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Abstract

In this paper, Chebyshev series and rigorous numerics are combined to compute solu-
tions of the Euler-Lagrange equations for the one-dimensional Ginzburg-Landau model of
superconductivity. The idea is to recast solutions as fixed points of a Newton-like operator
defined on a Banach space of rapidly decaying Chebyshev coefficients. Analytic estimates,
the radii polynomials and the contraction mapping theorem are combined to show existence
of solutions nearby numerical approximations. Coexistence of as many as seven nontrivial
solutions is proved.
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1 Introduction

According to the Ginzburg-Landau theory of superconductivity [1], the electromagnetic proper-
ties of a superconducting material of width 2d subjected to a tangential external magnetic field
are described by a pair (¢, 1) which minimizes the free energy functional

G, ) = 2d/ L 20F

In this context, the functional G is known as the Ginzburg-Landau energy, and provides a measure
of the difference between normal and superconducting states of the material. The function ¢
measures the density of superconducting electrons and the function v is the magnetic field
potential. The parameter d is the size of the superconducting material, h. is the external magnetic
field and « is the Ginzburg-Landau parameter, which is a dimensionless constant distinguishing
different superconductors. More precisely, 0 < k < 1/ V2 characterizes type I superconductors
while x > 1/4/2 characterizes type II superconductors [2] (e.g. see Figure 1(a)).

A standard variational argument shows that the Ginzburg-Landau energy (1) has a minimizer
and that the minimizer is a solution of the Euler-Lagrange equations, which are given by the
boundary value problem (BVP)

U7+ 2(4 — he)?)dE. (1)
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¢" = k2p(¢* + 9% — 1)
V=% (2)
¢/ (£d) = 0,9/ (+d) = he.

The Ginzburg-Landau BVP (2) has been studied by many authors (e.g. see [3, 4, 5, 6, 7, 8,
9,10, 11, 12, 13, 14, 15] and the references therein). This list of references is by no means meant
to provide a complete review of the literature of the work done on (2). Several people have also
studied the Ginzburg-Landau model in higher dimensions [16, 17, 18, 19].

A solution (¢, 1) of (2) is called symmetric if

¢'(0) =0 and (0) =0, (3)

and called asymmetric otherwise. If (3) holds, then ¢ is even and v is odd. There is a family of
solutions of (2) of the form

((€),v(&) = (0,hel +q), q€R, (4)

which are symmetric when ¢ = 0 and asymmetric otherwise. We refer to solutions (4) as trivial
and refer to solutions that are not of the form (4) as nontrivial.

An interesting review of results and open problems about existence, uniqueness and coexis-
tence of nontrivial symmetric and asymmetric solutions of (2) can be found in [13]. Moreover, in
[13], Aftalion et al. present a detailed numerical study of the bifurcations arising in (2), where
they obtain a complete description of the solutions over the range of physically important pa-
rameters (d, k, he). They consider (d,x) € D = [0,5] x [0,1.4], leave h, as a parameter, and
investigate bifurcations of symmetric and asymmetric solutions as h. varies. They numerically
obtain two partitions for D. The first one is D = §; US2 US3 and it characterizes the symmetric
solutions so that in S;, there are ¢ symmetric solutions. The second partition is D = AqgU.A1 U A,
and it characterizes the asymmetric solutions so that in Aj;, there are 2j asymmetric solutions.
Note that asymmetric solutions come in pairs. Indeed, one can easily verify from (2) that if
(6(€),1(&)) is an asymmetric solution, then (¢(—¢), —(—¢)) is another asymmetric solution. A
geometric representation of the two partitions of D can be found in Figure 1(a). The following
conjecture follows from the analysis and the numerical investigation of [13].

Conjecture 1.1 Fori € {1,2,3}, j € {0,1,2} and (d,k) € S; N A;, there exists he such that
there exist i nontrivial symmetric solutions and 2j nontrivial asymmetric solutions of (2).

Partial progress has been made toward a proof of Conjecture 1.1, but many cases remain
open. Perhaps the most interesting open question arising from Conjecture 1.1 concerns the
region S3 N Ao, where as many as seven solutions may coexist. Seydel is the first in 1983 to
give numerical evidence of existence of parameters for which four asymmetric solutions and
three symmetric solutions may coexist [5]. In 1996, Hastings et al. comment in [8] that “this
[analysis] goes only part way towards verifying the numerical results of Seydel, where as many as
seven solutions are found in a limited parameter range. This remains an interesting problem for
future research.” In 2000, Dancer et al. in [12] write that “the initial motivation for our paper
was Seydel’s bifurcation diagram, and our goal was to prove that in some parameter range the
problem could have as many as seven solutions, but unfortunately we have not achieved this goal.
Seydel’s bifurcation diagram can be found in Figure 1(b). Besides the region S3M.As, other cases
are interesting. For instance, as mentioned in [13], “it is an interesting open problem to prove
that both symmetric and asymmetric solutions coexist in Sy NAs.” The goal of the present paper
is to prove these open questions for specific parameter values using the rigorous computational
methods of [20, 21, 22, 23, 24] and more specifically with the approach as introduced in [25].
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Figure 1: (a) Figure taken from [13] with permission from the authors. The regions S;NA; (i € {1,2,3}
and j € {0,1,2}) are delimited by black lines. The regions corresponding to the two different types of
superconductors are pictured in yellow (type I) and green (type II), where 0 < x < 1/v/2 characterizes
type I while x > 1/+/2 characterizes type II. (b) A global bifurcation diagram when (d,x) = (2.5,1) €
83 N Az taken from [12] with permission from the authors.

Our proposed approach to the problem has a different flavour than the standard tools of
nonlinear analysis (e.g. bifurcation and perturbation theory, degree theory, global bifurcation
theorems). It combines the strength of numerical analysis, approximation theory, spectral meth-
ods, fixed point theory, functional analysis and interval arithmetic (e.g. see [26]) to demonstrate
that nearby numerical approximations, there are solutions of (2). This approach uses the field
of rigorous numerics (described in Section 2), and as opposed to classical methods in nonlin-
ear analysis it does not require knowing the existence of a trivial solution from which one can
perturb. In fact, our method is a perturbative result from a numerical approximation,and this
implies that it is extremely suitable to prove conjectures about coexistence of solutions. However,
as opposed to global methods, our proposed method works well for specific parameter values,
rather than globally (i.e. for all parameters). Let us now present our four main results.

Theorem 1.1 Define (d,x) = (3.5,0.9) € S3 N Az. Then at he = 0.85, there exist three sym-
metric solutions xgz) = ( gﬁ),ws”) (i = 1,2,3) and four asymmetric solutions ng) =( [(f),gbc(f))
(i=1,2,3,4) of (2). Each solution is nontrivial and all solutions are distinct. Hence, there are

seven coexisting nontrivial solutions.

The proof of Theorem 1.1 can be found in Section 4. A geometrical interpretation of the global
bifurcation diagram with fixed (d,x) = (3.5,0.9) and h. left as a free parameter is depicted in
Figure 2. The profile of each of the seven nontrivial coexisting solutions of Theorem 1.1 can be
found in Figure 3.

Theorem 1.2 Let (d,k) = (1.6,1.2) € S N As. Then at he = 1.1, there exist one symmetric
solution z{") = (qbgl),wgl)) and four asymmetric solutions 2 = ( o, t(f)) (i=1,2,3,4) of (2).
Each solution is nontrivial and all solutions are distinct.

The proof of Theorem 1.2 can be found in Section 4. A geometrical interpretation of the global
bifurcation diagram with fixed (d,x) = (1.6,1.2) and he left as a free parameter is depicted in
Figure 4. The profile of each of the five nontrivial coexisting solutions of Theorem 1.2 can be
found in Figure 5.

Theorem 1.3 Let (d, k) = (4,0.3) € SaNAy and he = 0.8. There exist two symmetric solutions
2 = (qsg”,wﬁ”) (i =1,2) and two asymmetric solutions 2 = (Cbg),l/h(zz)) (i=1,2) of (2). All
solutions are nontrivial and distinct.
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Figure 2: The global bifurcation diagram when (d, k) = (3.5,0.9) € S3N.As. The data from this diagram

was used to obtain the proof of Theorem 1.1. At h, = 0.85, there exist three symmetric solutions x( )

2$¥) and four asymmetric solutions x(l) . 2 of (2).
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Figure 3: For (d,x) = (3.5,0.9) € S3N Ay and h. = 0.85, the solution proﬁles of the seven nontrivial
coexisting solutions of Theorem 1.1: three symmetric solutions .TJS (qﬁs ,wsz ), i = 1,2,3, and four
asymmetric solutions P = = (¢q @ (l)) i =1,2,3,4. Each solution is defined on [—d, d] = [-3.5, 3.5]. Note
that ¢ (d) ~ 0.821, ¢ (d) ~ 0. 161, ¥ (d) ~ 0.050, ¢SV (d) ~ 0.849, ¢ (d) ~ 0.827, ¢5 (d) ~ 0.221
and ¢4 (d) ~ 3.37 x 10~%.

The proof of Theorem 1.3 can be found in Section 4. A geometrical interpretation of the
global bifurcation diagram with fixed (d, k) = (4,0.3) and h. left as a free parameter is depicted
in Figure 6.

Theorem 1.4 Define (d, k) = (3,0.6) € Sy N Ay. Then at he = 0.9, there exist two symmetric
solutions z) = ( gl),ngl)) (i = 1,2) and four asymmetric solutions 2 = ( EZ), ((f)) (i =
1,2,3,4) of (2). All solutions are nontrivial and distinct.
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Figure 4: The global bifurcation diagram when (d, k) = (1.6,1.2) € §; N As. The data from this diagram

was used to obtain the proof of Theorem 1.2. At h, = 1.1, there exist one symmetric solution mgl) and

four asymmetric solutions 2, 22, 2 and 2V of (2).
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Figure 5: For (d,x) = (1.6,1.2) € §; N Ay and h, = 1.1, the profiles of the solutions of Theorem 1.2:

1 symmetric solution ) = ( g”,wgl)) and 4 asymmetric solutions 2 = ( ((zi), ,(f)), i = 1,2,3,4.
Each solution is defined on [—d,d] = [~1.6,1.6]. ¢ (d) ~ 0.600, ¢$”(d) ~ 0.785, ¢\ (d) ~ 0.688,

) (d) ~ 0.419 and ¢4 (d) ~ 0.0842.

The proof of Theorem 1.4 can be found in Section 4. A geometrical interpretation of the
global bifurcation diagram with fixed (d, k) = (3,0.6) and h. left as a free parameter is depicted
in Figure 7.

As mentioned above, the proofs of Theorems 1.1, 1.2, 1.3 and 1.4 are done using rigorous
numerics, which is a field that aims at constructing algorithms that provide an approximate
solution to a problem together with precise bounds within which the solution is guaranteed to
exist in the mathematically rigorous sense. In our context, Chebyshev series are combined with
rigorous numerics to compute solutions of (2). The idea is to recast solutions as fixed points of
a Newton-like operator defined on a Banach space of rapidly decaying Chebyshev coefficients
and to use the contraction mapping theorem to show existence of solutions nearby numerical
approximations. Note that a similar approach can be used to prove existence of connecting orbits
(e.g. see [25]). The radii polynomials (first introduced in [20] to compute equilibria of PDEs)
are used to construct sets on which the contraction mapping theorem is applicable, and their
construction is a combination of analytic estimates and interval arithmetic computations. The
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Figure 6: The global bifurcation diagram when (d, k) = (4,0.3) € So N A;. The data from this diagram

was used to obtain the proof of Theorem 1.3. At h, = 0.8, there exist two symmetric solutions xgl), ng)

and two asymmetric solutions ;v((ll), x,(f) of (2).

— *  Bifurcation
(d, ) = (3,0.6) o
1 Sym |
\ e
0.8f ]
0.6 1
¢(d)
0.4t E
0.2r 1
0 ! ! !
0 0.2 0.4 0.6 1.2

Figure 7: The global bifurcation diagram when (d, k) = (3,0.6) € So N As. The data from this diagram
was used to obtain the proof of Theorem 1.4. At h, = 0.9, there exist two symmetric solutions xgl), xgz)
1 @ 6) (M) ¢ (2).

and four asymmetric solutions x4/, ¢, Ta , Ta

last steps of the proofs of Theorems 1.1, 1.2, 1.3 and 1.4 are are done by running the MATLAB
codes which are available at [?].

Remark 1.1 We also obtained rigorous results concerning existence of solutions in S1NAg and
SaNAg, but we do not present them here, as these two regions are better understood theoretically.
The codes for the proofs can be found at [?].

Remark 1.2 Note that our proposed approach is certainly not the only rigorous computational
method that could have been used to prove the above results. For instance, a rigorous numerical
integration of the equations combined with studying an appropriate Poincaré section could have
been used. The choice of the approach is a matter of taste. However, since the Euler-Lagrange
equation (2) is naturally a boundary value problem, we believe that our collocation-type approach
based on Chebyshev series is a natural choice.



The paper is organized as follows: in Section 2, we introduce the rigorous computational
method and the theoretical definition of the radii polynomials; in Section 3, analytic estimates
are used to obtain the explicit formulas for the radii polynomials; in Section 4, the proofs of
Theorems 1.1, 1.2, 1.3 and 1.4 are presented.

2 The rigorous computational method

The rigorous computational method used here is based on the general method first introduced
in [25]. More precisely, the idea is to expand solutions of (2) using their Chebyshev series, plug
the expansion in the equation, obtain an equivalent infinite dimensional problem of the form
f(x) = 0 to solve in a Banach space of rapidly decaying Chebyshev coefficients, and finally to
get the existence, via a fixed point argument, of a solution of f(z) = 0 nearby a numerical
approximation of a finite dimensional projection of f. The fixed point argument is solved by
using the radii polynomials, which provide an efficient way of constructing a set on which the
contraction mapping theorem is applicable. We begin by setting up the problem f(z) =0

2.1 Setting up f(z) =0

Setting u = (u1, ug, us, ug) = (¢, @', 1, ¢’') and introducing the new independent variable t = £/d,
(2) becomes

Uz
d . 2 2,2
B gy g [T ) 20, wa(1) = he, (5)
dt Uy
u%u;g
where u = u(t) is defined for t € [—1,1]. Let P(0) & u(—1) = (61,0, 6o, he), where 0 = (61, 65)

(u1(—1),u3(—1)) € R? is a variable that is used to compensate the fact that the values of uj(—1)
and uz(—1) are not fixed. Letting

U2(1)
U4(1) — he

F(0,u)(t) = ¢
P(9) + /1 U (u(s))ds — u(t)

, te [_171]a (6)

a solution (0,u) of F(6,u) = 0 is a solution of (5) and therefore solves the Euler-Lagrange BVP
(2), provided that u is sufficiently smooth. Expand u with Chebyshev series

u(t) =ag+2 Z apTy(t Z apTy(t (7)

E>1 keZ

where Ty : [-1,1] — [-1,1] (k > 0) are the Chebyshev polynomials defined by To( ) = 1,
Ti(t) =t and Tp41(t) = 2tTk( ) — Tp_1(t), for k > 1, and where a_p = ap, Tt = Ty, af =
(a§C ), af), a/,(C ), (4))T € R*. Define the infinite dimensional vector of Chebyshev coefficients a =

(ar)k>0. Using that Tj(1) =1 for every k > 0, define

n(0,a) = (ug(1), us(1) — he) = (a(()2) + 22a§2),a(()4) + 22@5-4) — he). (8)

j=21 j=21

Since Chebyshev polynomials are in fact Fourier series in disquise [27], as Ty (cos&) = cos(k€)
with & = arccost, the Chebyshev coefficients of the product of two functions is given by the



discrete convolution of the Chebyshev coefficients of each function (e.g. see [25]). In the context
of the vector field defined in (5),

T(u(t)) =co+2 ) axTu(t) = aTi(t), (c_=cx), (9)
k>1 keZ
where .
cl(€) a;fz)
2)
C — cl(f — d K ([a(l)a( )a(l)]k + [a( )a(g)a(g)]k - aé )) 9 (10)
B (4)
ay
1(44) [aWaMa®)],
and for i,j € {1, 3},
[aMa® a0, = Z al(cll)algi)aés) (ag _ a,(f)).
k1+ka+ks=k
k1,ko,k3s€Z

Plugging the expansions (7) and (9) in (6), and using the properties [ Ty(s)ds = Ti(s), [ Ti(s)ds =

(Ta(s) + To(s))/4 and [ Ti(s)ds = 1 (Tk,;;fs) - Tkkjf)) for k > 2,

P(O) + / Wus)ds —u(t) = ot 230 T

-1 E>1

where fo &t PO)—ay+co— % — 22;>2 321)1 ¢; and fk def % — ay, for £ > 1. Denote

x = (0,a) so that z_1 =6 € R2 and zj, = a; € R* for k > 0. Finally, define f(x) = (fx(z))k>_1
component-wise by

D23 el 123 alY —he), k=1,

i1 =1
filz) = Pw)—%+wm—ﬂ—2§:04y k=0 (11)
2 =1 -1 ’

—2kay, + cx—1 — cky1, kK 2>1,

where fy = fo and fy <ok fk for k > 1. The importance of introducing the operator (11) is that
solutions of f(x) = 0 correspond to solutions of the BVP (2) (see Lemma 2.1). Hence, coexistence
of solutions of the Euler-Lagrange equations reduces to demonstrate that the operator f defined
component-wise by (11) has several coexisting nontrivial roots.

The next step is to introduce the Banach space X° of fast decaying Chebyshev coefficients
with algebraic decay k° on which the operator f is defined, and to introduce the equivalent
fixed point problem T'(z) = x. Note that the fixed point operator T is defined as a Newton-like
operator defined near a numerical approximation z € X?. The idea is that locally, the operator
T should be a contraction on a small ball containing Z. The way to find the ball is done using
the radii polynomials. This is described in Section 2.3.

2.2 The Banach space X* and the fixed point problem T'(z) = =

Let ||0]|cc = max{|61], |02}, ||ak|lco = 'rrllale{]ag)]} for k > 0 and define the weights
i=1,...,

e 17 fk = O
wi T (12)
k|*, if k#0.



The Banach space on which we solve the problem f(x) = 0 is defined by

X* = {33 = (2i)kz—1 ¢ llzlls = Sup {lzklloowi} < OO} (13)

which is a space of algebraically decaying sequences with decay rate s > 1. Next, we show that
f:X*— X* ! and that if z € X® solves f(z) = 0 for some s > 1, then z € X* for any s¢ > 1.
Hence, a root = (0,a) of (11) implies that its Chebyshev coefficients decay faster than any
algebraic decay. This comes as no surprise as a solution u = (uy, ug,usg,us) = (¢, ¢',1,v¢") of
the analytic differential equation (2) is analytic. This implies that the Chebyshev expansion x
of any solution of (2) is in the space X*.

Lemma 2.1 Let f(z) = (fx(z))k>—1 as in (11). Then the following statements hold.
(a) f:X°— X571 s> 1.
(b) If x € X* is a solution of f(x) =0, then x € X for any so > 1.

(¢) The Chebyshev ezpansion u(t) = ao+ 2 ;51 axTk(t) is a solution of F(0,u) = 0 where F
is the integral operator (6) if and only if x = (0,a) € X* solves f(x) =

(d) Any solution x = (0,u) of f(x) = 0 yields a unique solution (¢,1)) of the Euler-Lagrange
boundary value problem (2).

Proof 2.1 First of all, for any s > 1, the space of scalar algebraically decaying sequences

Q"= {a = (ar)ren : ax €R, iglg{\ak\w}z} < oo} (14)

is an algebra under discrete convolution. Indeed, for any a,b € QF, there exists a constant
a = a(a,b) < oo such that |(a* b)r| = | Dk, tro=k Ok |ja|| < w% (e.g. see [28] if s > 2 and [29]
ki€Z

if s € (1,2)). This implies that a x b € QF, and hence that (QF, %) is an algebra.
(a) Consider x = (0,a) € X*. For each i = 1,2,3,4, \a,(j)\ < |la||s/w;. Recalling (8),
|f-1(z)]|oc = IN(8,0a)||cc < o0 since s > 1. Consider the Chebyshev coefficients (cx)r>0 of

clls

U(u) defined in (10). Since Q° is an algebra, then ||c||s < oco. Hence, ||ck|loo < llelle 3 and therefore

(D JQ_IHOO < lells Z]>2] sgrny < 00 This implies that | fo(z)]|oo < o0. Moreover, there

exists a constant oy < 0o such that || fx(x)]|co = || —2kar+cr—1— k100 < ”aHé 4 delle 4 Jell: <

Wet1 o Weoq

(x)||s—1 < oo and therefore that f(z) € XS L
(b) Ifre X®isa solutzon of f(x) =0, then for any k > 1, fr(x) = —2kar,+cx_1—cpr1 =0,

or in other words a;, = —2k (Ckt1 — Ck—1). Since ||cklloo < ‘CLS

such that

there exists a constant ag < 00

1
sup{|ag|lccwi '} < sup{ o ([lex+1lloc + lek—1lloo)wy ™} < 2.
k>1 k>1

That shows that x = (0,a) € X', Repeating the same argument inductively and using the fact
that X% C X2 for any s1 > sa, one gets that x € X*° for all sg > 1.

(¢) By construction of f in (11) and by part (b), it is immediate to verify that (6,u), with
uw(t) = ap +2> ;o arTi(t) and 6 = (u1(—1),us3(—1)), is a solution of F(0,u) = 0 where F is
the integral operator (6) if and only if x = (0,a) € X*® solves f(x) =

(d) 1t follows from (c) and by construction that any solution x = (6,u) of f(x) =0 yields a
unique solution (¢,) of the Euler-Lagrange boundary value problem (2).



The strategy to find solutions of f(z) = 0 is now to consider an equivalent fixed point
operator 1" : X® — X® whose fixed points are in one-to-one correspondence with the zeros of
f- More precisely, the operator T is a Newton-like operator about an approximate solution z of
f. In order to compute this numerical approximation we introduce a Galerkin projection. Let
m > 1 and define the finite dimensional projection II;, : X* — X3, by I,z = (z)7~',. Note
that X3, = R¥*+2. The Galerkin projection of f is defined by

F s Xs 5 X3 s xp s O f(2r, 0o, (15)

where 00 & (I — II,,)0. Identifying (zp,00) with 27 € X5 = R¥+2 we think of f0™ :
R4m+2 _ R4m+2 Using Newton’s method, assume that we have computed zr € R¥"*2 such
that f0™)(Zp) ~ 0 and let Z = (0,a) = (A, ar,000) = (T, 000) € X*. Let Bz(r) =  + B(r), the
closed ball in X? of radius r centered at z, with

(k)
roTr
B(r)=qzeX*: |als = sup {||lzxfloowi} <rp = [] |:_s’s:| ) (16)
kz—1 k>—1
where ((—1) = 2 and ((k) = 4 for £k > 0. In order to define the fixed point operator T', we
introduce a (4m + 2) x (4m + 2) matrix A,, ~ (Df(m) (a‘cF))il, which is obtained using the
computer. Assume that the finite dimensional matrix A, is invertible (this hypothesis can be

rigorously verified with interval arithmetic). Define the linear invertible operator A : X® — Xs*!
by

Ap(px))e, k=-1,...,m—1
(A = ( azz( mi)) an
(m) T, k 2 m.
Finally define the Newton-like operator T': X® — X% about the numerical solution Z by
T(x) =z — Af(z). (18)

2.3 Finding r» > 0 such that T' maps Bjz(r) into itself and that T : Bz(r) —
B;(r) is a contraction

The next step is to determine a positive radius 7 of the ball Bz(r) so that 7' maps Bz(r) into
itself and that T : Bz(r) — Bgz(r) is a contraction. If such r > 0 exists, an application of the
contraction mapping theorem yields the existence of a unique fixed point & of 1" within the closed
ball Bz (r). By invertibility of the linear operator A, one can conclude that  is the unique solution
of f(z) = 0 in the ball Bz(r). By Lemma 2.1, this unique solution represents a solution u(t) of
the operator (5). The task of finding r > 0 is achieved with the notion of the radii polynomials
(originally introduced in [20] to compute equilibria of PDEs), which provide an efficient way of
constructing a set on which the contraction mapping theorem is applicable. Their construction
depends on some bounds that we introduce shortly. Before that, we introduce the notation =<
to denote component-wise inequality, that is given two vectors v and w, v < w if and only if
v; < wj; for all 4. Similarly, the notation < denotes component-wise strict inequality. The radii
polynomials are in fact polynomial bound inequalities in the variable radius r which represent
sufficient conditions to have that T : Bz(r) — Bgz(r) is a contraction. These polynomials are
defined in terms of two bounds: Y and Z.
The bound Y = (Yj)r>_1 satisfies

‘[T(i) - f}k‘ <Yy, k>-1, (19)

where Y_1 € R? and Yy € R for k > 0. The bound Z(r) = (Zg(r))x>_1 satisfies

sup  |[DT(7 + &)@]k‘ < Zu(r), k> 1, (20)

§1,§2€B()
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where Z_1(r) € R2 and Z(r) € R% for k > 0. Since the vector field ¥(u) defined in (5) is cubic,
we can compute a cubic polynomial expansion in r for Zi(r). Consider now a computational
parameter M > 3m — 1 where m is the dimension of the Galerkin projection (15). Then the
bounds Y and Z satisfying (19) and (20) can be constructed such that

R1.Y, =0 € R* for all k> 3m — 1, since for any k > 3m — 2, a;, = 0 and ¢, = ck(a) =0, and
therefore f(Z) = —2kay + cx—1(a) — cxg+1(a) =0, for all k£ > 3m — 1.

R2. There exists (using the analytic estimates introduced in [28]) a uniform polynomial bound
ZM_H(T) € Ri such that for all kK > M + 1,

Z
Zu(r) z 2100, 21
Wi
¢(k) times
Defintion 2.1 Let 1.y d:C(l, ..., 1)e R¢K) | The finite radii polynomials are
r
pk(T’) :Yk"i_Zk(T)_ElC(k): k=-1,..., M, (22)
k
and the tail radii polynomial is
pM(T') = ZM+1(7") — 7‘14. (23)
Theorem 2.1 If there exists v > 0 such that pp(r) < 0 for all k = —1,...,M + 1, then

T : Bz(r) — Bz(r) is a contraction and therefore there exists a unique & € Bz(r) such that
T(Z) = &. Hence, there exists a unique T € Bz(r) such that f(z) = 0.

Proof 2.2 The proof is a consequence of the contraction mapping theorem. We refer to Corollary
3.6 in [23] for a complete proof.

The strategy to rigorously compute solutions of f defined in (11) is to construct the radii
polynomials of Definition 2.1, to verify the hypothesis of Theorem 2.1, and to use the result
of Lemma 2.1 to conclude that u(t) = ag + 2~ arTk(t) is a solution of F(6,u) = 0 with
0 = (u1(—1),u3(—1)), where F is the integral operator (6).

While the computation of the bound Y satisfying (19) is rather straightforward, the com-
putation of the polynomial bound Z(r) satisfying (20) is more involved. In order to simplify its
computation, we introduce the linear invertible operator A : X* — X*=1 by

D fm)(zp) (I, =—1,...,m—-1
(—2k) xg, k> m.
We then split T'(z) = 2 — Af(x) = (I — AAY)z — A(f(2) — Atz). Letting & = wr, & = vr with
w,v € B(1), one has that

DT (3 +&)¢ = (I — AAN& — A (Df(z + )& — A'6,)

= [(I - AAT)U:| r—A (Df(:i + wr)vr — ATU’I") . 29)

def

The first term of (25) is of the form er, where ¢ = (I — AAT)v € X* should be small. The
coefficient of r in the second term [Df(Z + wr)vr — ATvr]g should be small for large Galerkin
projection dimension m. Hence, for m large enough, the coefficient of r in the radii polynomials
of Definition 2.1 can expected to be negative, and therefore the hypothesis of Theorem 2.1 may
be verified. We now derive explicitly the radii polynomials.

11



3 Explicit construction of the radii polynomials

In this section, the computation of the bounds involved in the radii polynomials are presented
in greater details. Fix a dimension m for the Galerkin projection (15) and consider Z = (6,a) =
(ZF,0s0) such that f0™(Zr) ~ 0, where f is the operator given in (11). We fix the decay rate
s = 2. Recalling R1, we obtain

[— Apf™ ()], k=-1,0,...,m—1

_ _ _ 1
[T(l‘)—$]k:[—Af(x)]k: ﬂfk(a_:), m<k<3m-—1
0, k>3m—1.
Then, compute Y_1 ..., Y3, o using interval arithmetic with the formulas

[ = Apf™@)],|, k=-1,0,...m-1
1

Vi = § o5 e @), m<k<3m-—1 (26)
0, k>3m—1.

To simplify the computation and the presentation of the coefficients of Zj(r), we consider

vectors zlil), zl(f) and 21(63) such that

[Df(Z 4 wr)vr — Alor]y, < z,E/, r+ 2(2)7” + z,E/, )3, (27)

We use the following notation, z = (,a), w = (61,d1), v = (f2,as). Before defining the vec-

tors zlgl), z,(f) and zlig), let us introduce the explicit computation of D fi(Z+wr)v for each k > —1.

Computation of D fi(Z 4+ wr)v

k = —1: It follows from definition of n in (8) that

(22)0-1-22
Df_1(z+wr)v = k21
1( ) (4)0+2Z

k>1

k = 0: For i,5 € {1, 3}, set
[5145]k(T) et [((_z(l) + &gl)r + T&g)) (d(i) + &gi)r + ngi)) (C_l(j) + dgj)r + T&éj))} .

Computing the derivative with respect to 7 and evaluating at 7 = 0 yields

[s111]}, = 8[381?]’“ =[3(aM)%as" + eaMatMalr + 3aiM)as r?
7=0

[s113], & 8{581;3]’“ —[@")%as? +2aWaMNa® + 2aWaVaPr 4+ 2aWala®r
7=0

+ 2603030 + @02 + 2a0aa®r2)

(sraaly 8[88133]k ~[aD @y 4 2a0a®a® 1 230 a®a®r 1 230a®aldy
T 7=0

+ 2a( )EL(B)ZL( )T—i- ~(1)(~§3))2T2 + ngl)&gi’))&g’))rﬂk.

12



Therefore,

Df()({f + wr)v = —[dg]o—‘r

(G + 1570 — 5[] —2 i[aqu ,iZl_)kl
K ([sm}s + sty — (a0 — 5 (lsuuls + [suaslt — ) - 212 ([Sm]; + srsslk [aé”lk) =
d (B2 + 180 — 3l —2 i[éé‘%k ,i?l_)kl
[s113] — %[8113]'1 - 2i[5113]2;i_1,)i

k=2

k > 1: Using that fx(z) = —2kay + cx—1 — cx41 for k > 1, one gets that

D fi(z + wr)v = —2klaz|x+
[&22)]16*1 - [a§2)]k+1
G ([sm];_l + [stalfy = 85 Je-1 = [s11a)fay — [s133]fps + [aé”]kﬂ)

@S ]k—1 — (a5

[s113])_1 — [s113]3 41
For w € B(1), [w_1]oe: [wole < 1, [wiloo < k7% wi = (@i e, @], (a8 Ik, [a{"]1), and
similarly for v. Hence, for k > 0,7 € {1,2} and j € {1,2, 3,4}, |(C~l§j))k¢‘ <L

= o

We introduce the notation w=* & (Wi Fk>—1, wp* o (w5t € R™+ and wy® s —

wr®. Also A & max {w,‘i]d,&i)]} for i = 1,2, 3,4, which implies that |&,(f)\ < ‘3)(?

ke{0,1,....,m—1} p

obtaining the bounds z,il), z,(f) and 215,3) in (27), we need some analytic estimates, which are
explained in detail in Appendix A.

. Before

Lemma 3.1 Consider the decay rate s = 2 and a,b,c € Q°, where Q° is defined in (14) with

norm ||alls = supg>o{|ag|wi}. Consider a,(:’) as defined in (34). Then, for any k > 0,

(3)
«
[(abe)y| < (llallz[bll2]lell2) — - (28)
k

Proof 3.1 The result follows from Lemma A.4 and Lemma A.5.

The bound of Lemma 3.1 can be improved by performing some interval arithmetic compu-
tations.

Lemma 3.2 Consider the decay rate s = 2 and a, b, c € Q°. Consider a computational parameter
M and define aM) = (ag,a1,...,ap—1) € RM. Define M) - oM gimilarly. Consider 5;3) =
61(63)(2,M) as in (35). Then, for k € {0,..., M — 1},

(abe)y] < | (a®D0DY |43 lallallbla el

Proof 3.2 The result follows from Lemma A.6.
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The convolutions terms | (a(M )pM) (M )) . | can be bounded with the Fast Fourier Transform
(FFT) algorithm on the computer together with interval arithmetic.

Computation of the bounds z( ), z,(cz), z,(:’)
T
Case k = —1: Since [Df(Z + rw)v — ATv]i1 =2 Z [de)]kﬂ Z [dgl)]k , then
k>m k>m
- 1) = 2 2
[Df(@ +rw)e = At]_ [ <2015 (Z;k _1)3_1<3_1)>12'

Case k = 0: Let [S111]x = [s111), — ([s111]}) Fs [S1ale = [s113]f — ([5113]% ) and [Syzs]k < [s133], —
([5133] ) Then

[Df(z +rw)v — AT’U]O =

1)k
—2 Z [652)]’“ (2 13

k>m
—1)*
([5111]0 + [S133]0 — 7([5111}1 + [S133)1) Z ( [Si11]k + [Si33le — [agl)]k> ]iz _)1>
d e
(4) (* )
-2 Z k21
k>m
1 —1)*
[S113]o — 5[5113]1 -2 Z [5113]k%
k>m

In order to find the bounds z(()l), z[()z), and z(()g) satisfying (27) for k = 0, we need first to bound the
terms |[S111]x|, |[S113]x| and |[S133]x|- Using the analytic estimates of Lemma 3.1 and Lemma 3.2,

we can compute upper bounds for [wl_8|a(i) ||al?) I . [w‘sw_s\a(i) I ., and [w™sw W] ,, to obtain

I[S111]] 33[w1_8\@(1)|2}k + 6[(W_S)2’a(1)‘}kr + 3[(“’_8)3]kr2

3{ > [wf51k1[|a<1>|]k2na<1>|]k3+3<A<1>>2s§f)]

ki+ko+ks=k
m§|k1\<M
o NG
rol 3 b alla® e + 3400 [ 43857 o<k <

k1+ko+ks=k k
0< k1 |[<M

IN

(3)
Rl (3(A(1))2 +6AMr 4 37’2>, E> M,

14



[Suslel <[wr*[a® P + 207 °[@@laW]], + [4w*)?|aV] + 2w™*)*[al®] - + 3[(w™*)?]
(> e lalla® k(@D ey +3(AD)%Y

k1+ko+kz=k
mf‘k1|<M
s _ _ (1) % 3
2 [ e la®, + 340 AGL >)
ki+ko+ksz=k
m<|k1|<M
s s _ T 3
+{4 S 1k2[\a<”ukg+3A<”eé>)
< k1+kot+ks=k
0<|k1|<M

(3)
+2( > [w—ﬂkl[w—ﬂkg[|a<3>|]k3+3A<3>e£3>)]r+3cjj§r2, 0<k<M

ki+ka+ks=k k
0<|k1|<M

O <(A(1))2 L 2AWA®) 4 <4A(1) + 2A(3)>r + 37«2), k> M,

[S1zali] <[wp @@ + 207 °1aV]]a®] + [4w™*)%a®] + 2(07*)% @] 7 + 3[(w™*)?]

Y W @@ @], +3(A®)2%
ki+ko+ks=k
m<|ki|<M
+2( ) [wfS1k1[\a<”|]k2[|a<3>uk3+3A<”A(‘°’>€i‘°’)>
ki1+ko+ks=k
m§\k:1|<M
" [4 DD i P9 P P (20 PR 3A<3>5,<3>)
< ki+ko+kz=k
0<|ky|<M
(3)
2 % bl + 3400 ) [+ 3%2 0<h<n
2 S S—" Wi
0<|k1|<M
a(3) ~ o ~ B
M <(A(3))2 +24AMAG) 4 <4A<3) + 2A(1>>r + 37‘2>, k> M.
Wi

The finite sums appearing in the upper bounds of [S111]k, [S113]x and [Si33]x when k < M are
computed using the FFT algorithm together with interval arithmetics. Defining V711, V113, Viss
as in Table 1 and Wy11, Wi13, Wiss as follows

Wil =sA0R, Wi =eA®, Wil =3
Wi = (A0 424040 W) =440 1240 W) =3
Wig = (A9)? 4+ 24040, wig) =44 4240, Wi =3,

and collecting the coefficients of r, we obtain the upper bounds

|[S15)kl < [Vl(ilj)]k + [V1(z‘2j)]k7" + [‘G&?]kﬁ; 0<k<M,
(3)
«
(1 < B (W) + Wil wiDr?), k> M
k

15



NORE oz g 1) g [a D g +3(A0) 26|
111 ki+ko+kz=k
m<|ky <M

V@ 6[ > [mﬂkl[wﬂkgna(”lme,+SA“>E§3)]

1 k1+ko+kz=k
0<|ky|<M
B) | P
V111 3“’;?
v > [w,‘SJkluamukzua(”m+3(A“’)2e;3>+2[ > [w;mlna“)ukz[|a<3>|1k3+3A“>A(3’eif’>]
113 ki+ko+ks=k ki+ko+tkz=k

m<|ky|<M m<|ky | <M

v@ [ T e g 1Vl +3AD D] 42 o™ Ty 0 Dy 18 g +34@e?)]
113

ki+kothkg=k ky+kotkz=Fk

0<|ky|<M 0<|ky|<M
(3) o®
Vitg | 85
Y
v > [w;mlHa<3>\1k2ua<3>uk3+3<A(3>>zs§3>+2[ > [w;mlna“)nkgua“)nks+3A<”A(3>s§f>]
133 k1+ko+kg=k ki+ko+kz=k
m<|ky|<M m<|ky|<M

@[] T el g 1@l +3a0 D] 42 o™y o Dy 10D g + 34067
Vl3

3 k1+ko+kz=k k1+ko+kz=k
0<|ky|<M 0< |ky|<M
(3)
V(B) 3 OM
133 s
Yk

Table 1: The Formulas for Vl(z? for 4,5 € {1,3} and for £ =1,2,3.

Finally, using the estimates

[Sll] k| + Z | Slz] k|

Q:

i [Slz‘j]kﬂ

2 _ 2 _
k=m k 1 k=m k>M k 1
M-—1 V( ) V( ) V( ) 2
< ( 129 )k + ( 12g )k;'l" =+ ( lig )]{;7"
P 2 _
= k-1
3 1
+a§w) (Wl(w) + W1( )y + W1( )2 > Z 7]@5(14:2 =)
k>M
and
M-1
Z[ai ] k21|~ Z ks(k2 —1)| — Z ks(k? —1) + M2 —1(M —1)s"1(s—1)’
k>m k>m k=m
we obtain the bounds z(()l), z(()2), and z(()g) satisfying (27) for £k = 0. The formulas for zél), z((]Q),
(3)

and 2z, are given in Table 2 in Appendix A.

Cases 0 < kK < m — 1: Similarly as in the case for £k = 0, one gets that

0

[Df(z +rwyo — Alv], =d K2 ([5111]k—1 + [S133lk—1 — [S111]p+1 — [5133]k+1>
0
[S113lk—1 — [S113]k+1

9

and HDf(:E + rw)or — ATW]]J = z,(cl)r + 21532)7“2 + z,(f)r?’, where the formulas for zlgl), z,(f), and

z,ﬁg) are given in Table 2 in Appendix A.
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Casesk=m—1,k=m

[Df(z+ rw)v — ATv]k =
—[dgz)]kﬂ

d K2 <[S111]k1 + [Si33)k—1 — [&gl)]kq — [S111)k+1 — [S133)k+1 + [dél)]kﬂ)

—[a5" Tk
[S113le—1 — [S113]k+1

and HDf(:E + rw)or — ATUT‘]k‘ = z,il)r + Z](f)T‘Q + 2,23)7“3, where the formulas for z,il), z,(f), and

z,(f) are given in Table 2 in Appendix A.

Cases m< k< M

[Df(z + rw)v — Alv], =
(@)1 — a5 Ik
d K2 ([5111]k—1 + [S133)k—1 — [dgl)]k—l — [S111)k+1 — [S133)k41 + [&;1)]1@“)

@5 k1 — (a5 )k

[St13le—1 — [S113]k+1

and HDf(j + rw)or — ATvr]k’ < z,(cl)r + 215,2)7"2 + z,(cg)r?’, where the formulas for 215,1), z,(f), and

z,(:’) are given in Table 2 in Appendix A.

We can finally combine all the above bounds and let

d

Z0 N 4| 29 for i = {1,2,3}

i) de 1 i .
Z,(g)d:fﬂz,i), for i ={1,2,3},k>m

7O — 4, DF) (zp) | 570

ZI(CO) <0 for k > m,

¢(k) times
—_——
where @5° o ((w;S)C(k))kz_l, with (w; *)$®) =(w,%,...,w; ). We can finally define, for k =
1. M,
Zu(r) 2 (27 + 200 ) v+ 20007 + 2005, (29)

For k > M, we need the tail radii polynomial (23) to ensure that Yy + Z(r) — ;514 =

ﬁ (z,il)r + 2122)7“2 + 2123)7“3) —zsly <O forall k > M + 1. Using Lemma 3.1, consider asymptotic

. 500
bounds 25\2’)+1 such that z,gl) =< 25 for all k > M and for i = 1,2, 3. The bounds can be found
at the end of Table 2. Hence, for all kK > M, one has that
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Yi + Zi(r) — L14 = i (z,(cl)r + 21(62)7‘2 + z,(f)r?’) — L14

e (2 (3
1 Z](\/I)Jrl Z](W)Jrl 2 Z](\/I)+1 3 r
Qk‘ T T T

= R ks T
1 [( 5§\?+1 n 51(\3)+1 2 ~](\3)+1 rs) _ 147"]
“w a0 T ar 0" o+
Hence, we set
) -3 ~2) -
Zaan(r) S 2(]\}4111)’"3 * 2(1\24111)T2 * 2(]\]‘44111)T‘ (30)

Combining the bounds (26), (29) and (30), we have the radii polynomials
Vi + Zu(r) — Zlpp, 1<k <M,
pery = LT k() = S5 lew) (31)
Zyr1(r) — rly, k=M+1.

We are now ready to present the proofs of the theorems in Section 1.

4 Proofs of the theorems

The computer-assisted proof of each theorem is done using MATLAB and the package IntLab
[30]. The proofs can be reproduced by running the program G_L_PROOF_INTV AL for each
of the four partitions considered. As mentioned previously, the idea of the proofs is to con-
struct the radii polynomials (31), verify the hypothesis of Theorem 2.1, and use Lemma 2.1
to conclude that u(t) = (u1,u2,us,us) = (¢, ¢, 9, ¢") = ap + 2~ axTx(t) is a solution of
the Ginzburg-Landau boundary value problem (2). All codes can be found at [?]. The data of
the global diagram for each case were computed seperately and are provided for the proof to be
reproduced. The main program loads these data such as the approximate solution and the values
of each parameter (k,d, he). It then computes the bounds Y, Z satisfying (26), (29), (30), and
determines the positive interval on which the radii polynomials are negative. If such an interval
exists, the solution is in a ball centered around the approximate solution. Then, the program
attests that all solutions are isolated from each other by verifying that no intervals overlap. Each
proof is done in the space X2, that is in the space of sequences decaying at least as fast as k2.

Proof. [Proof of Theorem 1.1] The proof can be reproduced by running the program G_L_PROOF _INTV AL
from the folder S3A2 available at [?]. In this case M = 6m — 1 and the value of m for each
solution is given by the following table

Sor Ay [ o0 [P [ [l [ [ 2l [ o
m 260 | 210 | 330 | 280 | 190 | 190 | 280

Proof. [Proof of Theorem 1.2] The proof can be reproduced by running the program G_L_PROOF INTV AL
from the folder S1A2 available at [?]. In this case M = 4m — 1 and the value of m for each
solution is given by the following table.

S1N Ay :Ugl) IL‘((ll) :E£L2) 3323) x((;l)
m 190 | 150 | 180 | 180 | 150
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Proof. [Proof of Theorem 1.3] The proof can be reproduced by running the program G_L_PROOF _INTV AL
from the folder S2A1 available at [?]. In this case M = 5m — 1 and the value of m for each
solution is given by the following table.

Sy N Ay xgl) x§2) ac((ll) :1:512)
m 250 | &0 | 100 | 100

Proof. [Proof of Theorem 1.4] The proof can be reproduced by running the program G_L_PROOF INTV AL
from the folder S2A2 available at [?]. In this case M = 5m — 1 and the value of m for each
solution is given by the following table.

Sy N Ay xgl) ng) a:gl) m((zz) m((l?’) xgl)
m 150 70 90 120 90 120

5 Conclusion

In this paper, we introduced a rigorous computational method using Chebyshev series to com-
pute solutions of the Euler-Lagrange equations for the one-dimensional Ginzburg-Landau model
of superconductivity. Our approach used analytic estimates, the radii polynomials and the con-
traction mapping theorem to show existence of solutions near numerical approximations. Coex-
istence of as many as seven nontrivial solutions was proved. This result is new and prior to this
paper has been open for more than thirty years.

Finally, let us briefly mention that none of the apparent bifurcations that appeared in our
diagrams have been proved rigorously. However, we believe that the method introduced in [31]
could be applied to prove that the bifurcations are there, especially since many bifurcations seem
to involve the breaking of some symmetry.
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A Estimates and bounds

This appendix provides the necessary convolution estimates required and the final bounds zp
to construct the radii polynomials constructed in Section 3. All proofs can be found in [28, 23].
Consider a decay rate s > 2, a computational parameter M > 6 and define, for k& > 3,

T = () £ 2 l:kﬁ1:|s+ [4111(]]1_2) + WQ?)_G} [iJr;]H. (32)

Lemma A.1 For s > 2 and k > 4 we have

I LA
S s — k-

= ki (k — kq)

Lemma A.2 (Quadratic estimates) Given a decay rate s > 2 and M > 6. For k € Z, define
the quadratic asymptotic estimates oz](f) = oz,(g )(5 M) by

2
1+2Z % —M25—1(23—1)’ fork=0
ki=1 kl
M 2w 2w},
Wi, W (k M +1)sMs—1(s—1)
(2) det k1= k1" k+k1
A = k- 3 (33)
Z ’; : for1<k<M-1
_ Wi— k1
SAS 2
2+22w78+m+7]\/[, fOTkZM,
L ki=1 k1
and for k <0,
(2) def (2)
L
Then, for any k € Z,
1 a?
2 R
S S - S
T e P

kj€Z

2 . @

Lemma A.3 For any k € Z with |k| > M > 6, we have that o’ < o/ .

Proof A.1 Fork > 6, the fact that IHI(CH ) < ln(i_Q) implies that Yi11(s) < (s). By definition

ofozk , for |k| > M, one gets that a,(g) < ag\?.
Lemma A.4 (Cubic estimates) Given s > 2 and M > 6. Let

| f]\/[Z—l (Q)Ms @) J\/[Z—l 1
¥ = —— e tay, | M — ;
CaSen (M = k) P

6‘55[) def max{a,(f) | k= 0,...,M} X5 = ~(2)7M and ¥* =< min {3:,%;}. Define the cubic
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asymptotic estimates 0423) = 04;3)(3, M) by

<2> 2)
O 20
2 1 M _
ao '+ Z w2 — 12125 — 1) for k
S (2) 1 (2)
M—k B
Ny Wi ay Wi N Z M
k1:1wk1wk+k1 (M + 1)S(M - k)571(3 - 1) ki=1 wz1wz—k1
. M (2) )
o O K + 0y +al? 4 al? (34)
ki=1 Wy, Wiig, (M +Ek+1)sMs71(s—1)
for1<k<M-1
2) w1 202 o
o 3 S+Ms,17M+E*+Z LoD a® fork>M
k::lwk’1 (S_ ) P kl
and for k <0,
(3) det _(3)
L
Then, for any k € Z,
1 04(3)
> E
k1+ko+kz=k wzlwzszg Wy

kj €z

Moreowver, a,(f’) < ag\?/’[), forallk > M.

Lemma A.5 For any k € Z with |k| > M > 6, we have that oz,(:)) < ag\:}).

Proof A.2 Fork > 6, the fact that ln,(cﬂ ) < ln(k]’;Q) implies that vg+1(s) < Yk (s). By definition

ofozk. , for |[k| > M, one gets that 0‘1({) < g\?.

Lemma A.6 Given s > 2 and M > 6, define for0 < k< M —1

5 M-k a(2)
def k+k
s,(c) el )(S M) = Z L o; : (35)
k=M k1 k+k1
+ Aik a’(‘i) k 065\? 1 + !
— W Wik (M +1)5(s = 1) [((M —k)>=1 (M + k)t

and for k <0
3 e 3
e (s, M) Z el (s, M).
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Table 2: Formulas for z
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