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Abstract

In this paper, a rigorous computational method to compute solutions of piecewise-
smooth systems using a functional analytic approach based on Chebyshev series is
introduced. A general theory, based on the radii polynomial approach, is pro-
posed to compute crossing periodic orbits for continuous and discontinuous (Filip-
pov) piecewise-smooth systems. Explicit analytic estimates to carry the computer-
assisted proofs are presented. The method is applied to prove existence of crossing
periodic orbits in a model nonlinear Filippov system and in the Chua’s circuit sys-
tem. A general formulation to compute rigorously crossing connecting orbits for
piecewise-smooth systems is also introduced.
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1 Introduction

In this paper, we introduce a rigorous computational method for the study of piecewise-
smooth (PWS) systems, which are described by a finite set of ODEs

u̇ = g(i)(u), u ∈ Ri ⊂ Rn (1)

where R1, . . . ,RN are open non-overlapping regions separated by (n − 1)-dimensional
manifolds Σij

def
= ∂Ri ∩ ∂Rj for i 6= j. When non empty, the set Σij is the common

boundary of the two adjacent regions Ri and Rj , and we refer to it as a switching
manifold. Given Σij 6= ∅, assume the existence of H(i,j) : Rn → R such that

Σij =
{
u ∈ Rn : H(i,j)(u) = 0

}
. (2)
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Assume that the functions g(i) and H(i,j) are smooth, and that the union of all regions
and switching manifolds covers the entire state space.

Let us introduce some definitions, following closely the presentation of [1].
A PWS system is called continuous if, for all couple i, j ∈ {1, . . . , N} such that Σij 6=

∅, g(i)(u) = g(j)(u) at any point u ∈ Σij . For continuous PWS systems the tangent vectors
u̇ are uniquely defined at any point of the state space, and orbits in regionRi approaching
transversally Σij , cross it and enter into the adjacent region Rj . Therefore, in continuous
PWS systems, all orbits entering the switching manifold transversally undergo crossing.
We refer to such orbits as crossing orbits.

The situation is different for discontinuous PWS systems, which are often called Filip-
pov systems. In this case, two different tangent vectors g(i)(u) and g(j)(u) can be assigned
to a point u ∈ Σij . If the transversal components of g(i)(u) and g(j)(u) have the same
sign, that is if ((

∇H(i,j)(u)
)T
· g(i)(u)

)((
∇H(i,j)(u)

)T
· g(j)(u)

)
> 0, (3)

then the orbit crosses the switching manifold Σij with a discontinuity in its tangent vector
at u. An orbit which visits some switching manifolds in a way that (3) holds at any point
of the visited switching manifolds is also referred to as a crossing orbit. If on the other
hand the transversal components of g(i)(u) and g(j)(u) have different signs at u ∈ Σij ,
that is if ((

∇H(i,j)(u)
)T
· g(i)(u)

)((
∇H(i,j)(u)

)T
· g(j)(u)

)
< 0, (4)

then the two vector fields are pushing in opposite directions, and the solution remains on
the switching manifold and slides on it for some time. While there are different ways of
defining the motion of the solution on a switching manifold, the convexification method
proposed by Filippov in [2] is perhaps the most natural. In the present paper, we do not
discuss Filippov convexification’s method and refer instead to [1, 2, 3] for details. The
approach of Filippov leads to a classification of other type of orbits, namely crossing and
sliding orbits, and sliding orbits. In this paper, we consider only on crossing orbits.

An important class of crossing orbits in the study of PWS systems is given by crossing
periodic orbits (CPOs), which are periodic orbits of with isolated points in common with
the switching manifolds they visit. Another important class of crossing orbits in the
study of PWS systems is given by crossing connecting orbits (CCOs) (which connect two
equilibria) with isolated points in common with the switching manifolds they visit.

The goal of this paper is to adapt the recently developed rigorous computational
methods of [4, 5, 6, 7] for the study of PWS systems, with a particular emphasis on
the study of CPOs and CCOs. We expand the solutions using Chebyshev series, and
we obtain our computer-assisted proofs in a Banach space of fast decaying Chebyshev
coefficients.

A rigorous computational method goes beyond a standard a posteriori analysis of
numerical computations. More explicitly, the field of rigorous numerics aims at developing
mathematical theorems formulated in such a way that the assumptions can be rigorously
verified on a computer. The approach requires an a priori setup that allows analysis and
numerics to work together: the choice of function space, the choice of the basis functions,
the Galerkin projection, the analytic estimates, and the computational parameters must
all work hand in hand to bound the errors due to approximation, rounding and truncation,
and this sufficiently tightly for the proof to go through.
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The first step of our approach is to setup an equivalent formulation of the form
F (x) = 0 so that F : X → Y with X and Y two infinite dimensional Banach spaces,
whose solution x ∈ X corresponds to the targeted dynamical object of interest (in our
case a CPO or a CCO). Setting up the operator F requires expanding the solution using
a spectral Chebyshev method. The next step is to consider a finite dimensional Galerkin
projection of F , to apply Newton’s method on it and to obtain a numerical approximation
x̄. We then construct, with the help of the computer, an injective approximate inverse
A of DF (x̄) so that AF : X → X. We define a Newton-like operator T : X → X by
T (x) = x−AF (x), and we aim at obtaining

(a) the existence of x̃ ∈ X such that T (x̃) = x̃, or equivalently (since A is injective)
such that F (x̃) = 0;

(b) the existence of an explicit and small r > 0 such that ‖x̃− x̄‖X ≤ r.

The existence of the solution x̃ ∈ X and of the explicit error bound r is obtained by
applying a modified version of Newton-Kantorovich theorem, namely the radii polynomial
approach. The radii polynomials provide an efficient mean of determining a closed ball
Bx̄(r) of radius r centered at the numerical approximation x̄ on which the Newton-like
operator T (x) = x− AF (x) is a contraction. We present carefully this whole process in
general in the context of computing CPOs.

It is important mentioning that this work is by no means the first attempt to study
PWS systems within the field of rigorous numerics. A by now classical example that has
been studied rigorously with the help of the computer is Chua’s circuit system [8, 9]. The
existence of a homoclinic orbit for some unknown parameter value within a certain range
of the Chua circuit was shown in [10], and existence of chaos was therefore obtained. In
his study of the Chua’s system, Galias introduced rigorous integration for piecewise-linear
(PWL) systems [11, 12, 13]. He computed rigorously CPOs in [12], and sliding periodic
orbits in [13]. Note that the Chua’s circuit system is a continuous PWL systems, and
therefore it is not a Filippov system.

Moreover, it is important to note that Chebyshev series have been used before to
obtain computer-assisted proofs of existence of connecting orbits [5, 14], of solutions of
boundary value problems [15] and to study Cauchy problem [5].

While we focus our attention on the computation of CPOs and CCOs, a very similar
approach could be developed for initial value problems and more general boundary value
problems, as considered for instance in [5].

The paper is organized as follows. In Section 2, we present the method in its full
generality to obtain computer-assisted proofs of existence of CPOs for general PWS
systems (continuous and Filippov). In Section 3, we modify the method to the context of
studying CCOs, where we limit essentially the presentation to the general formulation of
the operator F (x) = 0. Then, we present two applications of computer-assisted proofs of
existence of CPOs. The first example is presented in Section 4 and is a proof of existence
of CPOs for a nonlinear planar Filippov system. The second example is presented in
Section 5, we present some computer-assited proofs of existence of CPOs in the piecewise-
linear three-dimensional continuous Chua’s circuit system. In Section 6, we present some
possible future directions of studies.
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2 Rigorous numerics for crossing periodic orbits

2.1 Setting up F (x) = 0 for crossing periodic orbits

A piecewise-smooth parameterization of a crossing periodic orbit Γ with M segments is
given by

Γ =

M⋃
j=1

Γ(j) =

M⋃
j=1

{
γ(j)(t) : t ∈ [−Lj , Lj ]

}
. (5)

The parameterization (5) is globally continuous if (1) is a Filippov system and it is
globally differentiable if (1) is a continuous PWS system. In both case, we have that
γ(j)(Lj) = γ(j+1)(−Lj+1) for all j = 1, . . . ,M − 1 and γ(M)(LM ) = γ(1)(−L1).

Given a crossing periodic orbit (5), define the itinerary of the periodic orbit σ = σ(Γ)
to be a vector σ = (σ1, . . . , σM ) ∈ {1, . . . , N}M defined component-wise by

σj = `, if Γ(j) ⊂ R`. (6)

Consider a periodic orbit Γ with parameterization given by (5) with itinerary σ =
(σ1, . . . , σM ) . Then, for each j = 1, . . . ,M , we have that γ(j)(t) is a solution of u̇ =
g(σj)(u). For each j = 1, . . . ,M , we rescale the ODE by the factor Lj so that each γ(j)

is now re-parameterized over the time interval [−1, 1] and satisfies

d

dt
γ(j) = Ljg

(σj)(γ(j)), t ∈ [−1, 1]. (7)

We use the notation γ(j) to denote the parameterizations of the same object over the
intervals [−Lj , Lj ] and [−1, 1].

Remark 2.1. The reason for considering a parameterization over the time interval [−1, 1]
is because we will later on expand γ(j) using Chebyshev series. The basis functions are
in this case the Chebyshev polynomials which are defined on [−1, 1].

Denote by Σ(σj) the switching manifold from which γ(j) begins its journey in the
region Rσj . We now make two important assumptions.

(A1) Each vector field g(i) is real analytic in the region Ri.

(A2) For each j = 1, . . . ,M , assume we have a parameterization of the switching manifold
Σ(σj) given by

P (σj) : Rn−1 → Rn : θ(j) 7→ P (σj)(θ(j)). (8)

Integrating each ODE of (7) from −1 to t, and using the initial condition γ(j)(−1) =
P (σj)(θ(j)) (with θ(j) ∈ Rn−1 to be uniquely determined) yields

F̂ (j) def
= P (σj)(θ(j)) + Lj

∫ t

−1

g(σj)(γ(j)(s)) ds− γ(j)(t) = 0, (9)

for each j = 1, . . . ,M and for all t ∈ [−1, 1]. The fact that Γ is a periodic orbit implies
that the following extra equations are satisfied{

η(j) def
= γ(j)(1)− P (σj+1)(θ(j+1)) = 0, j = 1, . . . ,M − 1,

η(M) def
= γ(M)(1)− P (σ1)(θ(1)) = 0.
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By construction, the problem of looking for crossing periodic orbits of (1) reduces to
the equivalent problem of looking for solutions of (η(1), . . . , η(M), F̂ (1), . . . , F̂ (M)) = 0.
Instead of solving this problem in state space, we will solve it rigorously with Cheby-
shev spectral Galerkin method in a Banach space consisting of fast decaying Chebyshev
coefficients.

Definition 2.2. The Chebyshev polynomials Tk : [−1, 1] → R are defined by T0(t) = 1,
T1(t) = t and Tk+1(t) = 2tTk(t)−Tk−1(t) for k ≥ 1. Equivalently, Tk(t) = cos(k arccos t).

By assumption (A1), the solution γ(j)(t) of (7) is analytic. Each component γ
(j)
i of

γ(j) therefore admits a unique Chebyshev series representation

γ
(j)
i (t) = (a

(j)
i )0 + 2

∞∑
k=1

(a
(j)
i )kTk(t) (10)

whose coefficients a
(j)
i

def
= {(a(j)

i )k}k≥0 (i = 1, . . . , n and j = 1, . . . ,M) decay to zero

exponentially fast [16]. Consider also c
(σj)
i = {(cσj)i )k}k≥0 (i = 1, . . . , n and j =

1, . . . ,M) the vector of Chebyshev coefficients of the ith component of g(σj)(γ(j)(t)) given
component-wise by

g
(σj)
i (γ(j)(t)) = (c

(σj)
i )0 + 2

∞∑
k=1

(c
(σj)
i )kTk(t). (11)

The exponential decay rate of the Chebyshev coefficients of each component of γ(j)

motivates the following choice of Banach space in which we will look for solutions. For
any ν > 1 we define the ν-weighted `1-norm on sequences of real numbers a = {an}∞n=0

by

‖a‖ν
def
=

∞∑
n=0

|an|νn, (12)

and consider the weighted `1 space

`1ν
def
= {a = {an}∞n=0 : ‖a‖ν <∞} . (13)

Given two sequences a, b ∈ `1ν , denote by a ∗ b the discrete convolution

(a ∗ b)k =
∑

k1+k2=k
ki∈Z

a|k1|b|k2|. (14)

An important property of `1ν is that it is a Banach space and an algebra under the
discrete convolution (14). We have the important following property, whose proof is
standard.

Lemma 2.3. For a, b ∈ `1ν , ‖a ∗ b‖ν ≤ 3‖a‖ν‖b‖ν .

This result is particularly interesting for our purpose, because we use Chebyshev series
to prove existence of CPOs. Since Chebyshev series are in fact Fourier series in disguise
as Tk(t) = cos(k arccos t), then the product of two functions in state space will result in a
discrete convolution product as in (14) in the space of Chebyshev coefficients. Therefore,
Lemma 2.3 simplifies the nonlinear analysis.

The unknowns for the problem are given by
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• θ = (θ(1), . . . , θ(M)) ∈ RM(n−1), where θ(j) =
(
θ

(j)
1 , . . . , θ

(j)
n

)
∈ Rn is the parameter

that defines the point P (σj)(θ(j)) in the switching manifold Σ(σj) from which γ(j)

begins its journey in the region Rσj .

• L = (L1, . . . , LM ) ∈ RM , with Lj ∈ R provides the a priori unknown length of time
2Lj on which γ(j) is defined.

• a =
(
a(1), . . . , a(M)

)
∈
(
`1ν
)Mn

, where a(j) is the vector of the Chebyshev coef-

ficients of all components of γ(j). The ith component of a(j) is given by a
(j)
i =

{(a(j)
i )k}k≥0 ∈ `1ν (i = 1, . . . , n) for some ν > 1.

All the above unknowns (variables) are collected in a single infinite dimensional vector
of the form

x = (θ, L, a) ∈ RM(n−1) × RM ×
(
`1ν
)Mn

.

Define the Banach space

X
def
= RMn ×

(
`1ν
)Mn

, (15)

endowed with the norm

‖x‖X
def
= max

 max
i=1,...,n
j=1,...,M

{|θ(j)
i |}, max

j=1,...,M
{|Lj |}, max

i=1,...,n
j=1,...,M

‖a(j)
i ‖ν

 . (16)

Following the approach of [5], we plug (10) in (43), use (11), compute the resulting
Chebyshev coefficients and set up the new problem

F (x) =



η(1)(x)
...

η(M)(x)

f (1)(x)
...

f (M)(x)


= 0, (17)

where η(j) =
(
η

(j)
1 , . . . , η

(j)
n

)
∈ Rn is given component-wise by

η
(j)
i (x) = (a

(j)
i )0 + 2

∞∑
k=1

(a
(j)
i )k − P

(σj+1)
i (θ(j+1)), j = 1, . . . ,M − 1, (18)

η
(M)
i (x) = (a

(M)
i )0 + 2

∞∑
k=1

(a
(M)
i )k − P (σ1)

i (θ(1)), (19)

and f (j) =
(
f

(j)
1 , . . . , f

(j)
n

)
is given component-wise by

(f
(j)
i (x))k

def
=


P

(σj)
i (θ(j))− (a

(j)
i )0 − 2

∞∑
`=1

(−1)`(a
(j)
i )`, k = 0,

2k(a
(j)
i )k + Lj

(
(c

(σj)
i )k+1 − (c

(σj)
i )k−1

)
, k ≥ 1.

(20)
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Remark 2.4. It is important to realize that the setup of the operator F (x) = 0 given in
(17) depends on knowing a priori (a) the itinerary σ = (σ1, . . . , σk) ∈ {1, . . . , N}k of the
orbit; and (b) the switching manifold from which the orbit begins its journey in a given
region. This necessary information is obtained from numerical simulations.

Now that the operator F has been identified, we introduce the radii polynomial ap-
proach, which is provides an efficient way of proving existence of solutions close to numer-
ical approximations. Before that, we need some basic results from elementary functional
analysis.

2.2 The dual space and linear operators

When studying nonlinear maps on `1ν it is often necessary to estimate certain linear
operators and functionals. The estimates are natural when viewed in the context of the
Banach space dual of `1ν . For an infinite sequence of real numbers c = {cn}∞n=0 define the
ν-weighted supremum norm

‖c‖∞ν
def
= sup

n≥0

|cn|
νn

,

and let
`∞ν

def
= {c = {cn}∞n=0 : ‖c‖∞ν <∞} .

It is classical result in the elementary theory of Banach spaces that for ν > 0, the dual of
`1ν , denoted (`1ν)∗, is isometrically isomorphic to `∞ν . Moreover, for any l ∈ (`1ν)∗, there
is a unique c ∈ `∞ν , such that l = `c, where for any a ∈ `1ν ,

`c(a) =

∞∑
n=0

cnan and ‖`c‖(`1ν)∗ = ‖c‖∞ν .

Hence,

sup
‖a‖ν=1

∣∣∣∣∣
∞∑
n=0

cnan

∣∣∣∣∣ = ‖`c‖(`1ν)∗ = ‖c‖∞ν = sup
n≥0

|cn|
νn

. (21)

This bound is used to estimate linear operators of the following type. Denote by
B(`1ν , `

1
ν) the space of bounded linear operators from `1ν to `1ν and by ‖ · ‖B(`1ν ,`

1
ν) the

operator norm.

Corollary 2.5. Let AF be an m×m matrix, {µn}∞n=m be a sequence of numbers with

|µn| ≤ |µm|,

for all n ≥ m, and A : `1ν → `1ν be the linear operator defined by

A(a) =


AF 0

µm
0 µm+1

. . .




aF
am
am+1

...

 .
Here aF = (a0, a1, . . . , am−1)T ∈ Rm. Then A ∈ B(`1ν , `

1
ν) is a bounded linear operator

and
‖A‖B(`1ν ,`

1
ν) ≤ max(K,µm), (22)
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where

K
def
= max

0≤n≤m−1

1

νn

m−1∑
k=0

|Ak,n|νk.

Proof. See Corollary 6 in [14].

2.3 The radii polynomial approach for CPOs

Given an infinite dimensional vector x = (θ, L, a) ∈ RM(n−1) × RM ×
(
`1ν
)Mn

, consider
the projection

Πx = (θ, L,Πa(1), . . . ,Πa(M)) ∈ RM(n−1) × RM × (Rm)
Mn

= R(Mn)(m+1)

where Πa(j) is given component-wise by Πa
(j)
i = {(a(j)

i )k}m−1
k=0 ∈ Rm (i = 1, . . . , n).

Using this finite dimensional projection, consider a finite dimensional Galerkin pro-
jection of (17),

F (m) : R(Mn)(m+1) → R(Mn)(m+1) (23)

defined by F (m)(Πx) = ΠF (Πx).
Assume that using Newton’s method, we compute an numerical approximation x̄ ∈

R(Mn)(m+1) such that F (m)(x̄) ≈ 0. Consider B(r) = {x ∈ X : ‖x‖ ≤ r} the closed ball
of radius r centered at 0 in the Banach space X, and consider Bx̄(r) = x̄+B(r) ⊂ X, the
closed ball of radius r centered at x̄. We now consider an approximate inverse of DF (x̄),
that we denote by A. To simplifying the presentation, a point x = (θ, L, a) ∈ X is denoted
by x = (x1, . . . , x2Mn), where (x1, . . . , xM(n−1)) = θ ∈ RM(n−1), (xM(n−1)+1, . . . , xMn) =

L ∈ RM , and (xMn+1, . . . , x2Mn) = a ∈
(
`1ν
)Mn

.

In order to define A, we consider first A(m) an approximate inverse of the Jacobian
matrix DF (m)(x̄). This is done with the help of the computer. A(m) is an (Mn)(m +
1)× (Mn)(m+ 1) matrix expressed as

A(m) =



A
(m)
1,1 . . . A

(m)
1,Mn A

(m)
1,Mn+1 . . . A

(m)
1,2Mn

... . . .
...

... . . .
...

A
(m)
Mn,1 . . . A

(m)
Mn,Mn A

(m)
Mn,Mn+1 . . . A

(m)
Mn,2Mn

A
(m)
Mn+1,1 . . . A

(m)
Mn+1,Mn A

(m)
Mn+1,Mn+1, . . . A

(m)
Mn+1,2Mn

... . . .
...

... . . .
...

A
(m)
2Mn,1 . . . A

(m)
2Mn,Mn A

(m)
2Mn,Mn+1 . . . A

(m)
2Mn,2Mn


.

Based on the computation of A(m), we can define explicitly A. A is expressed as a
2Mn× 2Mn matrix of linear operators of the form

A =



A1,1 . . . A1,Mn A1,Mn+1 . . . A1,2Mn

... . . .
...

... . . .
...

AMn,1 . . . AMn,Mn AMn,Mn+1 . . . AMn,2Mn

AMn+1,1 . . . AMn+1,Mn AMn+1,Mn+1, . . . AMn+1,2Mn

... . . .
...

... . . .
...

A2Mn,1 . . . A2Mn,Mn A2Mn,Mn+1 . . . A2Mn,2Mn


, (24)

where

8



• Ai,j = A
(m)
ij ∈ R, for 1 ≤ i, j,≤Mn,

• Ai,j ∈ (`1ν)∗, for 1 ≤ i ≤Mn,Mn+ 1 ≤ j ≤ 2Mn.

For xj ∈ `1ν , Aijxj = A
(m)
ij · (xj)F ∈ R.

• Ai,j ∈ `1ν , for Mn+ 1 ≤ i ≤ 2Mn, 1 ≤ j ≤Mn.

For xj ∈ R, Aijxj = (A
(m)
ij xj , 0∞) ∈ `1ν .

• Ai,j ∈ B
(
`1ν , `

1
ν

)
, for Mn+ 1 ≤ i, j ≤ 2Mn. For xj ∈ `1ν ,

(Aijxj)k =

 (A
(m)
ij (xj)F )k, k = 0, . . . ,m− 1,

δi,j
1

2k
(xj)k, k ≥ m,

where δi,j equals 1 if i = j and 0 otherwise.

We assume that A is an injective linear operator. Since the tail of A is invertible,
verifying that A is injective is done by verifying that

‖I −DF (m)A(m)‖R2Mm ≤ δ < 1. (25)

Combining the above, A is a linear operator which acts on x = (x1, . . . , x2Mn) ∈ X
component-wise as

(Ax)i =

2Mn∑
j=1

Aijxj ,

with (Ax)i ∈ R for i = 1, . . . ,Mn and (Ax)i ∈ `1ν , for i = Mn+ 1, . . . , 2Mn.
Recalling the linear operator A in (24), define

T (x) = x−AF (x). (26)

Proposition 2.6. T : X → X.

Proof. The proof is similar to Proposition 8 in [14].

The injectivity of A implies that x is a solution of F = 0 if and only if it is a fixed point
of T . Moreover since T now maps X back into itself we study (26) via the contraction
mapping theorem applied on closed balls of the form Bx̄(r) centered at the numerical
approximation x̄.

Given x̄ = (x̄1, . . . , x̄2Mn), define the bounds

Y = (Y1, . . . , YMn, YMn+1, . . . , Y2Mn)

Z(r) = (Z1(r), . . . , ZMn(r), ZMn+1(r), . . . , Z2Mn(r))
(27)

with Yj , Zj(r) ∈ R satisfying∣∣∣(T (x̄)− x̄)j

∣∣∣ ≤ Yj and sup
b,c∈B(r)

|DTj(x̄+ b)c| ≤ Zj(r), for j = 1, . . . ,Mn (28)∥∥∥(T (x̄)− x̄)j

∥∥∥
ν
≤ Yj and sup

b,c∈B(r)

‖DTj(x̄+ b)c‖ν ≤ Zj(r) for j = Mn+ 1, . . . , 2Mn.
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Proposition 2.7. Consider the bounds Y and Z(r) as (27) and satisfying the component-
wise inequalities (28). If

max
i=1,...,2Mn

{Yi + Zi(r)} < r,

then (a) T (Bx̄(r)) ⊂ Bx̄(r), and (b) T is a contraction on Bx̄(r). Therefore, by the
contraction mapping theorem, there exists a unique x̃ ∈ Bx̄(r) such that T (x̃) = x̃. By
injectivity of the approximate inverse A, we obtain that F (x̃) = 0. Moreover, we obtain
the rigorous bound

‖x̃− x̄‖X ≤ r. (29)

Proof. See the proof of Proposition 1 in [4].

The previous remark justifies the following definition.

Definition 2.8. Given the bounds Y and Z(r) satisfying (28) we define the radii poly-
nomials {pj}j=1,...,2Mn by

pj(r)
def
= Zj(r)− r + Yj , for j = 1, . . . , 2Mn. (30)

The next result shows that the radii polynomials provide an efficient strategy for
obtaining sets on which the corresponding Newton-like operator is a contraction mapping.

Proposition 2.9. Fix ν ≥ 1 an exponential decay rate and construct the radii polyno-
mials pj = pj(r) for j = 1, . . . , 2Mn of Definition 2.8. If

I def
=

2Mn⋂
j=1

{r > 0 | pj(r) < 0} 6= ∅, (31)

then I is an open interval and ∀ r ∈ I, ∃! x̃ ∈ Bx̄(r) such that F (x̃) = 0.

Proof. See the proof of Proposition 2 in [4].

In practice, proving the existence of a CPO of a PWS system requires constructing the
radii polynomials of Definition 2.8 and verifying the hypothesis (31) of Proposition 2.9.

While postponing the full construction of the radii polynomials to each application
presented in Section 4 and in Section 5, we provide here a general guidance of how to
proceed with their construction. The computation of the bounds Y does not require
much analysis. It is obtained by computing finite sums with interval arithmetic. Hence,
we present some ideas of of in general we compute the Z bound.

2.3.1 Guidance of how to compute the bound Z

In order to simplify the computation of the bound Z, we introduce the bounded linear
operator A† defined component-wise by

A† =



A†1,1 . . . A†1,Mn A†1,Mn+1 . . . A†1,2Mn
... . . .

...
... . . .

...

A†Mn,1 . . . A†Mn,Mn A†Mn,Mn+1 . . . A†Mn,2Mn

A†Mn+1,1 . . . A†Mn+1,Mn A†Mn+1,Mn+1, . . . A†Mn+1,2Mn
... . . .

...
... . . .

...

A†2Mn,1 . . . A†2Mn,Mn A†2Mn,Mn+1 . . . A†2Mn,2Mn


, (32)

where
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• A†i,j = DF
(m)
ij (x̄) ∈ R, for 1 ≤ i, j,≤Mn,

• A†i,j ∈ (`1ν)∗, for 1 ≤ i ≤Mn,Mn+ 1 ≤ j ≤ 2Mn.

For xj ∈ `1ν , A
†
ijxj = DF

(m)
ij (x̄) · (xj)F ∈ R.

• A†i,j ∈ `1ν , for Mn+ 1 ≤ i ≤ 2Mn, 1 ≤ j ≤Mn.

For xj ∈ R, A†ijxj = (DF
(m)
ij (x̄)xj , 0∞) ∈ `1ν .

• A†i,j ∈ B
(
`1ν , `

1
ν

)
, for Mn+ 1 ≤ i, j ≤ 2Mn. For xj ∈ `1ν ,

(A†ijxj)k =


(
DF

(m)
ij (x̄)(xj)F

)
k
, k = 0, . . . ,m− 1,

δi,j2k(xj)k, k ≥ m,

where δi,j equals 1 if i = j and 0 otherwise.

Considering b = (b1, . . . , b2Mn), c = (c1, . . . , c2Mn) ∈ B(r) and recalling the definition
of the Newton-like operator (26), notice that

DT (x̄+ b)c = [I −ADF (x̄+ b)]c = [I −AA†]c−A[DF (x̄+ b)c−A†c]. (33)

The objective is to bound each component in the right-hand side of (33). Consider
u = (u1, . . . , u2Mn), v = (v1, . . . , v2Mn) ∈ B(1) such that b = ur and c = vr. Let
B

def
= I −AA†, which is denoted by

B =



B1,1 . . . B1,Mn B1,Mn+1 . . . B1,2Mn

... . . .
...

... . . .
...

BMn,1 . . . BMn,Mn BMn,Mn+1 . . . BMn,2Mn

BMn+1,1 . . . BMn+1,Mn BMn+1,Mn+1, . . . BMn+1,2Mn

... . . .
...

... . . .
...

B2Mn,1 . . . B2Mn,Mn B2Mn,Mn+1 . . . B2Mn,2Mn


,

Note that by definition of the diagonal tails of Aij and A†ij , the tails of Bij vanish,
i.e., all Bij , Mn+ 1 ≤ i, j ≤ 2Mn are represented by m×m matrices. Let

Z
(0)
i

def
=



Mn∑
j=1

|Bij |+
2Mn∑

j=Mn+1

(
max

0≤k≤m−1

∣∣(Bij)k∣∣
νk

)
, i = 1, . . . ,Mn

Mn∑
j=1

(
m−1∑
k=0

∣∣(Bij)k∣∣ νk
)

+

2Mn∑
j=Mn+1

(
max

0≤n≤m−1

1

νn

m−1∑
k=0

∣∣∣(Bij)k,n∣∣∣ νk
)
, i = Mn+ 1, . . . , 2Mn.

(34)
Using (21), one gets that for every c ∈ B(r) and for i = 1, . . . ,Mn,∣∣[(I −AA†)c]i∣∣ =

∣∣[(I −AA†)v]i
∣∣ r ≤ sup

‖v‖X=1

∣∣[(I −AA†)v]i
∣∣ r

≤
Mn∑
j=1

|Bij | r +

2Mn∑
j=Mn+1

‖Bij‖∞ν r

≤

Mn∑
j=1

|Bij |+
2Mn∑

j=Mn+1

(
max

0≤k≤m−1

∣∣(Bij)k∣∣
νk

) r = Z
(0)
i r. (35)
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Furthermore, using Corollary 2.5, for every c ∈ B(r) and for i = Mn+ 1, . . . , 2mn,∥∥[(I −AA†)c]i
∥∥
ν

=
∥∥[(I −AA†)v]i

∥∥
ν
r ≤ sup

‖v‖X=1

∥∥[(I −AA†)v]i
∥∥
ν
r

≤
Mn∑
j=1

‖Bij‖ν r +

2Mn∑
j=Mn+1

‖Bij‖B(`1ν ,`
1
ν) r

≤

Mn∑
j=1

(
m−1∑
k=0

∣∣(Bij)k∣∣ νk
)

+

2Mn∑
j=Mn+1

(
max

0≤n≤m−1

1

νn

m−1∑
k=0

∣∣∣(Bij)k,n∣∣∣ νk
) r

= Z
(0)
i r. (36)

The next step is to bound the components of A[DF (x̄ + b)c − A†c] the second term
of (33). The computation for the bound A[DF (x̄ + b)c − A†c] requires estimating each
of its component for all b, c ∈ B(r). This is equivalent to estimating each component of
A[DF (x̄ + ur)vr − A†vr] for all v, r ∈ B(1). If the nonlinearities of each ODE in the
original PWS system are polynomials of order less or equal to n, then F will consists of
discrete convolutions with power at most n. Then each component of A[DF (x̄+ur)vr−
A†vr] can be expanded as a polynomial of order n in r with the coefficients being either
in R or in `1ν . A useful approach is to let

z
def
= DF (x̄+ ur)vr −A†vr, (37)

and to compute a polynomial expansion of each of its components. Then we bound the
terms |(Az)i|, for i = 1, . . . ,Mn and the terms ‖(Az)i‖ν , for i = Mn+ 1, . . . , 2Mn.

We postpone the construction of the bound for A[DF (x̄ + ur)vr − A†vr] to each
application presented in Section 4 and in Section 5.

3 Rigorous numerics for crossing connecting orbits

In this Section, we introduce the setting up to obtain the problem F (x) = 0 whose solu-
tions correspond to CCOs. Once this operator is defined, we can use the radii polynomial
approach as presented in Section 2 to prove existence of crossing connecting orbits. As
mentioned previously, no examples are presented.

We being by assuming the existence of u0 ∈ Rσ1
⊂ Rn and u1 ∈ RσM ⊂ Rn such that

g(σ1)(u0) = g(σM )(u1) = 0.

In other words, u0 (resp. u1) is a steady state solution of the vector field g(σ1) (resp.
g(σM )) in the open region Rσ1 (resp. RσM ).

Since u0 ∈ Rσ1 with Rσ1 open, there exists an open ball Bu0 in which the vector
field u̇ = g(σ1)(u) is defined. Since in Bu0

, the vector field is smooth, by the classical
theory of ODEs, there exists a local unstable manifold Wu

loc(u0) ⊂ Bu0
. Denote by nu

the dimension of Wu
loc(u0). Similarly, there exists an open ball Bu1

⊂ RσM containing a
local stable manifold Wu

loc(u1) ⊂ Bu1 . Denote by ns the dimension of W s
loc(u1).

A piecewise-smooth parameterization of a crossing connecting orbit Γ(u0, u1) with M
segments is given by

Γ =

M⋃
j=1

Γ(j) =

M⋃
j=1

{
γ(j)(t) : t ∈ [−Lj , Lj ]

}
. (38)
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Definition 3.1. The itinerary of a crossing connecting orbit as given in (38) is denoted
by σ = σ(Γ(u0, u1)) and is defined to be a vector σ = (σ1, . . . , σM ) ∈ {1, . . . , N}M defined
component-wise by

σj = `, if Γ(j) ⊂ R`. (39)

As before denote by Σ(σj) (j = 2, . . . ,M) the switching manifold from which γ(j)

begins its journey in the region Rσj .
We now make the following important assumptions.

(A1) Each vector field g(i) is real analytic in the region Ri.

(A2) For each j = 2, . . . ,M , assume we have a parameterization of the switching manifold
Σ(σj) given by

P (σj) : Rn−1 → Rn : θ(j) 7→ P (σj)(θ(j)). (40)

(A3) Assume we have a parameterization of a local unstable manifold Wu
loc(u0) given by

P (u) : Bρ0 ⊂ Rnu → Rn : θ(u) 7→ P (u)(θ(u)), (41)

where Bρ0 is the open ball in Rnu with a small enough radius ρ0 > 0 so that
P (u) (Bρ0) ⊂ Bu0 .

(A4) Assume we have a parameterization of a local stable manifold W s
loc(u1) given by

P (s) : Bρ1 ⊂ Rns → Rn : θ(s) 7→ P (s)(θ(s)), (42)

where Bρ1 is the open ball in Rns with a small enough radius ρ1 > 0 so that
P (s) (Bρ1) ⊂ Bu1

.

Remark 3.2. The assumptions (A1) and (A2) are similar than the ones in Section 2.1.
The assumptions (A3) and (A4) can be verified by combining the Parameterization
Method introduced in [17, 18, 19] with the recent results [7, 20, 21, 6, 14] which allow
computing rigorously stable and unstable manifolds of equilibria of vector fields.

For sake of simplicity of the presentation, we let P (σ1) def
= P (u) the local parameteri-

zation (41) of Wu
loc(u0) and θ(1) def

= θ(u).
Integrating each ODE of (7) from −1 to t, and using the initial condition γ(j)(−1) =

P (σj)(θ(j)) (with θ(1) ∈ Rnu , θ(j) ∈ Rn−1 for j = 2, . . . ,M to be uniquely determined)
yields

F̂ (j) def
= P (σj)(θ(j)) + Lj

∫ t

−1

g(σj)(γ(j)(s)) ds− γ(j)(t) = 0, (43)

for each j = 1, . . . ,M and for all t ∈ [−1, 1]. The fact that Γ(u0, u1) is a connecting orbit
between u0 and u1 implies that the following extra equations are satisfied{

η(j) def
= γ(j)(1)− P (σj+1)(θ(j+1)) = 0, j = 1, . . . ,M − 1,

η(M) def
= γ(M)(1)− P (s)(θ(s)) = 0.

By construction, the problem of looking for crossing connecting orbits of (1) reduces
to the equivalent problem of looking for solutions of (η(1), . . . , η(M), F̂ (1), . . . , F̂ (M)) = 0.
Instead of solving this problem in state space, we can solve it rigorously with Chebyshev
spectral Galerkin method in a Banach space consisting of fast decaying Chebyshev coeffi-
cients. Since the idea is to apply a contraction mapping argument, we need the solutions
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to be isolated. However, this is now the case now as the phase in the parameterization of
the local stable and unstable manifolds is not fixed. To take care of that, we can follow
the setup introduced in [6] and impose that (a) the orbit γ(1) leaves the local unstable
manifold of u0 at a parameter θ(u) such that ‖θ(u)‖ = ρ0; and that (b) the orbit γ(M)

enters the local stable manifold of u1 at a parameter θ(s) such that ‖θ(s)‖ = ρ1. That way,
the dimension of the parameterization of the local unstable manifold goes down by one

and is now parameterized as P (u)
(
θ(u)(ψ(u))

)
with ψ(u) =

(
ψ

(u)
1 , . . . , ψ

(u)
nu−1

)
∈ Rnu−1.

Similarly, the dimension of the parameterization of the local stable manifold goes down by

one and is now parameterized as P (s)
(
θ(s)(ψ(s))

)
with ψ(s) =

(
ψ

(s)
1 , . . . , ψ

(s)
ns−1

)
∈ Rns−1.

Following a similar procedure as in Section 2.1, we expand each solution segment with
Chebyshev series, and we obtain the operator

F (x) =



η(1)(x)
...

η(M)(x)

f (1)(x)
...

f (M)(x)


= 0, (44)

where η(j) =
(
η

(j)
1 , . . . , η

(j)
n

)
∈ Rn is given component-wise by

η
(j)
i (x) = (a

(j)
i )0 + 2

∞∑
k=1

(a
(j)
i )k − P

(σj+1)
i (θ(j+1)), j = 1, . . . ,M − 1, (45)

η
(M)
i (x) = (a

(M)
i )0 + 2

∞∑
k=1

(a
(M)
i )k − P (s)

i (θ(s)(ψ(s))), (46)

where f (1) =
(
f

(1)
1 , . . . , f

(1)
n

)
is given component-wise by

(f
(1)
i (x))k

def
=


P

(u)
i (θ(u)(ψ(u)))− (a

(1)
i )0 − 2

∞∑
`=1

(−1)`(a
(1)
i )`, k = 0,

2k(a
(1)
i )k + L1

(
(c

(σ1)
i )k+1 − (c

(σ1)
i )k−1

)
, k ≥ 1.

and for j = 2, . . . ,M , f (j) =
(
f

(j)
1 , . . . , f

(j)
n

)
is given component-wise by

(f
(j)
i (x))k

def
=


P

(σj)
i (θ(j))− (a

(j)
i )0 − 2

∞∑
`=1

(−1)`(a
(j)
i )`, k = 0,

2k(a
(j)
i )k + Lj

(
(c

(σj)
i )k+1 − (c

(σj)
i )k−1

)
, k ≥ 1.

Similarly as in Section 2.1, the unknowns for the problem are given by

• θ = (ψ(u), θ(2), . . . , θ(M), ψ(s)) ∈ Rnu−1 × R(M−1)(n−1) × Rns−1.

• L = (L1, . . . , LM ) ∈ RM .
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• a =
(
a(1), . . . , a(M)

)
∈
(
`1ν
)Mn

, where a(j) is the vector of the Chebyshev coef-

ficients of all components of γ(j). The ith component of a(j) is given by a
(j)
i =

{(a(j)
i )k}k≥0 ∈ `1ν (i = 1, . . . , n) for some ν > 1.

Remark 3.3. In order for problem (44) to be well-conditioned, we need the non degen-
eracy condition

nu + ns = n+ 1, (47)

which ensures that the dimensions of (θ, L) and η =
(
η(1), . . . , η(M)

)
coincide. Note that

this (47) is a standard non degeneracy condition in the study of intersection of stable
and unstable manifolds in the classical theory of ODEs (e.g. see [22]).

4 CPOs in a model nonlinear problem

Consider

u̇ =


g(1)(u)

def
=

(
β 1
−1 β

)(
u1

u2

)
+ ε

(
u1

u2

)
, u ∈ R1,

g(2)(u)
def
=

(
−1 1/α
−α −1

)(
u1

u2

)
+ ε

(
u2

1

u2
1 + u2

2

)
, u ∈ R2,

(48)

where R1 = {u = (u1, u2) : u2 < 1} and R2 = {u = (u1, u2) : u2 > 1}, and where α,
β and ε are parameters. The PWS system (48) is a (discontinuous) nonlinear Filippov
system which is a slight modification of the model nonlinear problem considered in [3].

There is only one switching manifold Σ given by u2 = 1. Its parameterization is given
by

P : R→ R2 : θ 7→ P (θ) =

(
θ
1

)
. (49)

We consider the simplest possible case of periodic orbit, that is with itinerary σ =
(σ1, σ2) = (1, 2). In this case, P (σ1) = P (σ2) = P , with P given by (49). Let

γ
(1)
i (t) = (ai)0 + 2

∞∑
k=1

(ai)kTk(t), γ
(2)
i (t) = (bi)0 + 2

∞∑
k=1

(bi)kTk(t)

g
(1)
i

(
γ(1)(t)

)
= (ci)0 + 2

∞∑
k=1

(ci)kTk(t), g
(2)
i

(
γ(2)(t)

)
= (di)0 + 2

∞∑
k=1

(di)kTk(t)

In this case, the operator (17) becomes

F (x) =


η(1)(x)
η(2)(x)
f (1)(x)
f (2)(x)

 = 0, (50)

where η(j) =
(
η

(j)
1 , η

(j)
2

)T
∈ R2 (j = 1, 2) is given component-wise by

η
(1)
i (x) = (ai)0 + 2

∞∑
k=1

(ai)k − Pi(θ1), η
(2)
i (x) = (bi)0 + 2

∞∑
k=1

(bi)k − Pi(θ2),
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and f (1), f (2) are given component-wise by

(f
(1)
i (x))k

def
=

 Pi(θ2)− (ai)0 − 2

∞∑
`=1

(−1)`(ai)`, k = 0,

2k(ai)k + L1 ((ci)k+1 − (ci)k−1) , k ≥ 1.

and

(f
(2)
i (x))k

def
=

 Pi(θ1)− (bi)0 − 2

∞∑
`=1

(−1)`(bi)`, k = 0,

2k(bi)k + L2 ((di)k+1 − (di)k−1) , k ≥ 1,

where

(c1)k
def
= β(a1)k + (a2)k + ε(a1)k , (c2)k

def
= −(a1)k + β(a2)k + ε(a2)k

(d1)k
def
= −(b1)k +

1

α
(b2)k + ε(b21)k , (d2)k

def
= −α(b1)k − (b2)k + ε(b21 + b22)k.

The unknown is x = (θ1, θ2, L1, L2, a1, a2, b1, b2) and the Banach space is given by

X = R4 ×
(
`1ν
)4
,

with the norm ‖x‖X = max
{
|θ1|, |θ2|, |L1|, |L2|, ‖a1‖ν , ‖a2‖ν , ‖b1‖ν , ‖b2‖ν

}
.

We now apply the radii polynomial approach to problem (48) with the theory pre-
sented in Section 2.3. In this case, n = 2 (the dimension of the state space) and M = 2
(the number of segments of the periodic orbit). Consider a finite dimensional projection
F (m) : R4(m+1) → R4(m+1), and assume that using Newton’s method, we compute an
numerical approximation x̄ ∈ R4(m+1) such that F (m)(x̄) ≈ 0.

We prove the existence of a CPO of (48) by constructing the radii polynomials of
Definition 2.8 and by verifying the hypothesis (31) of Proposition 2.9. For this, we need
to construct the bounds Y and Z satisfying (27).

4.1 The bound Y for the nonlinear model problem

Denote

F (x̄) = (Fi(x̄))
8
i=1

(
η

(1)
1 (x̄), η

(1)
2 (x̄), η

(2)
1 (x̄), η

(2)
2 (x̄), f

(1)
1 (x̄), f

(1)
2 (x̄), f

(2)
1 (x̄), f

(2)
2 (x̄)

)
.

For i = 1, . . . , 4, we can use interval arithmetic and compute Yi such that

|(T (x̄)− x̄)i| = |(AF (x̄))i| =

∣∣∣∣∣∣
4∑
j=1

A
(m)
ij F

(m)
j (x̄) +

8∑
j=5

A
(m)
ij · F

(m)
j (x̄)

∣∣∣∣∣∣ ≤ Yi.
For i = 5, . . . , 8, we now compute bounds Yi

||(T (x̄)− x̄)i||ν ≤

∥∥∥∥∥∥
4∑
j=1

A
(m)
ij F

(m)
j (x̄) +

8∑
j=5

AijF
(m)
j (x̄)

∥∥∥∥∥∥
ν

+

2m−1∑
k=m

1

2k
|(Fi(x̄))k| ν

k

≤ Yi.
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4.2 The bound Z for the nonlinear model problem

We have already obtained in general a component-wise bound (34) for the first term
[I −AA†]c of the splitting (33). To simplify the computation of the bound of the second
term A[DF (x̄+ b)c−A†c], recall (37) and let z = (z1, . . . , z8) such that

z = DF (x̄+ ur)vr −A†vr.

The formulas for each zj can be found in Appendix A. Using these formulas and Lemma 2.3,
and using (21), for i = 1, . . . , 8, we get upper bounds for ‖(Az)i‖, where ‖(Az)i‖ = |(Az)i|
for i = 1, . . . , 4 and where ‖(Az)i‖ = ‖(Az)i‖ν for i = 5, . . . , 8. For i = 1, . . . , 8, let

Z
(3)
i = 18ε

(
ν +

1

ν

)
(‖Ai,7‖+ 2‖Ai,8‖) r3 (51)

Z
(2)
i = 4

(
ν +

1

ν

)[
(β + ε)(‖Ai,5‖+ ‖Ai,6‖) + ‖Ai,7‖

(
1 +

1

α
+ 6ε‖b̄1‖ν + 3ε|θ̄2|

)
+‖Ai,8‖

(
α+ 1 + 3ε(‖b̄1‖ν + ‖b̄2‖ν) + 3|θ̄2|(ε+

1

2
)

)]
(52)

and let

Z
(1)
i =

2

νm

4∑
j=1

‖Aij‖+
2

νm

8∑
j=5

‖(Aij):,0‖ (53)

+(δi,5 + δi,6)

[(
β + ε

m

)(
|(ā1)m−1|+ |(ā2)m−1|+ |L̄1|

(
ν +

1

ν

))]
+δi,7

[
1

m

(
|(b̄1)m−1|+

1

α
|(b̄2)m−1|+ |θ̄2|

(
ν +

1

ν

)(
1 +

1

α
+ 6ε‖b̄1‖ν

))
+ 2ε

(
ν +

1

ν

) 2m−1∑
k=m

1

2k
|(b̄21)k|νk

]

+δi,8

[
1

m

(
α|(b̄1)m−1|+ |(b̄2)m−1|+ |θ̄2|

(
ν +

1

ν

)(
α+ 1 + 6ε(‖b̄1‖ν + ‖b̄2‖ν)

))
+ 2ε

(
ν +

1

ν

) 2m−1∑
k=m

1

2k

(
|(b̄21)k|+ |(b̄22)k|

)
νk

]

+4|θ̄2|ε
(
ν +

1

ν

)(∥∥|Ai,7|(|b̄1|ωI)F∥∥+
∥∥|Ai,8|(|b̄1|ωI)F∥∥+

∥∥|Ai,8|(|b̄2|ωI)F∥∥) ,
where ‖(Aij):,0‖ = |(Aij)0,0| if i = 1, . . . , 4 and j = 5, . . . , 8, and ‖(Aij):,0‖ is the ν-norm
of the first column of Aij if i, j = 5, . . . , 8, and where ωI = (0, . . . , 0, ν−m, ν−(m+1), . . . ).

Combining the bounds (53), (52) and (51), we obtain that

‖(A
(
DF (x̄+ ur)vr −A†vr

)
)i‖ ≤ Z(3)

i r3 + Z
(2)
i r2 + Z

(1)
i r.

Hence, combining the computation of Section 4.1, the general formula (34), the bounds
(53), (52) and (51), we obtain that the radii polynomials of Definition 2.8, as defined in
equation (30).
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4.3 Results

Consider the nonlinear model Filippov system (48), and fix the parameters to be ε =
5× 10−5, β = 0.83061 and α = 0.1.

We let m = 20 and considered a finite dimensional Galerkin projection F (20) : R84 →
R84, and computed using Newton’s method an approximation x̄ ∈ R84. The graph of the
periodic orbit can be found in Figure 3. Fixing the exponential decay rate to be ν = 1.1,
we used the Y bounds of Section 4.1 and the Z bounds of Section 4.2 to compute the
eight cubic radii polynomials defined by

pj(r)
def
= Z

(3)
j r3 + Z

(2)
j r2 +

(
Z

(1)
j + Z

(0)
j − 1

)
r + Yj , for j = 1, . . . , 8. (54)

Figure 1: The Chebyshev coefficients (in order) of ā1, ā2, b̄1 and b̄2.

The coefficients of the polynomials can be found in Figure 2. Hence, we obtained the
following result.

Figure 2: The eight radii polynomials generated with x̄ given in Figure 1 graph of the

periodic solution of Theorem 4.1. The first column represent the vector
(
Z

(3)
i

)8

i=1
, the

second
(
Z

(2)
i

)8

i=1
, the third

(
Z

(1)
i + Z

(0)
i − 1

)8

i=1
and the fourth (Yi)

8
i=1.

Theorem 4.1. For every r ∈ I =
[
2× 10−13 , 0.008

]
, there exists a unique x̃ ∈ Bx̄(r)

such that F (x̃) = 0, with F given in (50). That corresponds to a crossing periodic orbit
of the Filippov system (48) with period τ ∈ [5.156727575035736 , 5.156727575037338].
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Proof. The follows from an application of Proposition 2.9.

−50 −40 −30 −20 −10 0 10

−15
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0
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u
2

Figure 3: The graph of the periodic solution of Theorem 4.1. The period of the solution
satisfies τ ∈ [5.156727575035736 , 5.156727575037338].

5 The Chua circuit

In this section we consider 
C1u̇1 = (u2 − u1)/R− g(u1)

C2u̇2 = (u1 − u2)/R+ u3

C3u̇3 = −u2 −R0u3

(55)

where g(u1) = Gbu1 + 1
2 (Ga−Gb) (|u1 + 1| − |u1 − 1|) is a piecewise linear function. This

system can be written as a three-part piecewise linear system

u̇ =



g(1)(u)
def
=

−
1

RC1
+Gb

1
RC1

0
1

RC2
− 1
RC2

1
C2

0 − 1
C3

R0

C3


u1

u2

u3

+

Gb −Ga0

0

 , u ∈ R1,

g(2)(u)
def
=

−
1

RC1
+Ga

1
RC1

0
1

RC2
− 1
RC2

1
C2

0 − 1
C3

R0

C3


u1

u2

u3

 , u ∈ R2,

g(3)(u)
def
=

−
1

RC1
+Gb

1
RC1

0
1

RC2
− 1
RC2

1
C2

0 − 1
C3

R0

C3


u1

u2

u3

+

Ga −Gb0

0

 , u ∈ R3,

(56)

where R1 = {u = (u1, u2, u3) : u1 < −1}, R2 = {u = (u1, u2, u3) : |u1| < 1}, and
R3 = {u = (u1, u2, u3) : u1 > 1}. We consider system (56) with the following parameter
values C1 = 1, C2 = 7.65, C3 = 0.06913, R = 0.33065, R0 = 0.00036, Ga = −3.4429, and
Gb = −2.1849.
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For this system we have two switching manifolds Σ(1) and Σ(2) given by u1 = −1 and
u1 = 1, respectively. These manifolds can be parameterized by

P (1) : R2 → R3 :

(
θ1

θ2

)
7→ P (1)

(
θ1

θ2

)
=

−1
θ1

θ2

 ,

P (2) : R2 → R3 :

(
θ1

θ2

)
7→ P (2)

(
θ1

θ2

)
=

 1
θ1

θ2

 .

(57)

The remaining bounds needed for the construction of the radii polynomials are the
bounds for (37), which are given by

‖(Az)i‖ ≤ Z(2)
i r2 + Z

(1)
i r,

where Z
(1)
i and Z

(2)
i are given below. For i = 1, . . . ,Mn we have

Z
(1)
i =

2

νm

Mn∑
j=1

∣∣∣A(m)
ij

∣∣∣+
2

νm

2Mn∑
j=Mn+1

∣∣∣(A(m)
ij

)
0

∣∣∣, (58)

and

Z
(2)
i = 2

(
ν +

1

ν

) 2Mn∑
j=Mn+1

(
3∑
`=1

∣∣∣α(ki,σj)
`

∣∣∣)∥∥∥A(m)
ij

∥∥∥∞
ν
, (59)

where
(
A

(m)
ij

)
0

denotes the first entry of the row vector A
(m)
ij , ki ∈ {1, . . . , n} denotes the

component of the vector field corresponding to the entry Z
(2)
i , and α

(ki,σj)
` is the (`, ki)-

entry of the matrix corresponding to the linear part of the vector field corresponding to
σj in system (56). For i = Mn+ 1, . . . , 2Mn we have

Z
(1)
i =

2

νm

Mn∑
j=1

∥∥∥A(m)
ij

∥∥∥
ν

+
2

νm

2Mn∑
j=Mn+1

∥∥∥∥(A(m)
ij

)
:,0

∥∥∥∥
ν

+ (60)

1

2m

3∑
`=1

∣∣∣(ā(σi)
` )m−1

∣∣∣ ∣∣∣α(ki,σj)
`

∣∣∣+

∣∣L̄i∣∣
2m

(
ν +

1

ν

) 3∑
`=1

∣∣∣α(ki,σj)
`

∣∣∣,
and

Z
(2)
i = 2

(
ν +

1

ν

) 2Mn∑
j=Mn+1

(
3∑
`=1

α
(ki,σj)
`

)∥∥∥A(m)
ij

∥∥∥
B(`1ν ,`

1
ν)
, (61)

where now
(
A

(m)
ij

)
:,0

denotes the first column of the matrix A
(m)
ij .

We applied a similar analysis than the example of Section 4, and we have the follow-
ing theorems. The proofs of these theorems are computer assisted and follow from an
application of Proposition 2.9.

Theorem 5.1. There is a CPO for system (56) which crosses the switching manifold
Σ(2) exactly two times. This orbit was computed with m = 210 and we found

I =
[
1.08692× 10−12, 6.12802× 10−4

]
as the interval of radii given by (31). This orbit is depicted in Figure 4.
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Proof. Follows from Proposition 2.9.

Theorem 5.2. There is a CPO for system (56) which crosses the switching manifold
Σ(2) exactly four times. This orbit was computed with m = 410 and we found

I =
[
1.91205× 10−12, 1.52764× 10−4

]
as the interval of radii given by (31). This orbit is depicted in Figure 4.

Proof. Follows from Proposition 2.9.
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Figure 4: Plots of the two periodic solutions of Theorem 5.1 and Theorem 5.2. The
periods of the solutions satisfies τ1 ∈ [6.623074165809448, 6.625525376117043] and τ2 ∈
[13.08983094730359, 13.09105306378421], where τ1 is the period of the orbit on the left
and τ2 is the period of the orbit on the right.

6 Conclusion and future directions

In this paper, we introduced a rigorous numerical method to compute periodic orbits
of PWS systems using a functional analytic approach based on Chebyshev series. We
presented two applications. The results were quite successful, and we believe that this
provides a new approach to obtain rigorous results about PWS systems.

However, we did not manage to prove existence of all the orbits we wished to prove.
Indeed, system (48) seems to possess a much larger CPO at the same parameter values we
considered. The radii polynomials seemed very sensitive to the dependency on the decay
rate ν, and we failed in this case to verify hypothesis (31) of Proposition 2.9. Increasing
the dimension of the Galerkin projection did not help, as the ν-norm of the quantities
involved in the computation of the coefficients of the radii polynomials seem to blow-up.
A similar situation occurred when we try to prove existence of longer orbits in the Chua’s
circuit system.

Based on the above remark, we believe that using a different function space with less
instability with the computation of the norms could be useful. A weighed `∞ space could
be for instance more numerically stable. In this regard, we believe that the estimates
presented in [23, 24] could be helpful.
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A Formulas for the zj in the model nonlinear problem

z1 = 2
∑
k≥m

(v5)kr, z2 = 2
∑
k≥m

(v6)kr, z3 = 2
∑
k≥m

(v7)kr, z4 = 2
∑
k≥m

(v8)kr.

(z5)n = {v3 [(β + ε)[±(u5)n±1]± (u6)n±1] + u3 [(β + ε)[±(v5)n±1]± (v6)n±1]}n≥1 r
2

+
{
v3 [(β + ε)[±(ā1)n±1 ± (ā2)n±1] + L̄1 [(β + ε)[±(v5)n±1]± (v6)n±1]

}
n>N

r

+{−2
∑

i≥N+1

(−1)i(v5)i}n=0r

(z6)n = {v3 [(β + ε)[±(u6)n±1]∓ (u5)n±1] + u3 [(β + ε)[±(v6)n±1]∓ (v5)n±1]}n≥1 r
2

+
{
v3 [(β + ε)[±(ā2)n±1 ∓ (ā1)n±1] + L̄1 [(β + ε)[±(v6)n±1]∓ (v5)n±1]

}
n>N

r

+{−2
∑

i≥N+1

(−1)i(v6)i}n=0r

(z7)n =

{
v4

[
∓(u7)n±1 +

1

α
[±(u8)n±1] + 2ε[±(b̄1u7)n±1]

]
+ θ̄2 [2ε[±(u7v7)n±1]]

+u4

[
∓(v7)n±1 +

1

α
[±(v8)n±1] + 2ε[±(b̄1v7)n±1]

]}
n≥1

r2

+ {v4 [ε[±(u7u7)n±1]] + u4 [2ε[±(u7v7)n±1]]}n≥1 r
3

+

{
v4

[
∓(b̄1)n±1 +

1

α
[±(b̄2)n±1] + ε[±(b̄1b̄1)n±1]

]
+θ̄2

[
∓(v7)n±1 +

1

α
[±(v8)n±1] + 2ε[±(b̄1v7)n±1]

]}
n>N

r

+{−2
∑

i≥N+1

(−1)i(v7)i}n=0r +
{

2θ̄2ε[±(b̄1v7)In±1]
}

1≤n≤N r

(z8)n =
{
v4

[
α[∓(u7)n±1]∓ (u8)n±1 + 2ε[±(b̄1u7)n±1 ± (b̄2u8)n±1]

]
+ θ̄2 [2ε[±(u7v7)n±1

± (u8v8)n±1] ] + u4

[
α[∓(v7)n±1]∓ (v8)n±1 + 2ε[±(b̄1v7)n±1 ± (b̄2v8)n±1]

]
}n≥1 r

2

+ {v4 [ε[±(u7u7)n±1 ± (u8u8)n±1]] + u4 [2ε[±(u7v7)n±1 ± (u8v8)n±1]]}n≥1 r
3

+
{
v4

[
α[∓(b̄1)n±1]∓ (b̄2)n±1] + ε[±(b̄1b̄1)n±1 ± (b̄2b̄2)n±1]

]
+ θ̄2

[
α[∓(v7)n±1]∓ (v8)n±1 + 2ε[±(b̄1v7)n±1 ± (b̄2v8)n±1]

]
}n>N r

+{−2
∑

i≥N+1

(−1)i(v8)i}n=0r +
{

2θ̄2ε[±(b̄1v7)In±1 ± (b̄2v8)In±1]
}

1≤n≤N r
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