is given in Section ?? in
the context of the Lorenz equations, where a sharper bound for CΛ is provided.

Recalling (??) and (??), one has that if the finite dimensional projection m is taken large
enough, then the action of Df(x̄) should in principle be governed by Df (m) and {Λk}k≥m.

Indeed, the off diagonal terms of the derivative Df(x̄) are given by
∂fj
∂Qi and they depend

on Aj−i which decreases to zero as |j − i| increases. However, since the phase condition
f?(x) given by the first component of (??) acts linearly on x, a better finite dimensional
approximation of Df(x̄) is given by LM : XM → XM defined by

LM =



∂f?
∂Qm

(x̄) . . . ∂f?
∂QM−1

(x̄)

Df (m) 0 . . . 0
0 . . . 0

Λm
. . .

ΛM−1


,

for a given M > m. Consider a linear operator J† : X → X acting as an approximation for
Df(x̄) defined, given x ∈ X, by

(
J†x

)
k

:=

{ (
LM · xM

)
k

k = 0, . . . ,M − 1

Λkxk, k ≥M.
(19)

As mentioned above, the operator J† is now used to construct the operator J . First we
numerically compute an invertible matrix Jm ∈ Mat(2n2m,R) such that Jm ·Df (m) ≈ Im

9



and we introduce an invertible linear operator JM : XM → XM

JM :=


Jm L

(Λm)−1

. . .

(ΛM−1)−1


, such that JM · LM ≈ IM .

By straightforward calculations, the matrix L can be easily constructed combining the
matrix Jm with the matrices {(Λk)−1, ∂f?∂Qk

(x̄)}M−1
k=m . More explicitely, writing

L =

 Lm Lm+1 . . . LM−1

 , Lk ∈ R(2n2m)×(2n2)

we can compute Lk = −2(Jm)[1...n2] ·(Λ−1
m )[1,...,n2], where the notation A[1,...,k], (respectively

A[1,...,k]) denotes the submatrix of A given by the first k columns (respectively rows) of A.

The constant −2 in Lk comes from the fact that ∂f∗
∂Qk,1 = 2In.

We are now ready to introduce the operator J which defines the fixed point operator T .
Consider K the constant introduced in Lemma ??, the finite dimensional projection m > K
and the computational parameter M > m. We define J : X → X as the formal diagonal
concatenation of JM and the sequence Λ−1

k , that is, given x ∈ X,

(Jx)k :=

{ (
JMx

M
)
k

k = 0, . . . ,M − 1

Λ−1
k xk k ≥M.

(20)

We can finally use the definition of J in (??) to define the operator T : X → X by

T (x) := x− Jf(x) (21)

Now that an approximation J for the inverse of Df(x̄) has been chosen and that the
fixed point operator T has been defined, let us demonstrate some properties about T .

Lemma 2.3. Recall (??) and (??), and assume that ‖A‖s? <∞ for s? ≥ 2. Then for any
2 ≤ s ≤ s?, T : Ωs → Ωs and solutions of T (x) = x correspond to solutions of f(x) = 0.

Proof. Recalling (??), the linear operator J defined in (??) maps Ωs−1 to Ωs. Indeed,
considering k ≥M and using the fact that M > m > K, Lemma ?? can be used to conclude
that Λk given by (??) is invertible and that |(Jx)k|∞ = |Λ−1

k xk|∞ ≤ ‖Λ−1
k ‖∞|xk|∞ ≤

CΛ

k
‖x‖s−1

ws−1
k

< C
wsk

, for a positive constants C. Since f : Ωs → Ωs−1 by Lemma ??, we

conclude that T : Ωs → Ωs. Since JM is invertible by assumption and Λk is invertible for all
k ≥ m > K, it follows that the linear operator J is invertible and therefore that the fixed
points of T are in one-to-one correspondence with the zeros of f . �

Now that x̄ and T are fixed once and for all, the only remaining variable to be found is the
radius r of the ball Bx̄(r, s). In order to find a successful r, we construct a finite number of
polynomial inequalities, the so-called radii polynomials {pk(r)}k≥0, which provide sufficient
and efficient computable conditions to have that T : Bx̄(r, s) → Bx̄(r, s) is a contraction.
As mentioned earlier, the radii polynomials are a priori conditions that are derived using
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analytic estimates and interval arithmetic, and once their construction is done theoretically,
they are used to solve for the optimal radius of the ball Bx̄(r, s).

Before proceeding further, let us compare briefly the radii polynomials approach with
some more standard rigorous computational a posteriori methods. First, note that our ap-
proach is similar to the Krawczyk operator approach [?, ?] and to the method developed
by Yamamoto in [?]. However, these methods consist of applying directly the operator to
interval vectors (also in the form of small sets centered at a numerical approximation) and
then attempt to verify a posteriori the hypotheses of a contraction mapping argument. Sec-
ond, let us emphasize the differences between our approach and the a posteriori approaches
based on verifying the hypotheses of the following standard CMT (e.g. see [?]).

Theorem 2.4 (Standard CMT). If there exist two positive numbers ρ < 1 and ε < (1−ρ)r
such that ‖T (x̄) − x̄‖s ≤ ε and supx∈Bx̄(r,s) ‖DT (x)‖s ≤ ρ, then there is a unique fixed
point x∗ of T in Bx̄(r, s) and ‖x∗ − x̄‖s < ε/(1− ρ).

A common way to verify the hypotheses of Theorem ?? is to fix the radius r of the
ball Bx̄(r, s), to compute the bounds ρ and ε, and to verify a posteriori that ρ < 1 and
ε < (1− ρ)r. If ρ and ε do not satisfy these bounds, one can either increase or decrease the
radius r, and to start over the computations. Our approach is different in the sense that
first, we compute an upper bound for ‖T (x̄)− x̄‖s by computing an upper bound Yk for each
component |[T (x̄)− x̄]k| and second, we compute an upper bound for supx∈Bx̄(r,s) ‖DT (x)‖s
by expanding each component supx1,x2∈B(r,s)DTk(x1 + x̄)x2 as a polynomial Zk(r) in the a
priori unknown radius r. The component-wise resulting bounds are finally used to construct
each radii polynomials pk(r) = Yk + Zk(r) − r

wsk
. Afterward, we solve for r > 0 such

that pk(r) < 0. Recalling the norm in Ωs given by (??), the corresponding ε and ρ from

Theorem ?? are given by ε = ‖Y ‖s and ρ = ‖Z‖s
r . See the similarities with Theorem ??.

Let us now be more explicit about the bounds Y and Z. Suppose there exist two matrices
sequences

Y = (Y0, Y1, . . . Yk, . . . ), Z(r) = (Z0(r), Z1(r), . . . Zk(r), . . . ), Y, Z(r) ∈ X

such that

|(T (x̄)− x̄)k| ≤cw Yk, sup
b1,b2∈B(r,s)

∣∣∣[DT (x̄+ b1)b2
]
k

∣∣∣ ≤cw Zk(r), ∀k ≥ 0. (22)

Theorem 2.5. Fix s ≥ 2 and let Y and Z be defined as in (??). If there exists r > 0 such
that ‖Y +Z‖s < r, then the operator T maps Bx̄(r, s) into itself and T : Bx̄(r, s)→ Bx̄(r, s)
is a contraction. Thus, by the contraction mapping theorem, there exists an unique x∗ ∈
Bx̄(r, s) solution of T (x∗) = x∗ and therefore solution of f(x∗) = 0.

Proof. Two statements need to be proved:

i) T (Bx̄(r, s)) ⊂ Bx̄(r, s), that is ‖T (x)− x̄‖s < r for all x ∈ Bx̄(r, s),

ii) T is a contraction, that is

∃κ ∈ (0, 1) such that ∀x, y ∈ Bx̄(r, s), ‖T (x)− T (y)‖s ≤ κ‖x− y‖s.

For a given k ≥ 0 and any x, y ∈ Bx̄(r), the Mean Value Theorem implies that

Tk(x)− Tk(y) = DTk(z)(x− y)

11



for some z ∈ {tx+ (1− t)y : t ∈ [0, 1]} ⊂ Bx̄(r, s). Note that r (x−y)
‖x−y‖s ∈ B(r, s). Thus from

the inequalities in (??),

|Tk(x)− Tk(y)| =
∣∣∣∣DTk(z)

r(x− y)

‖x− y‖s

∣∣∣∣ 1

r
‖x− y‖s ≤cw

Zk(r)

r
‖x− y‖s. (23)

The triangular inequality applied component-wise gives

|Tk(x)− x̄k| ≤cw |Tk(x)− Tk(x̄)|+ |Tk(x̄)− x̄k| ≤cw Yk + Zk(r)

and hence
|Tk(x)− x̄k|∞ ≤ |Yk + Zk(r)|∞.

Therefore for any x ∈ Bx̄(r, s)

‖T (x)− x̄‖s = sup
k≥0
{|Tk(x)− x̄k|∞wsk} ≤ sup

k≥0
{|Yk + Zk(r)|∞wsk} = ‖Y + Z(r)‖s < r.

This proves i). By (??), for any x, y ∈ Bx̄(r, s), |Tk(x)− Tk(y)|∞ ≤
|Zk(r)|∞

r
‖x− y‖s.

Thus,

‖T (x)− T (y)‖s ≤
‖Z(r)‖s

r
‖x− y‖s.

Since all the entries of Yk and Zk(r) are non negative, |Zk(r)|∞ ≤ |Yk + Zk(r)|∞ and
‖Z(r)‖s ≤ ‖Y + Z(r)‖s < r. Defining

κ :=
‖Z(r)‖s

r
∈ (0, 1),

we conclude that ii) holds. An application of the contraction mapping theorem on the
Banach space Bx̄(r, s) gives the existence and unicity of a solution x∗ of the equation T (x) =
x in Bx̄(r, s) and, from Lemma ??, of a solution of f(x) = 0. �

One gets from Theorem ?? that a sufficient condition for the existence of a solution of
our problem is that the bounds Y,Z(r) satisfying (??) also satisfy ‖Y +Z(r)‖s < r for some
r. We treat the last condition as an inequality to be solved in r and we introduce the radii
polynomials as a set of r-dependent polynomials pk(r) with the property that a common
solution r∗ of pk(r∗) < 0 implies that ‖Y +Z(r∗)‖s < r∗. Each component of the full norm
inequality ‖Y + Z(r)‖s < r can be written as

|Yk + Zk(r)|∞ −
r

wsk
< 0, ∀k ≥ 0, (24)

which is a system of infinitely many inequalities. In order to reduce (??) to a finite number
of inequalities, suppose that, for a given M , there exist YM and ZM (r) such that

|(T (x̄)− x̄)k|∞ ≤
Ms

ks
YM , sup

b1,b2∈B(r,s)

∣∣∣[DT (x̄+ b1)b2
]
k

∣∣∣
∞
≤ Ms

ks
ZM (r), ∀k ≥M. (25)

We can finally define the set of M + 1 radii polynomials as follows.

Definition 1. The radii polynomials are defined as

pk(r) := Yk + Zk(r)− r
wsk

(1n,1n), k = 0, . . . ,M − 1

pM := YM + ZM (r)− r
wsM

.
(26)
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Theorem 2.6. Let M > m > K > 0 and suppose Y = {Yk}k≥0, Z(r) = {Zk(r)}k≥0 are
sequences of matrices such that Yk, Zk(r) satisfy (??) for k = 0, . . . ,M − 1 and

Yk :=
Ms

ks
YM (1n,1n), Zk(r) :=

Ms

ks
ZM (r)(1n,1n), ∀k ≥M

where YM , ZM (r) satisfy (??). If there exists r > 0 such that pk(r) <cw 0 for all k =
0, . . . ,M , then there exists a unique x∗ ∈ Bx̄(r, s) such that T (x∗) = x∗ and f(x∗) = 0.

Proof. Condition (??) implies that Yk, Zk(r) satisfy (??) for all k ≥ M . By definition
of Yk ≥cw 0, Zk(r) ≥cw 0, the relation pk(r) <cw 0 implies that |Yk + Zk(r)|∞ < r

wsk
for

k = 0, . . . ,M − 1. Moreover, from the hypothesis pM (r) < 0,

|Yk + Zk(r)|∞ =
Ms

ks
(YM + ZM ) <

Ms

ks
r

Ms
=

r

wsk
, ∀k ≥M.

Hence
‖Y + Z‖s = sup

k≥0
{|Yk + Zk|wsk} < r,

and the result follows from Theorem ??. �

The strategy to compute rigorously Floquet normal forms of fundamental matrix solu-
tions is then to construct the radii polynomials of Definition ?? and then to attempt to
verify the hypotheses of Theorem ??. In order to construct the radii polynomials, we need
to compute the bounds Y and Z(r) satisfying (??) and (??).

2.4 Construction of the bounds Y, Z(r)

This section is devoted to the construction of the matrices Yk, Zk(r) for k = 0, . . . ,M − 1
satisfying (??), and of the asymptotic bounds YM , ZM (r) satisfying (??). This construction
provides the complete description of the radii polynomials introduced in Definition ??. With
the aim of remaining as general as possible, the only constraint we assume on the τ -periodic
function A(t) is that the vector of Fourier coefficients A given in (??) satisfies ‖A‖s? < ∞
for s? ≥ 2. Nevertheless, further information on the coefficients Ak may be useful to get
sharper analytic estimates, as one shall see in the applications of Section ??.

In what follows, the growth rate parameter s has been fixed so that 2 ≤ s ≤ s?, the
finite dimensional parameter m has been chosen so that m > K, where K is a lower bound
given in Lemma ?? and the computational parameter M has been chosen so that M > m.
Moreover, assume that a numerical solution x̄ of the form (??) of the finite dimensional
problem f (m)(x) = 0 has been computed and that Λ−1

k , the inverse of the matrices defined
in (??), for k = m, . . . ,M − 1 is known. The last computation can be done analytically or,
if not possible, using rigorous numerics.

2.4.1 The bound Y

Recalling the definition of the Newton-like operator T in (??), one has that T (x̄) − x̄ =
−Jf(x̄), and recalling the definition of J in (??), we can define Yk as

Yk =
∣∣∣(JMf (M)(x̄)

)
k

∣∣∣ , k = 0, . . . ,M − 1. (27)
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Recalling (??), the tail bound YM has to be chosen so that YM
Ms

ks >
∣∣Λ−1
k fk(x̄)

∣∣
∞, for any

k ≥M . To define such bound, we use the fact that
∣∣Λ−1
k fk(x̄)

∣∣
∞ ≤ ‖Λ

−1
k ‖∞|fk(x̄)|∞. Since

Q̄k,1 = Q̄k,2 = 0 for any k ≥ m, it follows that

fk(x̄) =

[
−(A ∗ Q)k,1

−(A ∗ Q)k,2

]
=

∑
k1+k2=k
|k2|<m

[
−Re

(
Ak1

(Q̄k2,1 + iQ̄k2,2)
)

−Im
(
Ak1

(Q̄k2,1 + iQ̄k2,2)
) ] , ∀k ≥M. (28)

Now, using the fact that |Ak|∞ ≤ ‖A‖s?w−s
?

k , both |fk,1(x̄)| and |fk,2(x̄)| are component-
wise bounded by∣∣∣∣∣∣∣∣

∑
k1+k2=k
|k2|<m

Ak1
(Q̄k2,1 + iQ̄k2,2)

∣∣∣∣∣∣∣∣ ≤cw
∑

k1+k2=k
|k2|<m

|Ak1
||Q̄k2,1 + iQ̄k2,2|

≤cw |Ak||Q̄0|+
m−1∑
l=1

(|Ak−l|+ |Ak+l|)|Q̄l,1 + iQ̄l,2|

≤cw
‖A‖s?
wsk

[
wsk
ws

?

k

1n|Q̄0|+
m−1∑
l=1

wsk

(
1

ws
?

k+l

+
1

ws
?

k−l

)
1n|Q̄l,1 + iQ̄l,2|

]
.

Since
wsk
ws

?

k

≤ 1 and wsk

(
1

ws
?

k+l

+ 1
ws

?

k−l

)
≤ 1 +

(
1− l

M

)−s
for any k ≥M , it follows that

|fk,i(x̄)|∞ ≤ k−s‖A‖s? |W |∞, for k ≥M,

where

W = 1n|Q̄0|+
m−1∑
l=1

(
1 +

(
1− l

M

)−s)
1n|Q̄l,1 + iQ̄l,2|.

From Lemma ??, there exists CΛ such that ‖Λ−1
k ‖∞ ≤ CΛ

M for k ≥M . Finally, we let

YM :=
1

Ms+1
‖A‖s?CΛ|W |∞. (29)

2.4.2 The bound Z

This section is devoted to the construction of the bounds {Zk(r)}k=0,...,M−1 satisfying

sup
b1,b2∈B(r,s)

∣∣∣[DT (x̄+ b1)b2
]
k

∣∣∣ ≤cw Zk(r), k = 0, . . . ,M − 1,

and of the tail bound ZM satisfying (??). To achieve this goal, it is convenient to factor
the points b1, b2 ∈ B(r, s) as b1 = ru, b2 = rv with u, v ∈ B(1, s), to expand the derivative
as a polynomial in r and finally to compute a uniform bound for all u, v ∈ B(1, s). Denote
u = [u0, u1, . . . , uk, . . . ], where each uk = (uk,1, uk,2) ∈ Mat(n,R)2. For sake of simplicity
of the presentation, both matrices uk,1, uk,2 are denoted as uk. This abuse of notation can
be used because what really matters in the estimates is the bound |uk,1|, |uk,2| ≤cw w−sk
which is used to obtain the uniform estimates. We use a similar notation for vk.

14



Since DT (x̄+ ru) = I − JDf(x̄+ ru), recalling the operator J† defined in (??), we can
consider the splitting

DT (x̄+ ru)rv = [I − JDf(x̄+ ru)] rv
=

[
I − JJ†

]
rv − J

[
Df(x̄+ ru)− J†

]
rv,

(30)

so that ∣∣∣ [DT (x̄+ ru)rv]k

∣∣∣ ≤cw ∣∣∣ [(I − JJ†) rv]k ∣∣∣+
∣∣∣ [J (Df(x̄+ ru)− J†

)
rv
]
k

∣∣∣. (31)

The construction of the bounds {Zk(r)}k=0,...,M−1 follows as a combination of different
intermediate vector bounds Z0, Z1, Z2 satisfying∣∣[I − JJ†] rv∣∣ ≤cw Z0r , ∀v ∈ B(1, s),∣∣[Df(x̄+ ru)− J†

]
rv
∣∣ ≤cw Z1r + Z2r2, ∀u, v ∈ B(1, s),

(32)

so that
Zk(r) = Z0

k r +
[
|JM |(Z1 r + Z2 r2)M

]
k
, k = 0, . . . ,M − 1.

The uniform bound of the tail elements of Z1 and Z2 leads to the definition of ZM . Let us
now be more explicit about the bounds Z0, Z1 and Z2.

The bound Z0

By definition of J and J†, the multiplication [JJ†x]k = xk for k ≥M . Thus the difference
I−JJ† acts non trivially only on the finite dimensional projection ΠMv. Hence, considering
the uniform bounds |vk| ≤cw w−sk , we can define Z0 as

(Z0)k =

{ [
|I2n2M − JMLM |{w−sj 1n}M−1

j=0

]
k
, k = 0, . . . ,M − 1

0, k ≥M (33)

so that ∣∣[I − JJ†] rv∣∣ ≤cw Z0r.

In the above formula {w−sj 1n}M−1
j=0 stands for the vector in R2n2M that represents the vector

of matrices (1n,1n, w
−s
1 1n, w

−s
1 1n, . . . , w

−s
M−11n, w

−s
M−11n) according with the representa-

tion introduced in Section ??.
Note that J† is an almost inverse of J , indeed by definition JMLM ≈ I. Therefore |Z0|

is small and depends on the accuracy of the numerical method used to compute Jm.

The bounds Z1, Z2

Since the function f(x) is quadratic in x, the derivative Df(x̄ + rv) depends linearly on
r, thus the idea is to express

(
Df(x̄+ ru)− J†

)
rv as a quadratic polynomial in r. More

precisely we aim at finding coefficients ck,i so that[(
Df(x̄+ ru)− J†

)
rv
]
k

=
∑
i=1,2

ck,ir
i. (34)

Then the construction of the components Zik can be derived as uniform bounds for ck,i,
i = 1, 2. To better understand the coefficients ck,i, it is convenient to picture the operator(
Df(x̄+ ru)− J†

)
rv as an infinite dimensional matrix acting on the infinite dimensional

vector rv. This is represented in Figure ??. On the top left corner, up to k = m − 1, the
matrix J† is given by Df (m)(x̄) which implies that the only terms that survive the difference
Df (m)(x̄ + ru) − Df (m)(x̄) are the derivatives of the quadratic terms of fj . For instance,
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0 —– 0 ∂xk
f∗

k = m k = M

u0

u0

R Q0

v1

v0f∗
f0

fj

Df (m)(x̄+ ru)−
Df (m)(x̄)

∂fj
xk

(x̄+ ru)

∂fj
xk

(x̄+ ru)

∂fj
xk

(x̄+ ru)

∂fj
xk

(x̄+ ru)
r uj

r

u0r
r

r

Figure 1: The operator
(
Df(x̄+ ru)− J†

)
rv pictured as an infinite dimensional matrix acting on

the infinite dimensional vector rv.

∂Rf0(x̄+ ru)− ∂Rf0(x̄) = Q̄0 + ru0 − Q̄0 = ru0. In the matrix of Figure ??, the shadowed
parts underline the positions corresponding to nonlinear terms of f(x), namely ∂Rfj , ∂Qj,1fj
and ∂Qj,2fj for any j ≥ 0. For m ≤ k < M the matrix J† compensates the derivative of the
phase condition and the derivative of the linear terms on the diagonal. However outside the
diagonal, we have the terms ∂xkfj that are the derivatives of the convolution terms. Since
the convolutions are linear in Qk,i, the derivatives depend only on the terms Ak,i and not
on (x̄ + ru). Finally, for k ≥ M , we have the same situation as before with the adding of
the derivatives of the phase condition, i.e. ∂Qk,1f∗ = 2In2 .

Rewriting the convolution terms as

(A ∗ Q)k,1 =
∑

k1+k2=k

(
Ak1,1Qk2,1 −Ak1,2Qk2,2

)
,

(A ∗ Q)k,2 =
∑

k1+k2=k

(
Ak1,2Qk2,1 +Ak1,1Qk2,2

)
,

recalling that Qk,2 = −Q−k,2 and denoting by sg(l) the sign of l ∈ Z, one gets that

c0,1 =


2
∑
k≥M

vk,

−
∑

k1+k2=0
|k2|≥m

(
Ak1,1 − sg(k2)Ak1,2

)
v|k2|

 , c0,2 =

[
0

u0v0 + v0u0

]
, (35)

ck,1 = −
∑

k1+k2=k
|k2|≥m

 (Ak1,1 − sg(k2)Ak1,2

)
v|k2|(

Ak1,2 + sg(k2)Ak1,1

)
v|k2|

 , ck,2 =

[
ukv0 + vku0

ukv0 + vku0

]
, (36)

for k = 1, . . . ,m− 1, and finally for k ≥ m, one has that

ck,1 = −
∑

k1+k2=k
|k2|6=k

 (Ak1,1 − sg(k2)Ak1,2

)
v|k2|(

Ak1,2 + sg(k2)Ak1,1

)
v|k2|

 , ck,2 =

[
ukv0 + vku0

ukv0 + vku0

]
. (37)
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As mentioned above, the bounds Z1, Z2 need to be defined so that Z1
k ≥cw |ck,1| and

Z2
k ≥cw |ck,2|, for any 0 ≤ k ≤ M − 1. To achieve this, it is enough to substitute in the

above expression the bounds |uk|, |vk| ≤cw w−sk 1n and | ± Aj,1 ± Aj,2| ≤cw |Aj,1| + |Aj,2|.
Since 1n1n = n1n, one gets that

|c0,2| ≤cw 2n

[
0
1n

]
=: Z2

0 ,

|ck,2| ≤cw 2nw−sk

[
1n
1n

]
=: Z2

k , k ≥ 1.
(38)

Consider now the coefficients ck,1. Due to the presence of series, the computation of the
uniform bounds is a little more involved. The idea is to split the series into a finite part
and an infinite tail part. The former is rigorously computed while the latter is estimated
analytically. The sharpness of the bounds depends on the length of the finite part and on
the decay rate of the coefficients Ak. Splitting the series at |k2| = M , we can write

|c0,1| ≤cw

 0∑
k1+k2=0
m≤|k2|<M

(
|Ak1,1|+ |Ak1,2|

)
w−sk2

1n

+H0 =: Z1
0 ,

|ck,1| ≤cw
∑

k1+k2=k
m≤|k2|<M

 (|Ak1,1|+ |Ak1,2|
)
w−sk2

1n(
|Ak1,2|+ |Ak1,1|

)
w−sk2

1n

+Hk =: Z1
k , k = 1, . . . ,m− 1

|ck,1| ≤cw
∑

k1+k2=k
|k2|6=k,|k2|<M

 (|Ak1,1|+ |Ak1,2|
)
w−sk2

1n(
|Ak1,2|+ |Ak1,1|

)
w−sk2

1n

+Hk =: Z1
k , k = m, . . . ,M − 1,

(39)
where the matrices Hk are the infinite tail part of the series and are defined as follows. For
any q > 0, p > 1, define

ζ(q, p) :=
1

(q)p
+

1

(q + 1)p
+

1

p− 1

1

(q + 1)p−1
,

and

H0 :=

[
2ζ(M, s)1n

h01n

]
, Hk := hk

[
1n
1n

]
, (40)

where for k ≥ 0

hk =

√
2n‖A‖s?

(M − k)s?−s

( M−1∑
k2=M−k

w−sk2+kw
−s
k2

+ 2ζ(M, 2s)
)
. (41)

Hence, one has the following result.

Lemma 2.7. Formula (??) holds for H0, Hk defined in (??).

Proof. First note that for any M ≥ 1 and s ≥ 2

∞∑
k=M

1

ks
< ζ(M, s). (42)
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That can be seen from the fact that
∑∞
k=M

1
ks = 1

(M)s + 1
(M+1)s +

∑∞
k=M+2

1
ks <

1
(M)s +

1
(M+1)s +

∫∞
M+1

x−sdx. Hence, one has that∣∣∣∣∣2
∞∑

k=M

w−sk 1n

∣∣∣∣∣ ≤cw 2ζ(M, s)1n.

That proves the result for the upper half of H0. For the remaining terms, note that (|Ak1,1|+
|Ak1,2| ≤cw

√
2|Ak1 | ≤cw

√
2‖A‖s?
ws

?

k1

1n. Hence, for any k ≥ 0, the tail part satisfies∣∣∣∣∣∣∣∣
∑

k1+k2=k
|k2|≥M

(
|Ak1,1|+ |Ak1,2|

)
w−sk2

1n

∣∣∣∣∣∣∣∣ ≤cw
√

2‖A‖s?
∞∑

k2=M

(
1

ws
?

k−k2

+
1

ws
?

k+k2

)
1nw

−s
k2
1n

≤cw
√

2n‖A‖s?
(M − k)s?−s

∞∑
k2=M

(
1

wsk2−k
+

1

wsk+k2

)
w−sk2

1n,

where we used the fact that s? ≥ s and the relation 1n1n = n1n. The result follows by
applying (??) once the last series has be rewritten as

∞∑
k2=M

(
1

wsk2−k
+

1

wsk+k2

)
w−sk2

=

∞∑
k2=M

(
1

wsk+k2

)
w−sk2

+

∞∑
k2=M−k

(
1

wsk+k2

)
w−sk2

≤
∞∑

k2=M−k
w−sk+k2

w−sk2
+ 2

∞∑
k2=M

w−2s
k2

.

(43)

�

The bound ZM

Recalling (??), ZM needs to satisfy ks

Ms sup
b1,b2∈B(r,s)

∣∣∣[DT (x̄+ b1)b2
]
k

∣∣∣
∞
≤ ZM for any k ≥M .

Since for k ≥M , the first term on the right hand side of (??) is zero, and we have that∣∣∣ [DT (x̄+ ru)rv]k

∣∣∣
∞
≤
∣∣∣ [J (Df(x̄+ ru)− J†

)
rv
]
k

∣∣∣
∞

≤ ‖Λ−1
k ‖∞(|ck,1|∞r + |ck,2|∞r2).

(44)

Thus it remains to find uniform bounds for k ≥M of the coefficients |ck,1|∞, |ck,2|∞ given
in given in (??). To do this, we proceed as in the proof of Lemma ??, that is we bound each
coefficient Ak,i in terms of the norm ||A||s∗ and we estimate the remaining series using the
following formula proved in [?]. For k ≥M , one has that

∑
k1+k2=k
|k1|6=k

1

wsk1
wsk2

≤ 1

wsk

[
1 + 2

M∑
l=1

1

ls
+

2

Ms−1(s− 1)
+ ηM −

1

ws2k

]
,

where

ηM = 2

[
M

M − 1

]s
+

[
4 log(M − 2)

M
+
π2 − 6

3

] [
2

M
+

1

2

]s−2

.
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Hence, letting δ := 1 + 2
∑M
l=1

1
ls + 2

Ms−1(s−1) + ηM , we get the bounds

|ck,1|∞ ≤
√

2n‖A‖s?
∑

k1+k2=k
|k2|6=k

1

ws
?

k1
wsk2

≤
√

2n‖A‖s?
∑

k1+k2=k
|k2|6=k

1

wsk1
wsk2

≤
√

2n‖A‖s?
wsk

δ,

|ck,2|∞ ≤ 2n

wsk
.

Finally, combining (??) with k ≥M , it follows that ‖Λ−1
k ‖∞ ≤ CΛ

M , and then we let

ZM :=
CΛ

Ms+1
(
√

2‖A‖s?δr + 2nr2). (45)

Remark 2.8. The quantities YM , hk and ZM defined respectively in (??), (??) and (??)
depend on ‖A‖s? < ∞. However it is easy to see that formulas (??) and (??) can be
rewritten respectively with the quantities supj≥M−m{|Aj |∞ws

?

j } and sup|j|≥M−k{|Aj |∞ws
?

j }
instead of ‖A‖s? . Therefore, a more detailed knowledge of the behavior of the coefficients
Ak should help choosing the computational parameter M in order to improve the estimates.
For instance, if there exists ε such that |Ak|∞ws

?

k < ε for any |k| > mA, then setting
M > m+mA, the estimate (??) holds with ε in place of ‖A‖s? .

3 Computing stable and unstable bundles of periodic
orbits via Floquet normal forms

Consider an autonomous differential equation

ẏ = g(y), g ∈ C1(Rn) (46)

and suppose that γ(t) is a τ -periodic solution with γ(0) = γ0. Denote by Γ = {γ(t), t ∈
[0, τ ]} the support of γ and for any θ ∈ [0, τ ], define γθ(t) = γ(t + θ) the phase-shift re-
parametrization of Γ. Being autonomous, system (??) has the property that any of the
curves γθ(t) is a τ -periodic solution satisfying γθ(0) = γ(θ). We refer to Γ as the periodic
orbit and γθ as the periodic solutions.

Definition 2 (Monodromy matrix). Let γ : R → Rn be a τ -periodic solution (??) and let
Φθ(t) be the unique solution of the non-autonomous linear problem{

Φ̇θ = ∇g(γθ(t))Φθ
Φθ(0) = In.

(47)

The matrix Φθ(τ) is called the monodromy matrix of γθ(t).

Having chosen γ(t) = γ0(t), in the following we identify Φ(τ) = Φ0(τ). The next two
results are classical results and they are direct consequences of Φθ(t) being a fundamental
matrix solution. For sake of completeness, we present their proofs.

Lemma 3.1. For any θ ∈ [0, τ ], the solution Φθ(t) of (??) satisfies

Φθ(nτ + t) = Φθ(t)Φθ(τ)n, ∀t ∈ R, ∀n ∈ N.

19



Proof. Without loss of generality, let us consider θ = 0. We proceed by induction on n ≥ 0.
For n = 0 the result is obvious. Suppose the result holds for n− 1. Then

Φ(nτ) = Φ((n− 1)τ + τ) = Φ(τ)Φ(τ)n−1 = Φ(τ)n.

Define
Ψ(t) = Φ(t+ nτ)Φ(nτ)−1.

It follows that Ψ(0) = In and that

Ψ̇(t) = Φ̇(nτ + t)Φ(nτ)−1 = A(nτ + t)Φ(nτ + t)Φ(nτ)−1 = A(t)Ψ(t).

From unicity of solutions of the initial value problem, one has that Ψ(t) = Φ(t). Hence,

Φ(t+ nτ) = Φ(t)Φ(nτ) = Φ(t)Φ(τ)n, ∀t ∈ R.

�

Lemma 3.2. The matrices Φθ(τ) are equivalent under conjugation. In particular

Φθ(τ) = Φ(θ)Φ(τ)Φ(θ)−1. (48)

Proof. The matrix Φ̃(t) := Φ(t + θ) is a solution of the equation ẏ = ∇g(γ(t + θ))y =
∇g(γθ(t)), with Φ̃(0) = Φ(θ). Since Φθ(t) is the principal fundamental solution,

Φ̃(t) = Φθ(t)Φ(θ).

It follows
Φθ(t) = Φ̃(t)Φ(θ)−1 = Φ(t+ θ)Φ(θ)−1, ∀t. (49)

Using Lemma ??, one can then conclude that

Φθ(τ) = Φ(τ + θ)Φ(θ)−1 = Φ(θ)Φ(τ)Φ(θ)−1.

�

The previous result implies that all monodromy matrices Φθ(τ) have the same eigenval-
ues. That motivates the following definition.

Definition 3. The eigenvalues σj of the monodromy matrix Φ(τ) are called the Floquet
multipliers of the periodic orbit Γ.

As already mentioned in Section ??, in the theory of dynamical systems the monodromy
matrix Φ(τ) associated to a periodic solution γ(t) plays a fundamental role since it contains
information about the linear stability of γ. Indeed, as shown in Proposition 2.122 in [?],
the Floquet multipliers of γ(t) are in fact the eigenvalues of DP(γ(0)), where P(x) denotes
the Poincaré map of γ(t) on a (n − 1)-dimensional hypersurface transversal to γ at γ(0).
Moreover, at least one of the Floquet multipliers σj of Φ(τ) equals one, corresponding to the
eigenvector γ̇(0). Hence, we denote by σn = 1 the Floquet multiplier corresponding to γ̇(0)
and by {σj}j=1,...,n−1 the set of nontrivial Floquet multipliers. We refer to Section 2.4 in
[?] for a more extensive analysis of the links between Poincaré sections and Floquet theory.
Based on the above discussion, let us introduce the notion of stability of a periodic orbit.

Definition 4. Let Γ = {γ(t), t ∈ [0, τ ]} be a τ -periodic orbit of the system (??) and let
{σj}j=1,...,n−1 be the corresponding set of nontrivial Floquet multipliers. We say that
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• Γ is stable if ∀ j ∈ {1, . . . , n− 1}, |σj | < 1;

• Γ is unstable if ∃ j ∈ {1, . . . , n− 1} such that |σj | > 1.

Moreover, if p < n − 1 Floquet multipliers have modulus less than one, and q < n − p
Floquet multipliers have modulus greater than one, Γ is said to have p stable directions and
q unstable directions.

Let us mention that there is a variant to the Floquet normal form introduce in The-
orem ??, namely there exist a constant (possibly complex) matrix B and a nonsingular
(possibly complex) continuously differentiable, τ -periodic matrix function P (t) such that
Φ(t) = P (t)eBt. We refer to Theorem 2.83 in [?] for more details and for the proof. There-
fore, there exists a (possibly complex) matrix B such that Φ(τ) = eBτ . Denoting by λj the
eigenvalues of B, it follows that σj = eτλj is a Floquet multiplier. Note that for a given σj ,

the solution λj of σj = eτλj is not uniquely defined. Indeed for any k ∈ Z, eτ(λj+i
2kπ
τ ) = σj .

This reflects the fact that in the complex Floquet normal form Φ(t) = P (t)eBt, the matrix
B is also not uniquely defined. In the literature it is common to call a Floquet exponent
associated to σj any complex number λj so that σj = eτλj . On the converse, for any σj
there is a unique real number lj so that |σj | = eljτ . That motivates the following definition.

Definition 5. A Lyapunov exponent associated to a Floquet multiplier σj is the unique
real number lj so that |σj | = eljτ .

Note that using the notion Lyapunov exponents, a definition of stability of a periodic
orbit similar to the one of Definition ?? can be introduced. Indeed, given a τ -periodic orbit
Γ = {γ(t), t ∈ [0, τ ]} of (??) and considering {lj}j=1,...,n−1 to be the corresponding set of
nontrivial Lyapunov exponents, we say that Γ is stable if lj < 0, ∀ j = 1, . . . , n− 1 and that
Γ is unstable if there exists j ∈ {1, . . . , n− 1} such that lj > 0.

Given a real n × n diagonalizable matrix A, let us introduce the notation Σ(A) =
{αk, vk}k=1,...,n to denote the eigendecomposition of the square matrix A, i.e. Avk = αkvk,
for all k = 1, . . . , n.

The following result shows how the information from the couple (R,Q(t)) coming from
the Floquet normal form Φ(t) = Q(t)eRt can directly be used to study the dynamical
properties of the periodic orbit Γ. More explicitly, it demonstrates that the stability of Γ
can be determined by the eigenvalues of R while the stable and unstable tangent bundles of
Γ can be retrieved from the action of Q(t) (with t ∈ [0, τ ]) on the eigenvectors of R.

Theorem 3.3. Assume that Γ = {γ(t), t ∈ [0, τ ]} is a τ -periodic orbit of (??) and consider
Φ(t) the fundamental matrix solution of the non-autonomous linear equation ẏ = ∇g(γ(t))y
such that Φ(0) = I. Suppose that a Floquet normal form decomposition of Theorem ??)
Φ(t) = Q(t)eRt is known. Assume that the real n × n matrix R is diagonalizable and let
Σ(R) = {µj , vj}j=1,...,n the eigendecomposition of R. Then the Lyapunov exponents lj of Γ
are given by

lj = Re(µj). (50)

Furthermore, for any θ ∈ [0, τ ], if one defines

wθj := Q(θ)vj , (51)

then wθj is an eigenvector of Φθ(τ) associated to the Lyapunov exponent lj. Note that wθj is
a smooth 2τ -periodic function of θ.
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Proof. Consider the eigendecomposition Σ(R) = {µj , vj}j=1,...,n of the diagonalizable ma-
trix R, meaning that the set {v1, . . . , vn} consists of n linearly independent eigenvectors of
R. By Lemma ??, one has that Φ(τ)2 = Φ(2τ). Since Q(t) is 2τ -periodic and Q(0) = I,
it follows that Φ(2τ) = eR2τ . Since R is diagonalizable, Φ(2τ) = eR2τ is also diagonaliz-
able. Since Φ(2τ) = Φ(τ)2 and since the matrix Φ(τ) is invertible and defined over the field
of complex number (which has zero characteristic), then it can then be showed that Φ(τ)
is also diagonalizable. Now, since Φ(2τ) = Φ(τ)2 one has that if (σ,w) ∈ Σ(Φ(τ)), then
(σ2, w) ∈ Σ(Φ(2τ)). Combining this last point with Φ(τ), Φ(2τ) being diagonalizable implies
that the eigenspaces of Φ(τ) and Φ(2τ) are in one-to-one correspondence. That implies the
existence of a set {σj}j=1,...,n such that Σ(Φ(τ)) = {σj , vj}j=1,...,n. From the property of the
exponential matrix operator, Σ(Φ(2τ)) = {eµj2τ , vj}j=1,...,n = Σ(Φ(τ)2) = {σ2

j , vj}j=1,...,n.

This implies that σ2
j = eµj2τ for any j = 1, . . . , n. Note that lj = Re(µj) is the unique real

number so that |σj | = eljτ . Hence, lj is a Lyapunov exponent associated to the Floquet
multipliers σj .

Now, from (??), one has that

Φθ(2τ) = Φ(2τ + θ)Φ(θ)−1 = Q(θ)e(2τ+θ)Re−RθQ(θ)−1, ∀θ ∈ [0, τ ]

thus
Φθ(2τ)Q(θ)vj = Q(θ)e2τRvj = e2τµjQ(θ)vj

showing that Σ(Φθ(2τ)) = {e2τµj , Q(θ)vj}. Applying the same argument than above, one
can conclude that Σ(Φθ(τ)) = {σj , Q(θ)vj}j=1,...,n forms an eigendecomposition of the ma-
trix Φθ(τ). Hence, wθj = Q(θ)vj is an eigenvector of Φθ(τ). By the smoothness and the

2τ -periodicity of the matrix function Q(θ), one can conclude that wθj = Q(θ)vj is also a
smooth 2τ -periodic function of θ. �

Recall (??) and consider wθj = aθj + ibθj . We define the stable and unstable subspaces

Eθs , E
θ
u ⊂ Tγ(θ)Rn of the periodic orbit Γ at the point γ(θ) as

Eθs = Span
{
aθi , b

θ
i : |σj | < 1

}
Eθu = Span

{
aθi , b

θ
i : |σj | > 1

}
.

That allows us to define the following.

Definition 6. We define the stable and unstable tangent bundles of Γ respectively by

Es, Eu ⊂ TΓRn

Es =
⋃

θ∈[0,τ ]

{γ(θ)} × Eθs , Eu =
⋃

θ∈[0,τ ]

{γ(θ)} × Eθu.

It is important to remark that from the conclusion of Theorem ??, the complete structure
of the stable and unstable bundles can be recovered by the action of the matrix function
Q(t) on the eigenvectors of R, which themselves correspond to the stable and unstable
directions at the point γ(0) on Γ. Also, the proof of Theorem ?? is constructive in the
sense that combined with the rigorous computational method of Section ??, it provides a
computationally efficient direct way to obtain the eigenvectors wθj of Φθ(τ), which are the
ingredients defining the bundles of Definition ??. Note that one could be tempted to use
the fact that Φ(τ) = Q(τ)eRτ and then attempt to compute the eigendecomposition of
Φ(τ) directly. However, that would imply having to compute the exponential of an interval
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valued matrix, which turns out to be a difficult task (e.g. see [?], [?]). This being said, the
rigorous computation of the eigendecomposition of the interval matrix R is not completely
straightforward. We addressed this problem by adapting the computational method based
on the radii polynomials in order to enclose all the solution {µk, vk} of the nonlinear problem
(R − µI)v = 0 with some scaling constrain to isolate the solution. Further details on the
enclosure of the eigendecomposition of interval matrices is presented in [?].

4 Applications

In this section, we present some applications, where we construct rigorously tangent stable
and unstable bundles of some periodic orbits of the Lorenz equations in Section ?? and of
the ζ3-model in Section ??. Finally, in Section ??, we discuss how to recover a posteriori
the Floquet multipliers associated to the periodic orbit γ(t), that is the eigenvalues of the
matrices Φθ(τ). Note that all rigorous computations were performed in Matlab with the
interval arithmetic package Intlab [?], while the codes necessary to compute the Floquet
normal forms in the context of the Lorenz equations can be found in [?].

4.1 Bundles of periodic orbits in the Lorenz equations

Consider the following three dimensional system of ODEs, known as the Lorenz equations u̇1 = σ(u2 − u1)
u̇2 = ρu1 − u2 − u1u3

u̇3 = u1u2 − βu3

(52)

with the classical choice of parameters β = 8/3, σ = 10 and ρ left as a bifurcation parameter.
First we rigorously compute a family of periodic solutions γ(t) = [γ1, γ2, γ3](t) of (??) in
the form

γj(t) =
∑
k∈Z

ξjke
ik 2π
τγ
t
, j = 1, 2, 3 (53)

one of each in a ball of radius rγ , with respect to the Ωs
?

norm, around a numerical solution
[τ̄γ , ξ̄k], ξ̄k = 0 for |k| > mγ . More explicitly, for a choice of the parameter ρ and a decay
rate s? ≥ 2, we prove the existence of a τγ-periodic solution γ(t) so that

|τγ − τ̄γ | ≤ rγ ,

|Re(ξk)−Re(ξ̄k)|∞ ≤ rγw−s
?

k , |Im(ξk)− Im(ξ̄k)|∞ ≤ rγw−s
?

k .

(54)

Note that ξk ∈ C3 and ξ−k = C(ξk), where C(z) is the complex conjugate of z. The
existence of such solutions has been achieved by applying a modified version of the method
discussed in the previous section. Even with some technical differences, the philosophy is
the same. Rewrite the system of ODEs as a infinite dimensional algebraic system where
τγ and the Fourier coefficients ξk are the unknowns, then consider a finite dimensional
projection and compute a numerical approximate solution τ̄γ , (ξ̄k)k. Then, using the radii
polynomials, prove the existence, in a suitable Banach space, of a genuine solution τγ , (ξk)k
of the infinite dimensional problem in a small ball containing the approximate solution. In
the next subsection some of the results are presented.

Then, combining the method discussed in Section ?? and Theorem ??, we rigorously
enclose the stable and unstable tangent bundles of some of the rigorously computed periodic
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orbits γ(t). This first requires the computation of the Floquet normal form of the principal
fundamental matrix solution Φ(t) of the linearized system along γ(t). More explicitly Φ(t)
is the solution for t ∈ [0, τγ ] of the non-autonomous system{

Φ̇ = ∇g(γ(t))Φ
Φ(0) = In

(55)

where g is the right hand side of (??), ∇g denotes the Jacobian of the right hand side of
system (??) and I is the 3× 3 identity matrix. The former system is nothing more than a
particular case of (??), where A(t) = ∇g(γ(t)) and n = 3. We now apply the computational
method presented in Section ?? to compute the Floquet normal form of Φ(t), which is
the solution of (??). In particular a constant matrix R and the Fourier coefficients Qk of
a 2τγ-periodic function Q(t) is computed, so that Φ(t) = Q(t)eRt solves (??). Once the
computation of R and the Qk is done, following the conclusion of Theorem ??, we compute
Σ(R) = {(µj , vj) | j = 1, . . . , n}, we derive from the Lyapunov exponents lj := Re(µj)
the linear stability of the periodic orbit Γ and using the eigenvectors {v1, . . . , vn} of R we
construct the tangent bundles as defined in Definition ?? and given by the formula (??).

Computation of R and Qk
To begin with, let us explicitly write the Jacobian of (??)

∇g(u) =

 −σ σ 0
ρ− u3 −1 −u1

u2 u1 −β


and, recalling (??), the Fourier coefficients Ak of A(t) = ∇g(γ(t))

A0 =

 −σ σ 0
ρ− ξ3

0 −1 −ξ1
0

ξ2
0 ξ1

0 −β

 , Ak =

 0 0 0
−ξ3

k 0 −ξ1
k

ξ2
k ξ1

k 0

 , k ≥ 1.

Note that the hypothesis (??) for ξk to lie in a ball centered at ξ̄k implies that ‖A‖s? <∞.
The computation of the approximate solution R̄, Q̄k,1, Q̄k,2 has been done as follow: consider
the approximation γ̄(t) =

∑
|k|≤mγ ξ̄ke

ik2πt/τ̄γ of the periodic orbit γ(t) and numerically

solve system (??) up to time 2τ̄γ . Denote by ȳ(2τ̄γ) the obtained result and numerically
compute

R = log(ȳ(2τ̄γ)).

Neglect the imaginary part of R and consider only its real part. Then numerically integrate
the system (??) up to time 2τ̄γ with R in place of R yielding the solution Q(t). Fix the finite
dimensional parameter m and compute from Q(t) the matrices Qk,1, Qk,2, respectively
the real and imaginary part of the Fourier coefficients with |k| < m. Finally the vector
(R, (Qk,1,Qk,2)k) is considered as starting point for a Newton iteration scheme applied on
the finite dimensional projection defined by (??). Denote the output of the iterative process
by x̄ = (R̄, (Q̄k,1, Q̄k,2)k), that is an approximated solution f (m)(x̄) ≈ 0 up to a desired
accuracy, with f (m) defined in (??).

Consider Λk given by (??). Note that in the case of the three-dimensional vector field
(??), Λk is a 18 × 18 matrix and one could compute its inverse analytically using the
mathematical software Maple. After having computed Λ−1

k one needs to check that the
chosen m satisfies m > K where K is the same as in Lemma ??, otherwise increase m.

Then the computational parameter M > m has to be fixed: in the following, as well as
in all the presented computations, we assume

M > m+mγ .
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Given M , we compute the constant CΛ(M) introduced in Lemma ??. As already mentioned
in Section ??, the knowledge of the behaviour of the matrices A2k for k ≥ M allows com-
puting a sharper bound CΛ than the one given in Section ?? in the general setting. Indeed,
since for any k > mγ , we have |Re(ξk)|∞ ≤ rγw

s∗

k and |Im(ξk)|∞ ≤ rγw
s∗

k , it follows that
|A2k,1|, |A2k,2| ≤ AM , for all k ≥M , where

AM :=
rγ

2Ms∗

 0 0 0
1 0 1
1 1 0

 .
Thus we can replace the matrix Λ̄M given in (??) by

Λ̄M :=

[
[AM ]n |R∗ − [A0]n|+ [AM ]n

|R∗ − [A0]n|+ [AM ]n [AM ]n

]
.

Moreover, note that AM has null diagonal, therefore we define CΛ as

CΛ :=
1

min
i

{
2π
2τ − 1

M

∑
j 6=i

Λ̄M (i, j)
} .

Notice the difference with the general formula of CΛ given in (??). Now that the parameters
m,M are chosen and CΛ is computed, one can compute, for a given choice of decay rate
s ∈ [2, s?], the coefficients Yk, Zk, k = 0, . . . ,M as shown in Section ??.

As already mentioned in Remark ??, the bound ‖A‖s? <∞ is sufficient to proceed with
the computational method, we want to deepen what was highlighted in : it is easy to see
that

|Ak|∞ ≤
√

2rγ
1

ws
?

k

, ∀k > mγ (56)

thus the above choice of M implies that the tail elements H0, Hk in (??) only contain the

terms Aj ’s satisfying |Aj |∞ ≤
√

2rγw
−s?
j . Therefore the subsequent estimate for hk can be

improved by replacing ‖A‖s? with
√

2rγ , giving

hk =
2nrγ

(M − k)s?−s

( M−1∑
k2=M−k

w−sk2+kw
−s
k2

+ 2ζ(M, 2s)
)
, for k = 1, . . . ,m− 1.

On the other hand, for k = m, . . . ,M − 1 the above estimate does not holds, since M
could be less then k +mγ . Therefore, for those k such that M > k+mγ we continue using
the previous formula for hk while for those k such that M ≤ k +mγ we proceed as follow.
Rewrite explicitly (part of) the vector Hk

Hk =
∑

k1+k2=k
M≤|k2|≤k+mγ

(
|Ak1,1|+ |Ak1,2|

)
w−sk2

1n + 2rγ
∑

k1+k2=k
|k2|>k+mγ

w−s
?

k1
1nw

−s
k2
1n

=
∑

k1+k2=k
M≤|k2|≤k+mγ

(
|Ak1,1|+ |Ak1,2|

)
w−sk2

1n + 2nrγ
∑

k1+k2=k
|k2|>k+mγ

w−s
?

k1
w−sk2

1n.
(57)

The first is a finite sum and it is rigorously computed while, following (??), the second
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contribution can be estimated using

∑
k1+k2=k
|k2|>k+mγ

w−s
?

k1
w−sk2

=

∞∑
k2=k+mγ+1

[
1

ws
?

k2−k
+

1

ws
?

k2+k

]
1

ks2

≤ 1

(mγ + 1)s?−s
∑

k2>k+mγ

[
1

wsk2−k
+

1

wsk2+k

]
1

ks2

≤ 1

(mγ + 1)s?−s

 k+mγ∑
k2=mγ+1

1

(k2 + k)s
1

ks2
+ 2ζ(k +mγ + 1, 2s)

 .
(58)

Summarizing, for those k ≥ m, k < M such that k +mγ > M , we define

Hk =
∑

k1+k2=k
M≤|k2|≤k+mγ

(
|Ak1,1|+ |Ak1,2|

)
w−sl 1n +

2nrγ
(mγ + 1)s?−s

[ k+mγ∑
k2=mγ+1

1

(k2 + k)s
1

ks2

+ 2ζ(k +mγ + 1, 2s)
]
1n

(59)

where, clearly, the dimension of the dynamical system is n = 3. Again, the knowledge of
the particular behavior of the coefficients Ak allows to provide a better estimate for ZM .
Indeed note that |Ak,1| ≤cw |Āk,1| + w−s

?

k 1n, where Āk denotes the matrix Ak with the
entries ξ̄ in place of ξ and the same holds for |Ak,2|. It follows that |Ak,1|∞ + |Ak,2)|∞ <√

2|ξ̄k|∞ + 2rγw
−s?
k for 1 ≤ |k| ≤ mγ and (??) for |k| > mγ .

Therefore, the computation of the bound for |ck,1|∞ when k ≥ M , necessary for the
definition of ZM , has been slightly modified as follows.

|ck,1| =

∣∣∣∣∣∣∣∣
∑

k1+k2=k
|k2|6=k

(
Ak1,1 +Ak1,2

)
w−sk2

1n

∣∣∣∣∣∣∣∣ ≤cw
∑

k1+k2=k
k1 6=0,2k

(
|Ak1,1|+ |Ak1,2|

)
w−sk2

1n

≤
∑

k1+k2=k
k1 6=0, |k1|≤mγ

(
|Āk1,1|+ |Āk1,2|

)
w−sk2

1n + 2rγ
∑

k1+k2=k
|k2|6=k

w−s
?

k1
w−sk2

1n1n.

(60)

Then, using the fact that s? ≥ s, for any k ≥M

|ck,1|∞ ≤cw n
√

2

mγ∑
j=1

|ξ̄j |∞(w−sk−j + w−sk+j) + 2nrγ
∑
l+j=k
|l|6=k

w−sj w−sl

≤cw
n

ks

√2

mγ∑
j=1

|ξ̄j |∞ks(w−sk−j + w−sk+j) + 2rγ

[
1 + 2

M∑
l=1

1

ls
+

2

Ms−1(s− 1)
+ ηM

]
≤cw

n

ks

√2

mγ∑
j=1

|ξ̄j |∞
(

1(
1− j

M

)s + 1

)
+ 2rγ

[
1 + 2

M∑
l=1

1

ls
+

2

Ms−1(s− 1)
+ ηM

].
(61)
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Figure 2: (a) A simple bifurcation diagram for the Lorenz equations (??). The labelled points

correspond to the values ρ = ρi (i = 1, 2, . . . , 5). (b) Some of the rigorously computed periodic

orbits on the branch joining the Hopf bifurcation and the homoclinic point. (c) The periodic

solutions corresponding to ρ = ρi (i = 1, . . . , 5).

4.1.1 Computational results

For the choice σ = 10, β = 8/3 it is known that there exists a branch of periodic solutions
parametrized by ρ joining a Hopf bifurcation at ρ = 470

19 ≈ 24.736 and a homoclinic point
at ρ ≈ 13.9265, see Figure ??(a). In what follows, we restrict our attention to the periodic
solutions lying on this branch. Table ?? presents data about the computer-assisted proofs
of existence of several periodic orbits in the form (??) with bounds of the form (??). As
mentioned previously, the existence of such solutions are done via the radii polynomials.
For each rigorous computation, we fixed s? = 2. Each line of Table ?? corresponds to a
different solution and reports the value of ρ, the period τ̄γ of the numerical solution, the
dimension mγ of the finite dimensional projection and the radius rγ of the ball Bγ̄(rγ) =
γ̄ +

∏
k≥0[− rγ

w2
k
,
rγ
w2
k

]6 around the numerical solution γ̄ where the exact solution has been

proved to exist. Some of the periodic orbits are depicted in Figure ??(b). Note that
with the radii polynomials, it is possible to rigorously enclose the periodic solutions for
values of ρ close to the Hopf bifurcation and to the homoclinic point. As ρ approaches the
homoclinic point, the periodic solutions are flatter (e.g. see Figure ??), which means that
a larger number of Fourier coefficients contributes to their Fourier expansions. Therefore,
it is necessary to chose a larger finite dimensional projection mγ as ρ decreases in order to
obtain rigorous computations of existence of periodic orbits using the radii polynomials.

The rigorous computation of the enclosure of the invariant bundles was done for a set of
periodic orbits lying on the same bifurcation branch (see Figure ??), and the corresponding
values of ρ are

ρ1 = 14.85, ρ2 = 17.32, ρ3 = 19.79, ρ4 = 22.26, ρ5 = 24.73.

Figure ?? contains the plot of five periodic orbits γ̄i (i = 1, . . . , 5) at ρ = ρi (i = 1, . . . , 5),

27



Figure 3: Periodic orbit at ρ = 13.927. On the left, the orbit is drawn in the state space,

while on right the x (blue), y (red), z (black) coordinates are plotted separately as function of

time. A genuine solution has been proved to exist with Fourier coefficients in a ball of radius

r = 1.893591107536733 · 10−08 around the numerical solution.

ρ τ̄γ mγ rγ

24.736 0.652859396941149 30 9.469873202388920 ·10−11

24.436 0.663384674511011 30 5.478345151088000 ·10−12

23.200 0.710825719902523 40 3.071478394415574 ·10−12

20.800 0.827536078261055 40 1.857127168671614 ·10−12

16.000 1.302497474229172 40 2.574513942375312 ·10−12

15.400 1.435095007378964 40 1.178559327141313 ·10−11

14.900 1.594009133698383 48 4.951779335080891 ·10−12

14.300 1.955959084775736 48 5.924372707046972 ·10−10

14.100 2.243447758187898 56 3.426711644299483 ·10−10

14.000 2.565212920927481 56 2.018825516161773 ·10−08

13.980 2.684270226581966 60 1.090913664984519 ·10−08

13.960 2.859882454655782 60 6.320026130098352 ·10−08

13.940 3.201446568839638 60 1.009627398529485 ·10−06

13.932 3.540414720761810 60 8.496363668377804 ·10−06

13.928 4.038292895738813 80 3.658487332536346 ·10−07

13.927 4.481359736174591 100 1.893591107536733 ·10−08

Table 1: Data associated to the computer-assisted proofs of existence (done with the radii poly-

nomials) of several periodic orbits of the Lorenz equations (??) at different parameter values.
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r r

pk(r) pk(r)

Figure 4: Plot of the radii polynomials pk(r) constructed for the rigorous computation of the

Floquet normal form of the fundamental matrix solution associated to the periodic solution #4

given by γ4. On the right: a magnification of the radii polynomials close to r = 0. The red line

denotes the interval INT given in (??), where all the pk(r) are negative.

and the Appendix contains the first 15 Fourier coefficients of γ̄1 and γ̄4. Table ?? contains
the data of the rigorous computation of the Floquet normal forms of the fundamental matrix
solutions associated to γ̄1 and γ̄4. More precisely, it contains the dimension m of the finite
dimensional projection, the computational parameter M and the enclosing radius r.

# sol ρ m M r
1 14.85 180 900 1.734418508431413·10−06

2 17.32 90 180 3.914300837825743·10−09

3 19.79 70 120 3.157918269225057·10−10

4 22.26 60 100 1.664781163947245 ·10−10

5 24.73 40 80 1.404020127017372 ·10−09

Table 2: Data associated to the rigorous computation of the Floquet normal form of the funda-

mental matrix solution for each of the periodic orbit γi (i = 1, . . . , 5). m is the dimension of the

finite dimensional projection, M is the computational parameter and r is the radius of the ball

centered at the approximate solution in Ωs within which a genuine solution of (??) exists.

Some of the radii polynomials pk(r) built during the rigorous computation of the Floquet
normal form of the fundamental matrix solution associated to the periodic orbit γ̄4 are
plotted in Figure ??. The bold line on the r-axis corresponds to the interval

INT = [1.794002077820062 · 10−10 0.005654240115476] (62)

where all the radii polynomials are negative.
From the rigorous computations of the Floquet normal form, we noticed that the odd

Fourier coefficients of Q(t) are almost vanishing, suggesting that Q(t) is a τγ-periodic func-
tion, rather than 2τγ-periodic. This is not in contradiction with Floquet Theorem. In the
Appendix, we present the numerical approximation R̄ and the first even Fourier coefficients
Q̄k for the solutions #1 and #4. Since the Fourier coefficients Q̄k corresponding to a pe-

29



riodic orbit close to the homoclinic orbit decrease slower, larger values of m and M were
necessary to obtain successful computations.

We now have all the ingredients necessary to construct the tangent bundles: first we
compute the intervals containing the spectrum and the eigenvectors the interval value matrix
R, then, in light of Theorem ??, the multiplication of the stable and unstable directions
(given by the eigenvectors of R) with the function Q(θ) yields rigorously the tube enclosing
the complete stable and unstable bundles. As already mentioned above, the codes necessary
to compute the Floquet normal forms for the Lorenz equations can be found in [?].

Sol # Center Radius
1 -15.109380514113965 6.535796640191043 · 10−6

1.442713847447833 2.445722953735543 · 10−4

2 -14.418434214853773 1.581998979110051 · 10−8

0.751767548187609 2.292988975871850 · 10−7

3 -14.075379469563303 1.120430189449109 · 10−9

0.408712802896790 1.443149018164319 · 10−8

4 -13.840311255652775 4.525292794068323 · 10−10

0.173644588986231 6.273796862526999 · 10−9

5 -13.667080400789002 4.104230777149636 · 10−9

0.000413734122254 9.998501090433916 · 10−6

Table 3: Lyapunov exponents for each of the periodic orbit γi (i = 1, . . . , 5). For each solution,

we report the center and the radius of the interval vectors enclosing the exponents. Note that we

could prove the existence of the eigenvectors vj associated to µj within accuracy given by r.

Table ?? lists the Lyapunov exponents of the periodic orbits, as defined in Definition ??,
and it also contains the radii of the intervals enclosing the stable and unstable eigen-couple
of R while in Figure ?? the tangent bundles are depicted. In Appendix the complete list of
the eigen-decomposition of the interval matrices R is also provided.

Before closing this section, let us make few remarks. The radii r of the ball Bx̄(r, s)
showed in Table ?? come as result of different ingredients which are in some sense in compe-
tition. First of all the accuracy of the enclosure of the Floquet normal form is limited by the
enclosure of the periodic orbit γ(t): if s = s? one can not expect the radius r to be smaller
then the radius rγ . Moreover the radius r of the ball Bx̄(r, s) in Ωs, where the existence of
the genuine solution is proved to exist, depends on how close the numerical approximation is
to the real solution. As already said, the definition of the numerical solution (R̄, Q̄k) comes
from the combination of two numerical integrations, from where we extract R and Qk, and
the implementation of a Newton scheme to find the zeros of the finite dimensional problem
f (m) = 0. For the first we adopted a variable time step Runge Kutta method of fourth
order, as implemented in the built in Matlab function ode45, while the Newton scheme is
run until |f (m)|∞ < 2·10−14. Finally, the performance of r is given by the choice of the finite
dimensional parameter m and the computational parameter M . While the first addresses
a theoretical issue and fixes the dimension of the Garlerkin projection, the second serves to
better estimate the various bounds necessary in the proof. If on one side a choice of large
values for m and M decreases the analytical tail errors, on the other side it increases the
number of computations and therefore the error propagation and the computational time.
Thus the best result is often given as a tradeoff between this two competitors.
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Figure 5: Plot of the tangent stable (turquoise) and unstable (red) bundles of each of the periodic

orbits γi. Figures (a)-(b)-(c)-(d)-(e) concern respectively γ1, γ2, γ3, γ4, γ5.

31



4.2 The ζ3-model: non orientable tangent bundles

It is known that if a Floquet multiplier of a periodic orbit is negative, then the corresponding
tangent bundle is not orientable. Moreover, in the case of a saddle periodic orbit of a three-
dimensional system, the two non-trivial Floquet multipliers are real and their product is
positive. Therefore both the tangent bundles are either orientable or not orientable and, in
the latter case, they are topologically equivalent to a Möbius strip, see [?].

An example of a dynamical system with periodic orbits that exhibit this behavior is the
so called ζ3-model considered in [?] ẋ = y

ẏ = z
ż = αx− x2 − βy − z.

(63)

For β = 2, as α varies, the periodic orbits of system (??) produce an interesting bifurcation
diagram. We refer to [?] and [?] for a detailed analysis of the bifurcation diagram and on
the genesis of periodic orbits, called twisted periodic orbits, with non orientable invariant
manifolds. We focus on a particular twisted periodic orbit corresponding to α = 3.372 lying
on the branch emanating from a period-doubling bifurcation that occurs at α ≈ 3.125.

Following the same procedure as before, we rigorously compute the enclosure of the
periodic orbit γ(t) and subsequently the enclosure of the matrix R and of the matrix function
Q(t), hence producing an explicit Floquet normal form as in (??). Then, we extract the
necessary stability parameters and we recover the stable and unstable tangent bundles using
(??). Figure ?? shows the resulting bundles.

For the rigorous computation of the periodic orbit we chose mγ = 30 proving the genuine
periodic orbit to live in a ball of radius rγ = 1.657473362439634·10−12 around the numerical
approximation, (s? = 2), while for the enclosure of the Floquet normal form of the principal
fundamental matrix solution of the linearized problem we set m = 50, M = 100 yielding the
enclosure radius r = 8.327055238174269 · 10−10. Having computed the intervals enclosing
the period τ of the orbit and the eigenvalues of R, we realize that the absolute values of the
two nontrivial Floquet multipliers satisfy

|σ1| ∈ [0.007038336031738 0.007038336266547]
|σ2| ∈ [1.527362891655825 1.527363232279426]

.

To conclude we emphasize the role played by the continuous function Q(θ) in the con-
struction of the tangent bundles. As proved in Theorem ??, as θ changes, the eigenvector
wθj of Φθ(τ) associated to the Floquet multiplier σj is given by wθj = Q(θ)vj , where vj
is the eigenvector of R relative to the eigenvalue µj . The function Q(θ) is continuous
and 2τ -periodic, but the tangent bundles are smooth manifolds, therefore the eigenspaces
Eθs and Eθu, as function of θ ∈ [0, 2τ ], must be a double covering. That implies that
wτj = Q(τ)vj has to be an eigenvector of Φ(τ) associated to the Floquet multiplier σj , i.e.
span{vj} = span{wτj }. In the case of the Lorenz equations (??), Q(τ) turns to be the

identity matrix, therefore the last relation is simply verified. But in case of the ζ3-model
and in general when the bundle is not orientable, Q(τ) need not be the identity matrix.
Indeed, in the considered example, Q(τ) results to stay in a small interval around

Q̄ =

 −1.675372218349393 −1.030485782114017 −0.456425794029489
1.323704549546922 1.019713990251906 0.894577662024640
0.970176001842336 1.480298639600749 −0.344341771902499


and the relation span{vj} = span{wτj } still holds.
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Figure 6: Rigorously computed stable (turquoise) and unstable (red) tangent bundles of a periodic

orbit of the ζ3 model with negative Floquet multipliers
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4.3 Recovering of the Floquet multipliers

In this final section, we discuss how to recover a posteriori the Floquet multipliers associated
to the periodic orbit γ(t), that is the eigenvalues of the monodromy matrix Φθ(τ). First
recall from Lemma ?? that the Floquet multipliers, denoted by σj , are independent of θ
and from Theorem ?? that they solve the equation

Φθ(τ)wθj = σjw
θ
j (64)

for any θ. In the proof of Theorem ?? we realized that σ2
j = eµj2τ where µj are the

eigenvalues of the matrix R. Thus the Floquet multipliers are known up to a sign, i.e.
σj = ±eµjτ . Therefore, by choosing θ = 0 in (??), it is enough to check whether Φ(τ)w0

j

is equal to +eµjτw0
j or to −eµjτw0

j . Recall that the Floquet normal form Φ(t) = Q(t)eRt

satisfies Q(0) = In and recall from (??) that wθj := Q(θ)vj . Hence, since (µj , vj) ∈ Σ(R),

one has that Φ(τ)w0
j = Q(τ)eRτvj = Q(τ)eµjτvj . Thus it reduces to compute the vectors

Q(τ)eµjτvj and eµjτvj and to compare them.
Having computed the enclosure of Q(t) in terms of the Fourier coefficients and the

bounds for µj and vj , denote by Iσj the interval enclosing Q(τ)eµjτvj and by I+
j , I−j the

intervals enclosing eµjτvj and −eµjτvj , respectively. The sign of the Floquet multiplier σj
is determined if Iσj intersects only one of the intervals I+

j and I−j , while no conclusion can
be achieved if Iσj is so large to intersect both of them. Note that Iσj has to intersect at

least one I±j . The choice θ = 0 in (??) increases the chances of successfully recovering the

Floquet multipliers since in this case, the computation of the matrix exponentiation eRτ , a
computation that can dramatically increase the error propagation, can be avoided.

Finally, Table ?? and Table ?? contain the intervals Iσj and I+
j , j = 1, 2 associated to

the solution #3 of the Lorenz equations and of the solution of the ζ3-model. That shows
that the Floquet multipliers σ1, σ2 are both positive for the periodic solution of the Lorenz
equations and are both negative for the periodic solution the ζ3-model.

Solution Lorenz #3

|σ2| ∈ [0.359965418958973 0.359965419696942] · 10−5

|σ1| ∈ [1.439037708132836 1.439037745123575]

Iσ1 I+
1

10−5· 10−5· 0.275643268865818 0.275643271985182
0.065076919481043 0.065076922168721
0.222173095329639 0.222173098339382

  0.275643269739635 0.275643271111366
0.065076920354861 0.065076921294908
0.222173096203459 0.222173097465571



Iσ2 I+
2 -0.263299353291831 -0.263299298199846

-1.237252678484705 -1.237252598357060
-0.686082354892901 -0.686082288933197

 -0.263299349897387 -0.263299301594310
-1.237252675090274 -1.237252601751541
-0.686082351498413 -0.686082292327618


Table 4: Interval vectors Iσj and I+j , j = 1, 2 associated to sol#3 for the Lorenz equations (??).

It holds I+j ⊂ Iσj , j = 1, 2 proving that the Floquet multipliers are positive
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Solution ζ3-model

|σ1| ∈ [0.007038336031738 0.007038336266547]
|σ2| ∈ [1.527362891655825 1.527363232279426]

Iσ1 I+
1 0.001505025554611 0.001505026041576

0.001935764317690 0.001935764886660
-0.006597415507817 -0.006597415070914

 -0.001505025849095 -0.001505025747089
-0.001935764660362 -0.001935764543986
0.006597415153419 0.006597415425314



Iσ2 I+
2 0.995820356220745 0.995821132336306

-0.143670022815996 -0.143669207167412
-1.149146933067294 -1.149146355489062

 -0.995820892892411 -0.995820595664657
0.143669561398723 0.143669668584703
1.149146478567386 1.149146809988988


Table 5: Interval vectors Iσj and I+j , j = 1, 2 associated to solution of the ζ3-model. It holds

−I+j = I−j ⊂ Iσj , j = 1, 2 proving that the Floquet multipliers are negative.
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6 Appendix

6.1 Computation of the constant CΛ of Lemma ??

The construction of CΛ is done by bounding uniformly the right hand side of (??) for k ≥M
up to a factor 1/k. For this it is convenient to write explicitly the entries of the matrix Λ̂
appearing in (??)

Λ̂k :=

[
k 2π

2τ In2 + λ2,1 λ2,2

λ1,1 −k 2π
2τ In2 + λ1,2

]
.

A straightforward calculation implies that

λ1,1 = R∗ − [A0]n − [A2k,1]n, λ2,2 = R∗ − [A0]n + [A2k,1]n, λ1,2 = λ2,1 = −[A2k,2]n,

where

R∗ :=

 R̄(1, 1)In . . . R̄(n, 1)In
...

. . .
...

R̄(1, n)In . . . R̄(n, n)In

 ∈Mat(n2,R)

and the notation [B]n stands for the diagonal concatenation of n copies of B ∈ Mat(n,R),
i.e.

[B]n :=

 B . . .

B

 ∈Mat(n2,R).
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We note that, with the exception of the factors k 2π
2τ on the diagonal, the matrix Λ̂k depends

on k only through the entries of the matrices A2k,1 and A2k,2. The hypothesis ‖A‖s∗ <∞
implies that

|A2k,1|∞, |A2k,2|∞ ≤ |A2k|∞ ≤
‖A‖s∗
(2k)s∗

≤ ‖A‖s∗
(2M)s∗

,

so we have the component-wise estimates

|A2k,1| ≤cw
‖A‖s∗

(2M)s∗
1n, |A2k,2| ≤cw

‖A‖s∗
(2M)s∗

1n. (65)

Therefore the diagonal elements of Λ̂k satisfy |Λ̂k(i, i)| ≥ k 2π
2τ −

‖A‖s∗
(2M)s∗

, while the off diagonal

terms satisfy |Λ̂k(i, j)| ≤ Λ̄M (i, j) for every k ≥M , where

Λ̄M :=

[
[ ‖A‖s∗
(2M)s∗

1n]n |R∗ − [A0]n|+ [ ‖A‖s∗
(2M)s∗

1n]n

|R∗ − [A0]n|+ [ ‖A‖s∗
(2M)s∗

1n]n [ ‖A‖s∗
(2M)s∗

1n]n

]
. (66)

Inserting the previous bounds in formula (??), we obtain

‖Λ̂−1
k ‖∞ ≤

1

min
i

{
k 2π

2τ −
‖A‖s∗
(2M)s∗

−
∑
j 6=i

Λ̄M (i, j)
} ≤ 1

kmin
i

{
2π
2τ −

(
‖A‖s∗
(2M)s∗

)
1
k − 1

k

∑
j 6=i

Λ̄M (i, j)
}

and, finally, ‖Λ−1
k ‖∞ = ‖Λ̂−1

k ‖∞ ≤ CΛ

k , for every k ≥M , where

CΛ :=
1

min
i

{
2π
2τ −

(
‖A‖s∗
(2M)s∗

)
1
M − 1

M

∑
j 6=i

Λ̄M (i, j)
} . (67)

Remark that the computation of CΛ depends on the uniform bound of the matrices A2k for
k larger than M . For sake of generality, we considered the weakest hypothesis ‖A‖s∗ <∞,
yielding the estimates (??). However, a more precise information about the behavior of A2k

allows constructing a sharper CΛ. For instance, in Section ??, a bound slightly sharper than
the one given by (??) is obtained in the context of the Lorenz equations.

6.2 Data
The period and the Fourier coefficients of γ̄1 and γ̄4:

Solution # 1

τ̄γ = 1.614093492553360, ξ̄0 =

 −2.780059260523741
−2.780059260523741

7.947403837193834


ξ̄1 ξ̄2 ξ̄3

−2.103424940338396 − 0.563375873719758i −1.148118935964748 − 0.463407706727962i −0.549947197921830 − 0.250386371164224i
−1.884119489414622 − 1.382176565306859i −0.787337295052375 − 1.357264730825950i −0.257543323733286 − 0.892620573144838i

3.500814040190368 − 2.277378948991177i 1.714800528134896 − 0.931203853246065i 0.934628045117667 − 0.303909720680586i

ξ̄4 ξ̄5 ξ̄6

−0.245788932283429 − 0.120107696132124i −0.105336849992997 − 0.056272958254793i −0.044023808302604 − 0.026405465627272i
−0.058771534568073 − 0.502820944185082i 0.004190084515215 − 0.261295452687129i 0.017649360354828 − 0.129228411176272i

0.498026421896317 − 0.069036329230910i 0.255207598883747 + 0.004096081252986i 0.126183314309363 + 0.019020106397201i

ξ̄7 ξ̄8 ξ̄9

−0.018110918227797 − 0.012412554201161i −0.007364503589650 − 0.005817610383848i −0.002963317111988 − 0.002709075113557i
0.015711945800080 − 0.061762842200829i 0.010752476253377 − 0.028751865908767i 0.006527743303825 − 0.013090855079841i
0.060511917346837 + 0.016657990661909i 0.028266369399563 + 0.011223417581133i 0.012901208489663 + 0.006732467383552i

ξ̄10 ξ̄11 ξ̄12

−0.001179210881516 − 0.001251358716240i −0.000463309508391 − 0.000573118774730i −0.000179268598732 − 0.000260306136273i
0.003691955959910 − 0.005841675521921i 0.001990769285304 − 0.002556997317175i 0.001036684527908 − 0.001097713261045i
0.005764884939599 + 0.003774872882279i 0.002524607658795 + 0.002023019415141i 0.001083619790267 + 0.001048913300054i

ξ̄13 ξ̄14 ξ̄15

−0.000068057085571 − 0.000117293446836i −0.000025210012126 − 0.000052457038185i −0.000009032463269 − 0.000023294288074i
0.000525507912207 − 0.000461697204554i 0.000260669467808 − 0.000189846136106i 0.000126984126766 − 0.000076035322684i
0.000455456453909 + 0.000530056624236i 0.000187064896143 + 0.000262329087681i 0.000074796643384 + 0.000127574811379i
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Solution # 4

τ̄γ = 0.752056588663314, ξ̄0 =

 −6.701197977052439
−6.701197977052439
19.896645313603468



ξ̄1 ξ̄2 ξ̄3

−1.957527201575398 − 0.358818882759485i −0.335512945846433 − 0.016213444633248i −0.047773518005275 + 0.003264331987478i
−1.657745833247766 − 1.994268440246074i −0.308421346986976 − 0.576833494637121i −0.055955243858351 − 0.116475274417622i

2.644506821861307 − 2.227265633430878i 0.566785859807531 − 0.332890753309569i 0.114165757724204 − 0.053764689555239i

ξ̄4 ξ̄5 ξ̄6

−0.006558770971049 + 0.000929180341579i −0.000901308891171 + 0.000177163318124i −0.000124174690936 + 0.000030576566572i
−0.009663969360603 − 0.020989368884455i −0.001641379501671 − 0.003587906270789i −0.000277448981776 − 0.000591886640616i

0.020940359140456 − 0.009162879791036i 0.003602280657498 − 0.001579182778059i 0.000594586513762 − 0.000270108958042i

ξ̄7 ξ̄8 ξ̄9

−0.000017112175371 + 0.000005045265812i −0.000002356075416 + 0.000000809468453i −0.000000323960977 + 0.000000127320510i
−0.000046618250245 − 0.000095031349885i −0.000007766349449 − 0.000014937919344i −0.000001281309839 − 0.000002308608107i

0.000095408145471 − 0.000045683567994i 0.000014990676622 − 0.000007640211987i 0.000002316321304 − 0.000001263950355i

ξ̄10 ξ̄11 ξ̄12

−0.000000044474813 + 0.000000019730387i −0.000000006094973 + 0.000000003022158i −0.000000000833662 + 0.000000000458564i
−0.000000209315706 − 0.000000351842042i −0.000000033869024 − 0.000000052991484i −0.000000005431044 − 0.000000007899402i

0.000000352995514 − 0.000000206922202i 0.000000053164861 − 0.000000033539827i 0.000000007925411 − 0.000000005385894i

ξ̄13 ξ̄14 ξ̄15

−0.000000000113788 + 0.000000000069034i −0.000000000015496 + 0.000000000010323i −0.000000000002105 + 0.000000000001535i
−0.000000000863573 − 0.000000001166826i −0.000000000136241 − 0.000000000170926i −0.000000000021338 − 0.000000000024847i

0.000000001170712 − 0.000000000857397i 0.000000000171505 − 0.000000000135398i 0.000000000024933 − 0.000000000021224i

Numerical approximation R̄ and even Fourier coefficients Q̄k:

Solution # 1

R̄ =

 −1.387511870700525 10.413957598738442 −24.345293393676652
34.433483055001410 16.747540413772924 −64.490466526574409
5.910150213980192 10.264994080118939 −29.026695209740538



Q̄0 =

 1.164908177280166 −1.803172340423295 3.576351013779620
−3.091997467130629 0.061210130102117 1.988125340690924

2.718036482444605 0.825898407183530 −3.885210588070526


Q̄2 = −0.866294000482876 − 1.517174563626462i 0.138024745785573 + 0.218099611198252i 0.321523051493223 + 0.301224125958044i

0.509788425938065 − 0.714866339135450i −0.287829114159326 − 0.633681030790011i 0.489880443422970 + 1.839100806447159i
0.402372709747515 − 0.063751212963967i 0.203769059852901 + 0.107721913625062i −0.537890180980384 + 0.144035347276835i


Q̄4 = 0.002921350244971 − 0.041026859510501i 0.284838788861365 − 0.102407807177850i −0.598366228696386 + 0.039927158582337i

0.661612810285463 − 0.362088143572158i 0.230422023359519 − 0.053897172370139i −0.736642472712952 + 0.218493323289657i
−0.220722332917557 + 0.515436548133675i −0.015454270152731 + 0.317283993327913i 0.382525265190417 − 0.772796160555542i


Q̄6 = 0.272254735540097 + 0.193108273854690i 0.200555829088783 − 0.035698340068769i −0.597856635403175 − 0.217185503512216i

0.346206488506330 + 0.232974541129058i 0.247951861450867 + 0.116888303230541i −0.565050894702496 − 0.524858613861323i
−0.415259741322708 + 0.376758862585817i −0.130242646049827 + 0.256517250203223i 0.697655874103223 − 0.593956538793055i


Q̄8 = 0.226805195194691 + 0.164436218751750i 0.127848789361473 − 0.002657587081552i −0.417753912756603 − 0.208768292791024i

0.132624286729287 + 0.362238337115273i 0.153471968526916 + 0.148905166236442i −0.256749954059345 − 0.636445460226098i
−0.396602815786101 + 0.163955300090018i −0.150058149361482 + 0.153653073255694i 0.667238511937733 − 0.280824220397952i


Q̄10 = 0.139141286867885 + 0.105392333409777i 0.073450746075024 + 0.005413998475731i −0.245560436837712 − 0.140410932437067i

0.022491378705591 + 0.297244131793740i 0.078758641110580 + 0.123065445235988i −0.071921501008139 − 0.502287082721128i
−0.295670715198465 + 0.034690679906638i −0.121731432613219 + 0.077394507215750i 0.498006841524345 − 0.080182881735437i


Q̄12 = 0.074574329861185 + 0.061221963277495i 0.039089264765640 + 0.005851913643466i −0.130148022379516 − 0.083821935619066i

−0.021085752655787 + 0.197514892292071i 0.034950837585746 + 0.084663275771703i 0.009763089761531 − 0.331276984497606i
−0.191963300440361 − 0.018713774729379i −0.083514110368357 + 0.033519476548476i 0.323798241079228 + 0.009713985079557i


Q̄14 = 0.036973044527057 + 0.033903826569238i 0.019751905247220 + 0.004450594969025i −0.064567903024736 − 0.047344137089248i

−0.030689170867607 + 0.117291019360528i 0.012928757340301 + 0.052434619076431i 0.034466100020053 − 0.197102241654019i
−0.113726808259459 − 0.031164706653101i −0.051799471311031 + 0.011931226793130i 0.192411484019366 + 0.036313805087712i


Solution # 4

R̄ =

 −10.355025789684301 5.074347263132815 −4.639314258829991
0.899060859561549 1.009663080648024 −1.282544953856572
−7.222497813952203 4.473311681603017 −4.321303957630427



Q̄0 =

 1.023958718010556 −0.675126514730723 0.660211296603439
−0.573888622357730 0.071633755972287 −0.013544689908735

0.593641003024321 0.040742151766272 −0.119448524191943


Q̄2 =
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 −0.047826742741476 − 0.090749687879213i 0.252122278258324 − 0.098223334446528i −0.229330080277529 − 0.190468845646143i
0.265817278059553 + 0.091999384890591i 0.232785054596794 − 0.028752909644381i 0.018753383934223 − 0.245059986851624i
−0.193372062784211 + 0.147055239961529i 0.030279421996656 + 0.406013396545621i 0.347429574659487 − 0.063287598335153i


Q̄4 = 0.025498974224084 + 0.025507226852369i 0.069941219836411 − 0.066317758714468i −0.079148400827483 − 0.034227312899873i

0.019926879914556 + 0.060459834467346i 0.165349054957407 + 0.041485865858316i −0.008554435269462 − 0.155016472536096i
−0.074073542381906 + 0.029861690000861i −0.030387995391957 + 0.166042842829839i 0.151663950249043 − 0.013807569732756i


Q̄6 = 0.008288011670258 + 0.004860383652844i 0.012918990885743 − 0.015956351350131i −0.017599087865688 − 0.005156624049461i

0.001396115699013 + 0.022890324353531i 0.050549397456237 + 0.014972378771104i −0.002571405701545 − 0.047247077238629i
−0.022097257512586 + 0.002295893083263i −0.015042801858593 + 0.048889031118857i 0.046172957869546 − 0.001868328256481i


Q̄8 = 0.001688790296409 + 0.000787492845468i 0.002170111882739 − 0.003127608490179i −0.003326338289578 − 0.000691224227202i

−0.000094100471388 + 0.005833802350177i 0.012210251990343 + 0.003899231753956i −0.000640755524250 − 0.011472922761902i
−0.005671743885677 − 0.000185380438099i −0.004112500955533 + 0.011989324632692i 0.011377894614169 − 0.000404535129055i


Q̄10 = 0.000307654059622 + 0.000124254364919i 0.000347668081985 − 0.000564475242089i −0.000584230091926 − 0.000085754177866i

−0.000076757144186 + 0.001291949037968i 0.002635543312150 + 0.000855548446007i −0.000160862924263 − 0.002474471286528i
−0.001279612235996 − 0.000102271912113i −0.000896750134065 + 0.002613762734525i 0.002470710144145 − 0.000120863512284i


Q̄12 = 1.0e − 03∗ 0.053293732076546 + 0.018836962984192i 0.053627551296946 − 0.097323410654047i −0.098376036926625 − 0.009320506671707i

−0.020444526584427 + 0.264463962191678i 0.529941590955565 + 0.167063705717098i −0.040745513201438 − 0.494689375231222i
−0.263658578699069 − 0.024245634946039i −0.173355701294813 + 0.527451834570075i 0.494802425816997 − 0.034778433874860i


Q̄14 = 1.0e − 03∗ 0.008925530239504 + 0.002730948596921i 0.008007810390487 − 0.016262173402608i −0.016084694725868 − 0.000747676030797i

−0.003951084971026 + 0.051179892292212i 0.101255843144903 + 0.029979048738808i −0.009929269848351 − 0.093673490358287i
−0.051092194502835 − 0.004493128366171i −0.030934399104456 + 0.100900542958549i 0.093718090923293 − 0.009025243987087i



Enclosure of the spectrum and eigenvectors of R:
Solution # 1

Stable Unstable

E.values −15.109380514113965 −1.9711376476 · 10−12 1.442713847447833

−0.751214982423802 0.254365252143146 0.262950302967878
E.vectors −0.336978550953493 0.894331168360885 0.897737089234849

−0.567557491695149 0.368062603099539 0.353447671913741

Rad 6.5357966401 · 10−6 2.4292063094 · 10−4 2.4457229537 · 10−4

Solution # 2
Stable Unstable

E.values −14.418434214853773 −6.3095429563 · 10−13 0.751767548187609

−0.749706208066872 0.206834663675313 0.230648743314282
E.vectors −0.289601764001737 0.877249310542877 0.889680889496459

−0.595039007018088 0.433189414753372 0.394041967399836

Rad 1.5819989791 · 10−8 2.2544294848 · 10−7 2.2929889758 · 10−7

Solution # 3
Stable Unstable

E.values −14.075379469563303 −1.9608231416 · 10−13 0.408712802896790

0.765749307086543 0.150573371977808 −0.182969022197064
E.vectors 0.180786590407435 0.836967739109956 −0.859777763658707

0.617206778499179 0.526129892080275 −0.476764652668675

Rad 1.1204301894 · 10−9 1.4128237162 · 10−8 1.4431490181 · 10−8

Solution # 4
Stable Unstable

E.values −13.840311255652775 −1.4330029932 · 10−13 0.173644588986231

0.797501959393221 0.078973004231439 −0.117842783974500
E.vectors 0.003822364878423 0.755631456467173 −0.792087449202407

0.603304246869447 0.650218706744094 −0.598924495309018

Rad 4.5252927940 · 10−10 6.1203260279 · 10−9 6.2737968625 · 10−9

Solution # 5
Stable Unstable

E.values −13.667080400789002 9.0011809244 · 10−14 0.000413734122254

−0.863856794412098 0.232602509848306 0.287469286236642
E.vectors 0.300568560001125 0.819824988052658 0.854693879140621

−0.404240002333891 0.523242832131249 0.432272810190687

Rad 4.1042307771 · 10−9 1.0966119731 · 10−5 9.9985010904 · 10−6
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