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Abstract

We present an efficient numerical method for computing Fourier-Taylor expansions
of (un)stable manifolds associated with hyperbolic periodic orbits. Three features of
the method are that (1) we obtain accurate representation of the invariant manifold as
well as the dynamics on the manifold, (2) it admits natural a-posteriori error analysis,
and (3) it does not require numerically integrating the vector field. Our approach is
based on the Parameterization Method for invariant manifolds, and studies a certain
partial differential equation which characterizes a chart map of the manifold. The
method requires only that some mild non-resonance conditions hold. The novelty of
the present work is that we exploit the Floquet normal form in order to efficiently
compute the Fourier-Taylor expansion. A number of example computations are given
including manifolds in phase space dimension as high as ten and manifolds which are
two and three dimensional. We also discuss computations of cycle-to-cycle connecting
orbits which exploit these manifolds.

1 Introduction

Equilibria and periodic orbits of nonlinear systems are building blocks for understanding
global dynamics. The basins of attraction, repulsion, and stable/unstable manifolds asso-
ciated with these building blocks provide information about how phase space fits together.
The equilibria and periodic orbits together with their stable/unstable manifolds form an
invariant skeleton which governs transitions from one region of phase space to another, de-
scribes where mixing and stagnation occur, and in some cases establishes the existence and
whereabouts of chaotic motions. Given a particular nonlinear systems it is often difficult
to represent periodic orbits and their invariant manifolds in closed form, hence substantial
effort has gone into developing numerical methods for approximating these objects.

In this paper we present an efficient scheme for computing numerical approximations
of local stable/unstable manifolds associated with hyperbolic periodic orbits of differential
equations. The inputs to the method are a Fourier approximation for the periodic orbit in
addition to a Fourier approximation of the Floquet normal form. The method developed
here applies to hyperbolic periodic orbits under mild non-resonance assumptions.
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In order to illustrate some results which are obtained using our method we include
Figures 1 and 2 in the present introductory section. The figures show the local stable and
unstable invariant manifolds associated with a saddle periodic orbit on the global chaotic
attractor of the Lorenz equations at the classical parameter values.

Figure 1: Local stable (red) and unstable (blue) manifolds associated with a hyperbolic
periodic orbit Γ (green) in the Lorenz attractor. This computation is carried out for the
classical parameter values ρ = 28, s = 10 and β = 8/3. The figure illustrates the images
of parameterizations truncated to Taylor order N = 25 and K = 66 Fourier modes. No
integration is performed in order to globalize the manifold. The stable manifold is not the
graph of a function over the stable linear bundle of Γ. This highlights an important feature
of the Parameterization Method which is that it can follow folds in the manifolds. The
figure also illustrates the stretching and folding of the phase space near Γ.

Our method is based on the Parametrization Method introduced in [45, 46, 47], and
the idea is to study an invariance equation describing the invariant manifold. One plugs
a certain formal series into the invariance equation and solves the problem via a power
matching scheme. As we will show, this procedure leads to a sequence of linear ordinary
differential equations with periodic coefficients which then needs to be solved recursively.

From the theoretical point of view the existence of solutions for these equations is well
understood provided certain resonance conditions are satisfied. Abstract convergence of the
Fourier-Taylor series is discussed in [47, 71]. From a numerical point of view these equations
can be solved to any desired finite order, resulting in an expansion which approximates the
local manifold as well as we wish near the periodic orbit. In order to implement this scheme
we have to numerically solve the recursive system efficiently. We would like to have indicators
which describe how good our approximate solution is near the periodic orbit.

In the present work we exploit the fact that an invertible change of coordinates, which we
define in terms of the Floquet normal form, reduces each of the differential equations in the
recursive scheme to constant coefficient. The transformed equations are solved in Fourier
space, resulting in algebraic recurrence relations. Inverting the coordinate transformation
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gives us the desired coefficients for the parameterization. We also discuss a reliable and easy
to implement a-posteriori error indicator which allows us to estimate the size of the domain
on which our numerical solution provides a good approximation.

Figure 2: Local stable (red) and unstable (blue) manifolds of a hyperbolic periodic orbit Γ
(green) in the Lorenz attractor at the classical values ρ = 28, s = 10 and β = 8/3. This figure
illustrates that the Parameterization Method provides expansions for the local invariant
manifolds which are valid in rather large regions about Γ, and which expose nonlinear
features of the manifolds. For example the local stable manifold shown here is roughly
as wide as the global attractor itself. Both manifolds are parameterized by Fourier-Taylor
expansions and no numerical integration has been employed in order to globalize the results.

Remark 1.1 (Computation of the periodic orbit and its Floquet normal form).
The periodic orbit and its Floquet normal form are computed using Fourier spectral meth-
ods. The Fourier expansions of the orbit and of the normal form are taken as the inputs
for the invariant manifold computations. The use of spectral methods to study periodic
solutions of differential equations has a rich history and we make no attempt to review the
literature on the subject. The interested reader can consult [63, 48, 58, 70, 71, 80]. The
approach used in [71, 80] is especially relevant to the present work. In fact [80] provides rig-
orous bounds associated with spectral Fourier approximations of the Floquet normal form,
which could be used to provide rigorous bounds on the initial data for the present approach.

Remark 1.2 (Validated numerics). Combining the work of [80] with the present work
will lead to methods for obtaining rigorous bounds on the truncation error associated with
our parameterization. See also the discussion in Section 5 of [47]. Once rigorous a-posteriori
bounds on the Fourier-Taylor expansions of the local manifolds are known it is possible to
extend the methods of [62, 59, 60] to obtain computer assisted proof of transverse cycle-to-
cycle and cycle-to-point connections for differential equations. Computer assisted validation
for stable/unstable manifolds for periodic orbits is the topic of paper II.
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The remainder of the paper is organized as follows. In Section 1.1 we provide some brief
remarks on the literature. Section 2 comprises the mathematical core of the paper. Here we
review the Floquet theory as well as the Parameterization Method. We derive the recursive
system of differential equations for the Taylor coefficients of the manifold and solve the
system via the Floquet normal form. Finally we discuss an a-posteriori error indicator for the
method. Section 3 deals with numerical computations. We begin with a detailed discussion
of the computations illustrated in Figures 1 and 2. We also discuss the computation of
some three dimensional stable manifolds for periodic orbits for three dimensional vector
fields (these manifolds provide trapping regions, and generalize to three dimensions the
work of [71, 72]). Finally we discuss the computation of some invariant manifolds for a ten
dimensional differential equation which arises as a truncation of the Kuramoto-Sivashinsky
PDE. The final section of the paper is Section 4 and we present some examples where the
parameterized manifolds are used to compute homoclinic connecting orbits of periodic orbits
via the method of projected boundaries. We look at some examples for the Lorenz system
and also for a ten-dimensional Galerkin projection of the Kuramoto-Sivashinsky PDE.

1.1 Related work

The literature on numerical computation of invariant objects for dynamical systems is vast
and we attempt only a brief overview. Our primary objective is to direct the interested
reader to more complete sources of information.

The central role to be played by invariant manifolds in the qualitative theory of dynamical
systems is already anticipated in the work of Poincaré. (See for example the historical
discussion of this work found in Appendix B of [47]). By the mid 20-th Century results such
as [52] made precise the fact that intersections of stable and unstable manifolds give rise
to complicated dynamics. The advent of the computer as a tool for studying the dynamics
of nonlinear systems led to much interest in numerical methods for computing invariant
manifolds and their intersection, and by the mid 1980s there were already a number of
researchers using the computer to study the intersections which Poincaré remarked were
difficult to draw. See the discussion in [37, 6, 7] and again the historical overview in [47].

Interest in the intersection of stable and unstable manifolds for applications has led to a
great deal of work on numerical methods for globalizing local invariant manifolds. We refer
the reader to the works of [25, 23, 22, 21, 20, 19, 42, 43] as well as to the review article
[18]. The paper [24] treats the globalization of non-orientable stable/unstable manifolds of
periodic orbits in differential equations, a subject which is also treated using the techniques of
the present work. We also refer to [23, 26, 27] for studies which investigate global information
about a dynamical system by studying the embedding of numerically globalized manifolds.

The region of phase space near an equilibria or a periodic orbit can also be studied
via the computation of normal forms, and by evaluating these normal forms on the stable
or unstable subspaces one obtains numerical methods for computing stable and unstable
manifolds. These computations can be made mathematically rigorous and play a critical
role in the computer assisted proof of the existence of the Lorenz attractor [77, 78, 79]. See
also [86] for an application of mathematically rigorous computation for invariant manifolds
in celestial mechanics based on normal forms. Normal forms are also useful for computing
invariant tori, and are used in the numerical study of many problems coming from celestial
mechanics [28, 5, 38, 84, 85].

The Parameterization Method is a general functional analytic framework for studying
invariant manifolds of nonlinear dynamical systems. The method was initially developed
for studying stable/unstable manifolds associated with non-resonant fixed points of maps
and equilibria of vector fields [45, 46, 47]. Chart maps computed using the parameterization
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have the additional property that they conjugate the dynamics on the invariant manifold
to the dynamics of some well understood model system. Hence the method provides insight
into the dynamics on the manifold as well as information about the embedding.

The Parameterization Method has been extended to study invariant circles and invariant
tori for diffeomorphisms and differential equations, and is used to study stable/unstable
manifolds of invariant circles [66, 67, 73, 74, 75]. More recently it has been extended to
simultaneously compute invariant circles together with unknown conjugating dynamics [68,
69]. The Parameterization Method is also used in order to study some invariant manifolds
associated with fixed points having some stable and some unstable directions [57].

Numerical methods for computing invariant manifolds based on the Parameterization
Method can be found in a number of works including [55, 56, 71, 72, 42, 43, 82], along with
the present work. A useful feature is that they admit natural a-posteriori error indicators.
This notion can be used to obtain mathematically rigorous error bounds on the numerical
approximation of the invariant manifolds by computer assisted analysis [62, 59, 60].

Another important application of the Parameterization Method is the development of
KAM results which do not rely on the construction of action angle variables [65, 64]. There
is also work which uses this method to devise KAM schemes for volume preserving dif-
feomorphisms [83, 82]. The Parameterization Method has recently been used in order to
develop KAM type theorems for dissipative systems [76] which are conformally symplectic.

One motivation for studying stable and unstable manifolds, as mentioned above, is the
fact that their intersections give rise to orbits which connect different regions of phase space.
Numerical methods for computing connecting orbits between many geometric objects are
found for example in the work of [6, 7, 29, 31, 32, 34, 35, 36, 44, 49, 50]. Connecting orbits
between invariant manifolds are exploited in many applications. Much work on studying
transfer dynamics in celestial mechanics exploits these tools [2, 3, 4, 8, 9, 10, 11, 12, 33,
40, 41]. The study of invariant manifolds for periodic orbits also plays a role in the study
of biological and chemical oscillations [15, 13, 17, 16, 71, 72]. The study of connecting
orbits can be made mathematically rigorous using computer assisted proofs, and we refer
to [53, 54, 62, 60, 59] for more discussion of this theme.

Remark 1.3 (Computation of a local manifold versus globalization). We remark
that numerical methods based on the Parameterization Method, such as [55, 56, 71, 72]
and the present work, are methods for computing accurate local representations of the
stable/unstable manifolds of invariant objects. In order to understand the global dynamics
of a system it is natural to try to extend the local manifold via numerical integration.

This is a notoriously delicate problem as the flow induced by the vector field will stretch
the boundary of the local manifold in highly nonlinear ways. For example simply numerically
integrating points on the boundary of the unstable manifold for time T > 0 often yields
unsatisfactory results, as the tendency is for the globalized object to grow much faster in
some directions than in others. The numerical methods discussed in [18] provide techniques
for globalizing local representations of stable/unstable manifolds in uniform ways.

An interesting line of research is to develop numerical schemes which apply globalization
methods to the high order local manifold approximations given by the Parameterization
Method. The papers [42, 43] develop some techniques which show that this is a fruitful
line of inquiry. The Parameterization Method can be used to obtain differential geometric
information (such as curvature) about stable/unstable manifolds away form the orbit, and
also provides information about inflowing/outflowing properties of the flow on the boundary
of the local approximation. To the best of our knowledge no attempt has been made to
develop globalization schemes which exploit this information. Globalization of local invariant
manifolds is not considered further in the present work.
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2 Parameterization method for invariant manifolds of
periodic orbits

In this section we review the Floquet theory and as much of the Parameterization Method
as is used in the remainder of the present work. We also discuss the computation of the
parameterization coefficients, the definition of the a-posteriori indicator function, and the
effect the properties of the Floquet normal form have on the parameterization.

2.1 Floquet normal form associated to a periodic orbit

Given a periodic orbit the first order approximation of the stable invariant manifold is
given by the stable normal bundle of the periodic orbit. The normal bundle is obtained
by solving the variational equation around the periodic orbit. To be more precise suppose
γ(t) : [0, τ ] → Rd is a τ -periodic solution for the system ẋ = f(x) and τ is the minimal
period. Denote by Γ

def
= {γ(t) : t ∈ [0, τ ]} the associated periodic orbit. The variational

equation is the system obtained by linearization of the vector field around γ(t), that is{
Φ̇ = Df(γ(t))Φ
Φ(0) = I.

(1)

The solution Φ(τ) of the above system after one period is called the monodromy matrix of
the periodic solution γ(t). The eigenvalues φi of Φ(τ) are the Floquet multipliers of Γ, and
they are the eigenvalues of the differential of the Poincaré map at the fixed point. A Floquet
exponent of Γ is any complex number µi such that φi = eµiτ . The unique real number `i
such that |φi| = e`iτ is called a Lyapunov exponent of Γ. The periodic orbit Γ is hyperbolic if
none of its Floquet multiplier is on the unit circle. The number of Floquet multipliers inside
and outside the complex unit ball determines the dimension of the stable manifold W s(Γ)
and the dimension of the unstable manifold Wu(Γ). The eigenvectors associated to the
Floquet multipliers determine the stable/unstable directions normal to the periodic orbit at
the point γ(0) = γ(τ). Denote by E0

s , E
0
u the space spanned by the eigenvectors associated

with the stable and unstable direction respectively. In order to have a complete bundle
around the orbit, one should repeat the above procedure for any of the reparametrization
γθ(t)

def
= γ(t + θ) yielding the monodromy matrices Φθ(τ) and the stable and unstable

subspaces Eθs , Eθu in γ(θ). Thus one defines the normal bundles of Γ as

Es =
⋃

θ∈[0,τ ]

γ(θ)× Eθs , Eu =
⋃

θ∈[0,T ]

γ(θ)× Eθu .

As mentioned above, the knowledge of the normal bundles is fundamental for the parametriza-
tion of the invariant manifolds but the computation of Es and Eu is not trivial. In terms
of the stable/unstable manifold the essential point is that the normal bundles are the first
order jets, that is the invariant manifolds are tangent to these linear bundles.

A classical method for computing the linear bundles is described in [14]. It is known
that it is enough to compute the tangent directions only once, for instance for θ = 0, and
use the Floquet normal form of the fundamental matrix solution of the variational system
to compute the entire bundles. The real Floquet normal form decomposition of the solution
Φ(t) of system (1), is a 2τ -periodic matrix function Q(t) and a real matrix R such that

Φ(t) = Q(t)eRt. (2)
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The fundamental dynamical feature of the Floquet normal form is the following: if {φi}i de-
note the eigenvalues and {wi}i the eigenvectors of Φ(τ) then the eigenvector wi(θ) associated
to the eigenvalue φi of the matrix Φθ(τ) are simply given by

wi(θ)
def
= Q(θ)wi. (3)

With this notation, we identify wi(0) with wi. The Floquet normal form of Φ(t) provides a
complete parametrization of the stable and unstable normal bundles for Γ. The functionQ(t)
being 2τ -periodic implies that the dynamics of the eigenvectors wi(θ) around the periodic
orbit Γ is also 2τ -periodic. Since the tangent bundle is clearly τ -periodic it means that
wi(0) = ±wi(τ). If 2τ is the minimal period of Q, then wi(0) = −wi(τ) and the bundle
is said to have a twist. This occurs when the bundle is non-orientable. In Remark 2.3, we
relate the orientability of the bundle with the eigenvalues of the matrix B arising in the
complex Floquet normal form, which we now introduce.

Remark 2.1 (Complex Floquet normal form). The complex Floquet normal form
decomposition of the solution Φ(t) of system (1), is a (possibly complex) τ -periodic matrix
function P (t) and a (possibly complex) constant matrix B such that

Φ(t) = P (t)eBt. (4)

Let R be the real matrix from the real Floquet normal form (2) and B be a (possibly
complex) matrix from the complex Floquet normal form (4). The following remark shows
how the eigenvalues of both R and B determine the stability of a hyperbolic periodic orbit.

Remark 2.2 (Stability of the orbit via the Floquet normal forms). Each eigenvalue
of B is a Floquet exponent of Γ. A triple (µi, λi, φi) consisting of an eigenvalue µi of B, an
eigenvalue λi of R and a Floquet multiplier φi are related by the equations φ2

i = (eµiτ )2 =
eλi2τ . While knowledge of λi alone is not enough to identify the Floquet multiplier φi, each
eigenvalue µi of B (a Floquet exponent) yields uniquely a Floquet multiplier via the relation
φi = eµiτ . The matrices B and R have the same eigenvectors which are also eigenvectors of
Φ(τ) and Φ(2τ). A Lyapunov exponent `i satisfies `i = Re(µi) = Re(λi). The dimension of
the stable manifold of Γ, denoted by dim(W s(Γ)) is determined by one of the following three
equivalent numbers: (a) the number of Floquet multipliers inside the unit circle; (b) the
number of Floquet exponents with negative real part; (c) the number of negative Lyapunov
exponents. A similar description holds for the dimension of the unstable manifold of Γ,
denoted by dim(Wu(Γ)). Three conclusions follow from the above discussion.

• The eigenvalues of both R and B determine the stability of Γ.

• The eigenvectors of R, B, Φ(τ) and Φ(2τ) are the same, and they determine the linear
stable and unstable bundles via the relation (3).

• The eigenvalues of B are the Floquet exponents and they determine the Floquet
multipliers. This is not the case for the eigenvalues of R.

The orientability of the linear bundles is obtained by the Floquet multipliers: the sign
of the real part of the Floquet multipliers tells us wether the orientation of the associated
eigenvector is flipped by the Poincaré map or not. If the real part is positive then the
associated eigenvector is not flipped while if the real part is negative then the eigenvector
is flipped. If the orientation of the eigenvector is flipped then the linear bundle is a Mobius
strip. The presence of complex conjugate multipliers implies that the dynamics in the linear
bundle is rotational.

The last conclusion of Remark 2.2 states that the Floquet multipliers are determined
by the eigenvalues of B (the Floquet exponents of Γ) and not by the eigenvalues of R. We
therefore analyze the orientability of the bundles depending on the eigenvalues of B.
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Remark 2.3 (Orientation of the bundle based on the eigenvalues of B). Let µ an
eigenvalue of B together with an associated eigenvector w. We consider three cases.

• (µ ∈ R). The associated Floquet multiplier is real and given by φ = eµτ > 0. Therefore
the associated eigenvector w(θ) = Q(θ)w is not flipped over the interval [0, τ ].

• (µ = ν+ iπ
τ ∈ C, for a ν ∈ R). The associated Floquet multiplier is φ = eµτ = eντeiπ =

−eντ which is real negative and the orientation of the eigenvector w(θ) = Q(θ)w is
flipped over [0, τ ]. The linear bundle is a Mobius strip. The presence of the twist
cannot be inferred from the eigenvalues of R, but rather from the eigenvalues of B.
We show in Remark 2.16 how the parameterization handles non-orientability.

• (µ = α ± iβ ∈ C not of the form 2.). In this case, the associated Floquet multiplier
is complex and the dynamics in the linear bundle is rotational. We will not cover this
case, and for more details, we refer to [14].

2.2 Invariance equation

In this section we study an equation which characterizes chart maps for the local invariant
stable/unstable manifold, denoted by W s

loc(Γ) and Wu
loc(Γ) respectively. The chart maps

studied here have the additional property that they conjugate the dynamics on the manifold
to a certain linear dynamical system. Throughout this section, we discuss only the stable
manifold. The unstable manifold is obtained by reversing time.

Let f : Rd → Rd be a real analytic vector field and suppose γ is a τ -periodic solution
of ẋ = f(x) and let Γ = {γ(t) : t ∈ [0, τ ]} the corresponding periodic orbit. Denote by
T2τ = [0, 2τ ]/{0,2τ} the circle of length 2τ . Let ϕ : Rd×R+ → Rd denote the flow generated
by f . We assume without loss of generality that ϕ is globally well-defined. Suppose that Γ
is hyperbolic and consider Φ(t) = Q(t)eRt the real Floquet normal form of the fundamental
matrix solution of the variational system (1). Assume that the matrix R is diagonalizable.
Let λ1, . . . , λdm ∈ C denote the stable eigenvalues of the matrix R, that is Re(λi) < 0 for
all i = 1, . . . , dm, and let w1, . . . , wdm the associated linearly independent eigenvectors. By
invertibility of Q(θ) for all θ, we have that the associated eigenvectors wi(θ) = Q(θ)wi are
linearly independent for all θ. The stable normal bundle of Γ is then parameterized by

P1(θ, σ) = γ(θ) +

dm∑
i=1

wi(θ)σi, θ ∈ T2τ and σ = (σ1, . . . , σdm) ∈ Rdm ,

that is Es = image (P1). One goal now is to find a nonlinear correction to P1 which results
in a parameterization of the local stable manifold. In fact we obtain something stronger.

Suppose for the moment that the eigenvalues of R are real and distinct with λdm < . . . <
λ1 < 0. The casesof complex conjugates eigenvalues is similar and discussed in Remark 2.15.
The case of repeated eigenvalues is not discussed in the present work, however the reader
interested in degeneracies can refer to paper [45]. We consider the vector field

θ̇ = 1, σ̇ = Λ · σ, Λ
def
=

 λ1

. . .

λdm

 . (5)

Let

Bν
def
=

{
σ ∈ Rdm | max

1≤i≤dm
|σi| ≤ ν

}
.
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We refer to the cylinder C2τ,ν
def
= T2τ × Bν as the parameter space for the local invariant

manifold. Note that the σ = 0 set is an invariant circle for (5). Also note that the vector
field given by (5) is inflowing on the parameter cylinder, that is for any (θ, σ) ∈ ∂ C2τ,ν we
have that the vector (1,Λσ) points inward toward the center of the cylinder. (This is the
only place where we exploit that the eigenvalues are real distinct).

We have that the flow on the cylinder is given explicitly by the formula

L(θ, σ, t)
def
=

[
θ + t
eΛtσ

]
, (6)

and this flow clearly maps C2τ,ν into its own interior for any t > 0, with the circle σ = 0
a periodic orbit of period 2τ . We take the flow L as the “model dynamics” on the stable
manifold and look for a chart map which conjugates the nonlinear dynamics on W s

loc(Γ) to
the linear dynamics on C2τ,ν given by L. More precisely we have the following definition.

Definition 2.4 (Conjugating chart map for the local stable manifold). We say that
the function P : T2τ × Bν → Rd is a conjugating chart map for a local stable manifold of
the periodic orbit Γ if

1. P is a continuous, surjective mapping of the cylinder C2τ,ν which is real analytic on
the interior of the cylinder.

2. P(θ, 0) = γ(θ),

3. The conjugacy relation

ϕ [P(θ, σ), t] = P
(
θ + t, eΛtσ

)
, (7)

is satisfied for all θ ∈ T2τ , σ ∈ Bν , and t ≥ 0.

Remark 2.5. It might be more correct to call P a covering map for the manifold rather than
a chart map, as the model space is a cylinder rather than a Euclidean space. However in
the present work we apply the term “chart” somewhat liberally and trust that no confusion
ensues.

The definition asks that P conjugates the flow generated by the vector field f to the
linear flow generated by (6). If P is a conjugating chart map then for any (θ, σ) ∈ C2τ,ν ,

lim
t→∞

‖ϕ[P(θ, σ), t]− γ(θ + t)‖ = lim
t→∞

∥∥P (θ + t, eΛtσ
)
− γ(θ + t)

∥∥
= lim

t→∞
‖P (θ + t, 0)− γ(θ + t)‖

= 0 (8)

by continuity of P, the conjugacy relation (7) and the contractiveness of eΛt. Hence, the orbit
of a point in the image of P accumulates to the periodic orbit Γ with matching asymptotic
phase θ. P is one-to-one and its image is a dm dimensional manifold (immersed cylinder).
Since image(P) is an immersed cylinder containing Γ in its interior and having that each of
its points accumulates on Γ under the forward flow, image(P) is a local stable manifold for
Γ.

The following provides sufficient conditions for the existence of a conjugating chart map.

Theorem 2.6 (Invariance equation for a conjugating chart map). Suppose that
P : T2τ ×Bν → Rd is a continuous function such that

P(θ, 0) = γ(θ), for all θ ∈ T2τ , (9)
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P is differentiable on the circle σ = 0 with

∂

∂σi
P(θ, 0) = wi(θ), for each 1 ≤ i ≤ dm, (10)

and P(θ, σ) solves the partial differential equation

∂

∂θ
P(θ, σ) +

dm∑
i=1

λiσi
∂

∂σi
P(θ, σ) = f(P(θ, σ)), (11)

on the interior of C2τ,ν . Then P is a conjugating chart map for Γ in the sense of Definition
2.4. It follows from (8) that image(P) is a local stable manifold for Γ.

Proof. To see that P is a conjugating chart map choose (θ0, σ0) ∈ C2τ,ν , recall (6) and define
the curve x : [0,∞)→ Rd by

x(t) = P(θ0 + t, eΛtσ0) = P(L(θ0, σ0, t)).

Denote σ0 = (σ0
1 , . . . , σ

0
dm

) ∈ Bν . Note that x(t) ∈ image(P) for all t ≥ 0, as L is contracting
on C2τ,ν . Next we show that x(t) solves the initial value problem

x′(t) = f(x(t)), x(0) = P(θ0, σ0), (12)

in forward time. To see this note that

x′(t) =
d

dt
P(θ0 + t, eΛtσ0)

= Dθ,σP(θ0 + t, eΛtσ0)

[
1

eΛtΛσ0

]
=

∂

∂θ
P(θ0 + t, eΛtσ0) +

dm∑
i=1

∂

∂σi
P(θ0 + t, eΛtσ0)λie

λitσ0
i .

Now define the new variables σ̂i = eλitσ0
i for 1 ≤ i ≤ dm and θ̂ = (θ0 + t)mod 2τ . Then

for any t > 0 we have that (θ̂, σ̂) ∈ interior (C2τ,ν). Since (11) holds on the interior by
hypothesis we now have that

∂

∂θ
P(θ0 + t, eΛtσ0) +

dm∑
i=1

∂

∂σi
P(θ0 + t, eΛtσ0)λie

λitσ0
i =

∂

∂θ
P(θ̂, σ̂) +

dm∑
i=1

∂

∂σi
P(θ̂, σ̂)λiσ̂i

= f
(
P(θ̂, σ̂)

)
.

But P(θ̂, σ̂) = x(t), so this shows that x′(t) = f(x(t)) for all t > 0 as desired. Since
x(0) = P (θ0, σ0) by definition we indeed have that P (θ0 + t, eΛtσ0) solves (12). But (θ0, σ0)
was arbitrary in C2τ,ν , so this shows that

x(t) = P(θ + t, eΛtσ) = ϕ [P(θ, σ), t] ,

and P satisfies (7) on C2τ,ν . Then P satisfies condition 3 of Definition 2.4. We now establish
parts 1 and 2 of Definition 2.4. Since f is real analytic and P solves the differential equation
(11), we have that P is real analytic in the interior of C2τ,ν . From (10) we have that

DσP(θ, 0) = [w1(θ)| . . . |wdm(θ)].

10



This matrix has full rank because the eigenvectors are linearly independent over T2τ . Since P
is real analytic it is certainly continuously differentiable, and the continuity of the derivative
implies that the differential is full rank in a neighborhood of γ, that is there is an r > 0
so that ‖σ‖ ≤ r implies that DσP(θ, σ) is full rank. If follows from the implicit function
theorem that P is injective for ‖σ‖ < r.

Now consider (θ1, σ1), (θ2, σ2) ∈ C2τ,ν and suppose that

P(θ1, σ1) = P(θ2, σ2). (13)

Since eΛt → 0 as t→∞ there exists t̂ > 0 such that∥∥∥eΛt̂σ1

∥∥∥ ,∥∥∥eΛt̂σ2

∥∥∥ < r. (14)

Since P satisfies the conjugacy equation (7) we have that

P
(
θ1 + t̂, eΛt̂σ1

)
= ϕ

(
P(θ1, σ1), t̂

)
, and P

(
θ2 + t̂, eΛt̂σ2

)
= ϕ

(
P(θ2, σ2), t̂

)
.

From (13) (as well as the uniqueness of trajectories under ϕ) it follows that

P
(
θ1 + t̂, eΛt̂σ1

)
= P

(
θ2 + t̂, eΛt̂σ2

)
.

It follows from the conditions of (14) and the fact that P is injective on T2τ ×Br that(
θ1 + t̂, eΛt̂σ1

)
=
(
θ2 + t̂, eΛt̂σ2

)
.

Since the linear flow map is invertible at t̂ we have that (θ1, σ1) = (θ2, σ2) and P is an
injection of C2τ,ν into Rd. Then P is a conjugating chart map for the stable manifold of γ
as desired.

Definition 2.7. We call equation (11) from Theorem 2.6 the invariance equation.

Remark 2.8. The converse of Theorem 2.6 holds. Indeed if P satisfies (9), (10), and
in addition is a differentiable conjugating chart map in the sense of Definition 2.4, then
P is a solution of the partial differential equation (11). To see this one differentiates the
conjugacy equation (7) with respect to time, and takes the limit as t → 0 in the resulting
expression to recover (11). Then (11) subject to the first order constraints (9) and (10)
constitute necessary and sufficient conditions for the existence of a conjugating chart map
parameterizing a local stable manifold for Γ. The length of the eigenvectors is unspecified
throughout this discussion, and it follows that the conjugating chart map P is unique up to
the choice of this scaling.

The preceding discussion shows that in order to study the local invariant manifolds of
Γ it is enough to study (11), appropriately constrained. The following provides a neces-
sary condition for the existence of solutions of equation (11), in terms of certain algebraic
constraints between the stable eigenvalues.

Definition 2.9 (Resonant eigenvalues). We say that the stable eigenvalues λ1, . . . , λdm
of R are resonant at order α ∈ Ndm if there is a 1 ≤ i ≤ dm so that

α1λ1 + . . .+ αdmλdm − λi = 0. (15)

Lemma 2.10 (Divergence Theorem). If there is a resonance in the sense of Definition
2.9 at some order |α| = α1 + · · ·+αdm ≥ 2 then the invariance equation (11) has no solution.
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The proof follows from the computations in Section 2.4. In particular see Remark 2.13
and also [47].

So, Lemma 2.10 provides conditions under which we fail to have solutions of the in-
variance equation (11). Also observe that there can be no resonances of order α ∈ Ndm
when

2 ≤ |α| ≤
⌈

Re(λdm)

Re(λ1)

⌉
,

that is α is eventually large enough that (15) cannot hold as Re(λ1), . . . ,Re(λdm) have the
same sign. Then in fact there are only a finite number of possible resonances, and this
finite number is determined by the “spectral gap” (ratio of the largest and smallest real
part taken over the set of stable eigenvalues). For a more thorough discussion of resonances
see [45, 46, 47, 59, 62].

2.3 Homological equations

In this section we develop a formal series solution for equation (11). Explicitly we assume
a series solution of the form

P(θ, σ) =

∞∑
|α|=0

aα(θ)σα =

∞∑
|α|=0

∑
k∈Z

aα,ke
2πi
2τ kθσα. (16)

Here α ∈ Ndm is a dm-dimensional multi-index, aα,k ∈ Rd for all α, k, |α| = α1 + · · ·+ αdm
and σα = σα1

1 · · ·σ
αdm
dm

. We refer to expansion (16) as a Fourier-Taylor series. We substitute
(16) into the invariance equation (11) and expand the vector field f(P(θ, σ)) as its Taylor
series with respect to the variable σ evaluated at σ = 0, that is

f(P(θ, σ)) = f(P(θ, 0)) +

dm∑
i=1

∂

∂σi
f(P(θ, 0))σi +

∑
|α|≥2

1

α!
f (α)(P(θ, 0))σα,

where f (α)(P(θ, 0)) is the derivative ∂|α|

∂σα f(P(θ, σ)) evaluated at σ = 0. Then we collect the
terms with the same power of σ and we solve the resulting equations. Since

∂

∂θ
P(θ, σ) =

∑
|α|≥0

( d
dθ
aα(θ)

)
σα,

∂

∂σi
P(θ, σ) =

∑
|α|>0

aααiσ
ασ−1

i ,

we end up with the following sequence of differential equations.

|α| = 0: The only multi-index with zero length is 0 = (0, . . . , 0). The term in σ0 gives

d

dθ
a0(θ) = f(a0(θ))

whose solution is given by the periodic orbits itself, hence a0(θ) = γ(θ).

|α| = 1: The multi-indices of length 1 are ei = (0, . . . , 1, . . . , 0) with 1 in the i-th position. Since
∂
∂σi

f(P(θ, 0))σi = Df(a0(θ))aei(θ), equating the terms in σei for each i = 1, . . . , dm
yields 

d

dθ
aei(θ) + λiaei(θ) = Df(a0(θ))aei(θ)

λi ∈ R, aei(θ) 2τ−periodic.

(17)
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|α| ≥ 2: Once a0(θ) and aei(θ) are given, we obtain equations of the form

daα(θ)

dθ
+ (α1λ1 + . . .+ αdmλdm)aα(θ) = Df(a0(θ))aα(θ) + Rα(θ), (18)

where Rα involves only lower order terms. Equation (18) is referred to as the homological
equation for the coefficient aα(θ) with |α| ≥ 2. In case the nonlinearities in f(x) are poly-
nomials, the computation of the remaining terms Rα can be done easily by means of the
Cauchy products. Indeed the polynomials coincide with the Taylor polynomials.

We now show that all solutions to (17) are given by (λi, aei(θ)) = (λi, Q(θ)wi) where
(λi, wi) is any eigenpair of R appearing in (2). Given a matrix A, denote by Σ(A) the set
of all (λ, v) such that Av = λv.

Proposition 2.11. Let Φ(t) = Q(t)eRt be the real Floquet normal form decomposition of
the fundamental matrix solution of system (1). Then all the solutions (λi, aei(θ)) of (17)
are given by (λi, Q(θ)wi) with (λi, wi) ∈ Σ(R).

Proof. For any λ, the function Φλ(θ) = Φ(θ)e−λθ is the fundamental matrix solution of
ẋ = Df(γ(t))x− λx. Indeed

Φ̇λ(θ) = Φ̇e−λθ − λΦ(θ)e−λθ = Df(γ(θ))Φ(θ)e−λθ − λΦ(θ)e−λθ = Df(γ(θ))Φλ(θ)− λΦλ(θ)

and Φλ(0) = I. Let (λi, wi) ∈ Σ(R) and let aei(θ)
def
= Φλi(θ)wi. Thus (λi, aei(θ)) is a

solution of (17). Moreover, since (λi, wi) is an eigenpair of R, it follows that

aei(θ) = Φ(θ)e−λiθwi = e−λiθQ(θ)eRθwi = e−λiθQ(θ)eλiθwi = Q(θ)wi

proving that aei(θ) is 2τ -periodic. We conclude that (λi, Q(θ)wi) is a solution of (17).
On the contrary, suppose (λi, aei(θ)) is a solution of problem (17). Thus

aei(θ) = Φλi(θ)aei(0) = Φ(θ)e−λiθaei(0).

Since aei(θ) is 2τ -periodic, aei(0) = aei(2τ) = Φ(2τ)e−λi2τaei(0), that is (e2λiτ , aei(0)) ∈
Σ(Φ(2τ)). From the real Floquet normal form decomposition (2), we have that Φ(2τ) =
Q(2τ)e2τR = e2τR. Moreover, the spectrum of R is in one-to-one correspondence with the
spectrum of Φ(2τ) since (λ,w) ∈ Σ(R) if and only if (e2τλ, w) ∈ Σ(Φ(2τ)). We conclude
that aei(0) = wi and (λi, wi) ∈ Σ(R). From this it follows that aei(θ) = Q(θ)wi.

The existence of 2τ -periodic solutions of (18) is discussed in the following result whose proof
can be found in [47].

Theorem 2.12. If e2ντ is not an eigenvalue of Φ(2τ) then, for any 2τ -periodic function
Rα, there exists a 2τ -periodic solution aα of ( ddθ −Df(a0) + ν)aα = Rα.

Taking ν = α1λ1 + . . .+ αdmλdm , if e2(α1λ1+...+αdmλdm )τ is not an eigenvalue of Φ(2τ),
there exist 2τ -periodic functions aα(θ) solutions of (18). That comes from the previous
theorem and from the fact that the remaining term Rα is 2τ -periodic.

2.4 Efficient solution of the homological equations: reducibility via
the Floquet normal form

The situation encountered in Section 2.3, namely where one is trying to solve an invariance
equation for a conjugating map and finds that the problem reduces to solving infinitely many
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linear equations, is not uncommon. It arises frequently in the study of normal forms (e.g. see
[37, 77]). As often happens in normal form theory we find that solving the resulting system
of infinitely many linear differential equations is nontrivial, and seek further reduction.

For example when studying conjugating maps and normal forms for invariant objects
in Hamiltonian dynamical systems it is sometimes possible to exploit the preservation of
geometric structure in order to obtain a change of coordinates which reduces the homological
equations to constant coefficient (or perhaps to constant coefficient plus a quadratically small
error). We refer to [64] for a more complete elaboration on this theme. The interested reader
can also refer to [65] for a discussion of computing invariant tori in Hamiltonian systems
without the use of action angle variables. [82, 83] use these ideas to compute invariant
tori in volume preserving systems. See [57] for an example involving invariant manifolds for
fixed points having some stable and some unstable directions in both symplectic and volume
preserving systems. Another recent advance in this direction has been the extension of KAM
theory to certain dissipative systems which preserve a conformally symplectic structure [76].

The point of these examples is that the choice of an appropriate coordinate system
greatly simplifies the study and computation of invariant objects in dynamical systems
theory. In this section we observe that reducibility for the problem of parameterizing the
stable/unstable manifold of a non-resonant hyperbolic periodic orbit is achieved using a
coordinate change given by the Floquet normal form (2). We will see that the homological
equations (18) are reduced to diagonal constant coefficient in Fourier space, and this leads
to particularly simple equations for the Fourier-Taylor coefficients for the desired conjugat-
ing chart map. One may contrast this to the approach of [71, 72] where the homological
equations (18) are solved for planar systems without using the Floquet normal form.

In order to formalize this, recall that Q from (2) is a solution of the differential equation

Q′(θ) +Q(θ)R = Df(γ(θ))Q(θ) (19)

with R a real-valued matrix. We assume that R is diagonalizable, that is that there exists
M such that

R = MΣM−1,

with

Σ =

 Λs 0 0
0 Λu 0
0 0 0

 .

Here Λs is the dm × dm diagonal matrix of eigenvalues with negative real parts and Λu
is the diagonal matrix of eigenvalues with positive real parts. As before w1, . . . , wdm are
the linearly independent eigenvectors associated with the stable eigenvalues. Again the
functions wj(θ) = Q(θ)wj parameterize the stable invariant normal bundle.

We will now see that the homological equation (18) is reduced to constant coefficient
by the Floquet normal form. For |α| ≥ 2 define the functions wα(θ) : T2τ → Rd by the
coordinate transformation

aα(θ) = Q(θ)wα(θ).

Taking into account (19), the homological equation (18) is transformed into the constant
coefficient ordinary differential equation

d

dθ
wα(θ) + ((α1λ1 + . . .+ αdmλdm)I −R)wα(θ) = Q−1(θ)Rα(θ). (20)

We now expand wα as

wα(θ) =
∑
k∈Z

wα,ke
2πik
2τ θ, (wα,k ∈ Cd)
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and
Q−1(θ)Rα(θ) =

∑
k∈Z

Aα,ke
2πik
2τ θ, (Aα,k ∈ Cd).

We make a final coordinate transformation and define vα,k by

wα,k = Mvα,k.

Then equation (20) gives

vα,k =

[(
2πik

2τ
+ α1λ1 + . . .+ αdmλdm

)
I − Σ

]−1

M−1Aα,k.

But this is diagonalized and solving component-wise we obtain

v
(j)
α,k =

1
2πik
2τ + α1λ1 + . . .+ αdmλdm − λj

(M−1Aα,k)(j), (21)

for 1 ≤ j ≤ dm. Working backward from vα(θ) we obtain the desired solution aα(θ) by

aα(θ) = Q(θ)Mvα(θ). (22)

Remark 2.13 (Resonances revisited). The Fourier-Taylor coefficients v
(j)
α,k defined by

(21) are formally well defined to all orders precisely when there are no resonances in the
sense of Definition 2.9. This fact establishes Lemma 2.10.

Remark 2.14 (Efficient numerical computations). If the Fourier coefficients for both
the periodic solution γ(θ) and Q(θ) are known, then the recurrence equations given in (21)
combined with the coordinate transformation given by (22) provide a recipe for computing
the conjugating chart map P(θ, σ) to any desired finite order. This is how we obtain the
numerical approximations used in Sections 3 and 4. To compute the Floquet normal form,
we can use the theory developed in [80]. This assumes that the form of the functions Rα(θ)
are known explicitly. In Section 2.5 we illustrate this computation for the Lorenz system.

Remark 2.15 (The case of complex conjugates eigenvalues of R). Assume that
λ1,2 = a± ib are eigenvalues of the matrix R coming from the Floquet normal form (2). For
sake of simplicity of the presentation, assume that dm = 2. In this case we still conjugate
to the flow given by (7), however we do not obtain real results when we flow by

eΛtσ = exp

([
a+ ib 0

0 a− ib

]
t

)[
σ1

σ2

]
.

Because of this the coefficients of the parameterization P will not be real either. Note
however that the linear flow still takes complex conjugate arguments to complex conjugate
results. This property is then inherited by the parameterization coefficients and is then
exploited to obtain a real result. Making the usual complex conjugate variables σ1 = t+ is
and σ2 = t−is we observe, by considering the recurrence equations (21), that the coefficients
aα1,α2

for the parameterization have that property that aα1,α2
(θ) = aα2,α1

(θ). Then, as long
as we have chosen complex conjugate eigenvectors, the complex conjugate change of variables
are precisely what is needed in order to obtain a real valued function, that is

P(θ, s+ it, s− it) ∈ Rd

for all θ, s, t. This is the same idea used in [55, 56, 60] in order to parameterize real invariant
manifolds associated with fixed points when there are complex conjugate eigenvalues. See
the works just cited for more thorough discussion. The case dm > 2 is similar.
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Remark 2.16 (The parameterization and non-orientability of the manifold). Note
that even if the stable/unstable manifold is non-orientable, the τ -periodic orbit Γ is a τ -
periodic geometrical object. Then the 2τ -periodic parametrization P(θ, σ) should cover
twice the same manifold. In general, we then have two possibilities:

P(θ + τ, σ) = P(θ, σ) or P(θ + τ, σ) = P(θ,−σ).

The first possibility is when Q(t) is τ -periodic in which case the normal bundle is orientable.
If the normal bundle is non-orientable, then we are in the second case. More precisely, the
relation P(θ + τ, σ) = P(θ,−σ) implies that∑

n≥0

an(θ + τ)σn =
∑
n≥0

an(θ)(−σ)n.

Therefore, an(θ + τ) = an(θ) for n even and an(θ + τ) = −an(θ) for n odd, that is an is
τ -periodic for n even and an is 2τ -periodic but odd in θ = τ for odd n, a relation that
a0 = γ and a1 satisfy. In practice our computations result in a sequence of an with exactly
the above properties. Thus we can restrict to positive σ and θ ∈ [0, 2τ ] or σ ∈ [−δ, δ] and
θ ∈ [0, τ ] in order to parameterize the complete manifold.

2.5 Explicit solution of the homological equations in Lorenz

The full computation of the homological equations, including the derivation of the precise
form of the right-hand-sides Rα(θ) is best illustrated in the context of specific examples.
To this end, recall that the Lorenz equations are given by the quadratic vector field

f(x, y, z) =

 −sx+ sy
ρx− y − xz
−βz + xy

 , (s, β, ρ ∈ R). (23)

We expand the τ -periodic solution γ by considering it as a 2τ -periodic function, and consider
the Fourier expansion of the 2τ -periodic matrix Q from (2), that is

γ(θ) =
∑
k∈Z

γke
2πik
2τ θ and Q(θ) =

∑
k∈Z

Qke
2πik
2τ θ.

Choose (λ,w) ∈ Σ(R), λ 6= 0. In this section, we only consider orbits with one dimensional
stable and unstable manifolds. Hence, for each manifold, we seek a function of the form

P(θ, σ) =

∞∑
α=0

aα(θ)σα =

∞∑
α=0

∑
k∈Z

aα,ke
2πik
2τ θσn. (24)

Denote aα = (a
(1)
α , a

(2)
α , a

(3)
α )T ∈ R3 and P = (P1,P2,P3)T . Then we require that P(θ, 0) =

γ(θ) and ∂
∂θP(θ, 0) = w(θ) and take the Fourier-Taylor coefficients (of Taylor order 0 and

1) to be
a0,k = γk and a1,k = Qkw,

for all k ∈ Z. This determines the parameterization to first order. In order to determine the
higher order coefficients we plug the unknown expansion given by (24) into the invariance
equation (11) and obtain

∂

∂θ
P(θ, σ) + λσ

∂

∂σ
P(θ, σ) =

 −sP1(θ, σ) + sP2(θ, σ)
ρP1(θ, σ)− P2(θ, σ)− (P1 · P3)(θ, σ)
−βP3(θ, σ) + (P1 · P2)(θ, σ)

 , (25)
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where

(P1 · P2)(θ, σ) =

∞∑
α=0

p(1,2)
α (θ)σα and (P1 · P3)(θ, σ) =

∞∑
α=0

p(1,3)
α (θ)σα,

with

p(1,2)
α (θ)

def
=

∞∑
α1+α2=α
αi≥0

a(1)
α1

(θ)a(2)
α2

(θ) and p(1,3)
α (θ)

def
=

∞∑
α1+α2=α
αi≥0

a(1)
α1

(θ)a(3)
α2

(θ).

It is convenient to separate in p
(i,j)
α the highest order terms in α, that is

p(1,2)
α (θ) = a(1)

α (θ)a
(2)
0 (θ) + a

(1)
0 (θ)a(2)

α (θ) + p̃(1,2)
α (θ)

p(1,3)
α (θ) = a(1)

α (θ)a
(3)
0 (θ) + a

(1)
0 (θ)a(3)

α (θ) + p̃(1,3)
α (θ),

with

p̃(1,2)
α (θ)

def
=

∞∑
α1+α2=α
αi>0

a(1)
α1

(θ)a(2)
α2

(θ) and p̃(1,3)
α (θ)

def
=

∞∑
α1+α2=α
αi>0

a(1)
α1

(θ)a(3)
α2

(θ).

The reason of the last definition stands on the fact that, when matching like powers of σ in
the right term of (25), the coefficient of σα is given by −sa(1)

α + sa
(2)
α

ρa
(1)
α − a(2)

α − p(1,3)
α

−βa(3)
α + p

(1,2)
α

 = Df(a0)aα + Rα(θ)
def
= Df(a0)aα +

 0

−p̃(1,3)
α (θ)

p̃
(1,2)
α (θ)

 ,

where the function Rα(θ) involves only lower order terms. Therefore, matching the coeffi-
cients of σα in (25), it follows that the functions aα(θ) satisfy the differential equations

d

dθ
aα(θ) + λαaα(θ)−Df(γ(θ))aα(θ) = Rα(θ). (26)

Here we have used the fact that a0(θ) = γ(θ) as well as the analytic expression forDf(x, y, z).
Equation (26) is referred to as the homological equation for the coefficients of P. Now that
Rα(θ) is known, the parameterization coefficients are computed directly using (21).

Remark 2.17 (Non-resonance and numerics for Lorenz).
• In the present situation the denominator in (21) is one of the following

2πik

2τ
+ αλ− λs,

2πik

2τ
+ αλ− λu, or

2πik

2τ
+ αλ,

and none of these are ever zero, due to the assumption that Γ is hyperbolic (one stable and
one unstable eigenvalue) as well as the condition that α ≥ 2. Then the solution given by
(21) is formally well-defined to all orders. In fact this is always true of a two dimensional
stable/unstable manifold of a periodic orbit associated with a single eigendirection: there
can be no resonances in this case. This was already shown in [47] without the use of the
Floquet theory and exploited for numerical purposes in [71, 72].

17



•While (21) gives an explicit representation of the components of the k-th Fourier coefficient
of the α-th solution function vα(θ) for all k and α, the coefficients Aα,k are convolution
coefficients depending on the coefficients of Rα and Q−1. Then in fact

Aα,k =
∑
`∈Z

(Rα)k−`(Q
−1)`,

and the coefficients of Rα are themselves convolutions involving lower order terms of P.
Since we are dealing with Fourier series all of the convolution sums are infinite series.
However in practice we only compute finitely many Fourier coefficients for γ, Q and hence
for Rα. For example in the Lorenz computations discussed above we have for α = 2

R2(θ) =

 0

−a(1)
1 (θ)a

(3)
1 (θ)

a
(1)
1 (θ)a

(2)
1 (θ)

 =

 0
−w(1)(θ)w(3)(θ)
w(1)(θ)w(2)(θ)

 .

But w(θ) = Q(θ)w =
(
w(1)(θ), w(2)(θ), w(3)(θ)

)
is only known numerically up to K modes,

hence R2(θ) is only computed approximately. Similar comments apply for all α ≥ 2, so
that all Aα,k are only known up to a finite number of terms and we only know the functions
vα(θ) approximately. This makes the a-posteriori analysis discussed in Section 2.6 especially
valuable when assessing the quality of the resulting approximation.
• In light of the previous remark we must ask: is the scheme described here at all reasonable?
The answer will depend ultimately on the regularity of the vector field f . If f is analytic
then γ, Q, and ultimately P are analytic functions and hence have Fourier-Taylor coefficients
which decay exponentially. In this case it is reasonable to expect that some finite number of
modes represent the function very well, and that in each convolution term the contributions
of higher order modes is not very important. On the other hand if f is less regular then this
may not be the case and the procedure may fail. These issues are the subject of paper II.
In the present work we focus on analytic vector fields.

2.6 A-posteriori error evaluation

Given a Taylor truncation order N ∈ N and a Fourier truncation order K ∈ N, suppose that

PN,K(θ, σ)
def
=

N∑
|α|=0

K∑
k=−K

aα,ke
2πi
2τ kθσα,

is a candidate solution of equation (1). Here the coefficients aα,k may be computed via
the techniques of Section 2.4, or by some other method all together (such as in [71, 72]).
The natural question is now “how good is the approximate solution PN,K?” In order to
formalize this question we have to decide on the domain of PN,K .
The Question of Domain: While the global stable/unstable manifold of the periodic orbit
Γ is a uniquely defined invariant object, there are many local invariant manifolds. In fact
if P is a chart map for W s,u

loc (Γ) and [0, 2τ ] × U is the domain of P, then P′ defined on
[0, 2τ ] × U ′ is a chart map (for a smaller local stable/unstable manifolds) for any U ′ ⊂ U
containing the origin. Then when we say that PN,K approximates the parameterization map
P it is essential that we specify the domain on which the comparison is being made.
The issue is complicated by the fact that PN,K is a trigonometric polynomial, hence the
candidate solution is entire. Yet we do not expect that PN,K(θ, σ) is a good approximate
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solution for all ‖σ‖ > 0. Rather we expect that there is a ν > 0 so that the approximation
is good in the range 0 < ‖σ‖ ≤ ν.

We employ the following norm when discussing the Fourier-Taylor series. It is essentially
a weighted “little ell one” norm for the space of all sequences of Fourier-Taylor coefficients.
Let

‖P‖Wr,ν =
∑
|α|≥0

∑
k∈Z
‖aα,k‖e

2π|k|
2τ rν|α| (weighted Wiener-norm). (27)

If this norm is bounded then P has a C0 norm less than ‖P‖Wr,ν .

Definition 2.18 (A-posteriori error for equation (11)). Let PN,K be an approximate
solution of the invariance equation (11). Define the error function or defect associated with
PN,K to be

E(θ, σ)
def
=

∂

∂θ
PN,K(θ, σ) +DσPN,K(θ, σ)Λσ − f (PN,K(θ, σ)) ,

and the a-posteriori error associated with PN,K on C2τ,ν = T2τ ×Bν to be

ε(r, ν)
def
= ‖E‖Wr,ν .

Supposing that f ◦ PN,K has Fourier-Taylor expansion

f(PN,K)(θ, σ) =
∑
|α|≥0

∑
k∈Z

bα,ke
2πik
2τ θσα,

we obtain the explicit formula for the a-posteriori error indicator ε(r, ν) in Fourier-Taylor
space given by

ε(r, ν) =
∑
|α|≥0

∑
k∈Z

∥∥∥∥2πik

2τ
aα,k + (λ1α1 + . . .+ λkαk)aα,k − bα,k

∥∥∥∥ e 2π|k|
2τ rνα. (28)

Also note that if f is a polynomial then, since PN,K is a trigonometric polynomial, the
expression given by (28) reduces to a finite sum. (If f is a non-polynomial analytic vector
field then the expression is a finite sum plus a Taylor remainder).

Remark 2.19. • The utility of equation (28) in applications is that it gives us a well
defined and easy to compute indicator which aids in choosing the numerical domain of
approximation. We typically have in mind some fixed value of ε as a computational tolerance,
and then determine reasonable values of N,K, ν, and r > 0 by numerical experimentation.
• Another advantage of using the Wiener-norm framework discussed here is that it sets
the stage for the rigorous numerical computations to be taken up in the next paper in
this series. We will see that while the choices of function spaces and norms made here are
motivated by the desire for efficient numerics, these choices also provide exactly the right
theoretical framework for computer assisted validation of the truncation error associated
with the approximation of P by PN,K .
• The practical implication of the choice of ν > 0 is easy to see, as this determines the “size”
of the image of PN,K in phase space. Taking larger values of ν corresponds to parameterizing
larger local manifolds. We note that the value of r > 0 has somewhat more subtle, but still
quite practical implication: it determines the width of the complex strip into which the
parameterization can be extended analytically in the time variable. Since analytic bounds
on the supremum norm of a function on a complex strip can be traded in for analytic
bounds on the derivatives of the function on any smaller strip (via the classical Cauchy
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bounds), larger values of r correspond to having more control of derivatives with respect to
θ. Another way to think of this is that r controls the decay rates of the Fourier coefficients,
that is larger values of r correspond to better decay rates for the Fourier coefficients of the
manifold. These issues will be essential in the applications to computer assisted proof of
connecting orbits between periodic orbits which will be addressed in the second paper in
the series.
• The most difficult part of computing ε(r, ν) is the computation of the Fourier-Taylor
expansion of f ◦ P. If f is polynomial then the composition may be computed via convo-
lution/Cauchy products, and the fast Fourier transform. In cases where the vector field is
composed of only elementary functions the computation can often be worked out efficiently
using the tools of automatic differentiation.

3 Computation of invariant manifolds: some examples

3.1 A case study: a-posteriori error for Lorenz

We are now ready to provide the details for the computations illustrated in Figures 1 and
2. As mentioned in the captions, the figures illustrate local stable/unstable manifolds for a
hyperbolic periodic orbit which lies inside the Lorenz attractor at the classical parameter
values. Performance results for the stable manifold are given in Table 1, while those for the
unstable are given in Table 2. Recall that Figures 1 and 2 show the same manifolds from
different angles with the stable in red and the unstable in blue. Both manifolds are local,
in the sense that no integration has been applied in order to globalize the manifolds. All
computations were done on a MacBook Pro, Intel Core 2 Duo, 2.33 GHz.

N ν r ε = ε(ν, r) Computation Time Error Computation Time
2 0.1 0.05 4.39× 10−6 0.47 sec 0.008 sec
2 0.1 0.01 7.96× 10−10 0.47 sec 0.008 sec
4 0.5 0.01 7.96× 10−10 0.82 sec 0.012 sec
10 6 0.01 8.19× 10−10 1.83 sec 0.029 sec
20 15 10−3 6.47× 10−9 3.57 sec 0.071 sec
25 20 10−6 1.77× 10−6 4.42 sec 0.096 sec

Table 1: Stable manifold data. For each computation, the periodic orbit, the Floquet normal
form, and all manifold Taylor coefficients an(θ) are computed with K = 66 Fourier modes.

N ν r ε(ν, r) Computation Time Error Computation Time
2 0.1 0.05 4.39× 10−6 0.47 sec 0.007 sec
2 0.1 0.01 7.96× 10−10 0.47 sec 0.008 sec
4 0.5 0.01 7.96× 10−10 0.82 sec 0.012 sec
10 6 0.01 8.67× 10−10 1.84 sec 0.03 sec
20 10 10−3 6.12× 10−9 3.53 sec 0.071 sec
25 12 10−6 2.39× 10−7 4.37 sec 0.097 sec

Table 2: Unstable manifold data. Again the periodic orbit, the Floquet normal form, and
all manifold Taylor coefficients an(θ) are computed with K = 66 Fourier modes.

Both tables list the Taylor order N , the domain parameter ν > 0 (which controls the
extent of the local manifold in phase space), the size of the complex strip r > 0 used in
the a-posteriori error error evaluation and the resulting a-posteriori error indicator ε. The
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time taken to compute the parameterization coefficients (that is to solve the homological
equations for up to order N) as well as the time required in order to evaluate the a-posteriori
error are given. We note that the timings do not include the time required in order to
compute the Fourier expansion of the orbit and its Floquet normal form.

For N large we can choose large parameter spaces (e.g. ν ∈ [6, 20] for the stable man-
ifold). The manifolds shown in the figures correspond to those listed in the last lines of
the tables, that is those computed to the highest order and having the largest parameter
domains. These expansions were computed and verified in less than five seconds each.

For ν much larger than shown in the table the a-posteriori errors break down rapidly.
Increasing the order does not lead to much improvement. We also note that, even in the
case of the highest order expansions shown in these tables, the time devoted to evaluation of
the a-posteriori error is virtually insignificant compared to the time needed to compute the
coefficients. This confirms that once the parameterization is computed to a certain order it
is not prohibitively expensive to compute optimal values for ν, r by “guess and check”.

3.2 The Arneodo system

Consider the Arneodo system (with β = 2 and α = 3.372) ẋ = y
ẏ = z
ż = αx− x2 − βy − z,

(29)

It admits a periodic orbit Γ with period roughly τ = 4.5328. The complex matrix B in the
complex Floquet normal form (4) has the following eigenvalues

µ1 = −1.0935 + 0.6931i, µ2 = 0.0935 + 0.6931i, µ3 = 0.

Since Re(µ1) < 0 and Re(µ2) > 0, dim(W s(Γ)) = dim(Wu(Γ)) = 1. Two eigenvalues of B
are of the form µ = ν + iπ

τ ∈ C, as in second case of Remark 2.3. Each Floquet exponent
corresponds to the Floquet multiplier φi = eµiτ , that is φ1 = −0.0070 and φ2 = −1.5275,
which are both real negative. Hence, the orientation of the eigenvector wi(θ) = Q(θ)wi is
flipped over [0, τ ] and the corresponding linear bundles are Mobius strips.

Remark 3.1. The local unstable manifold is plotted in figure 3 is the same manifold
discussed in [24]. The difference between the pictures is in the methods used in order to
obtain the local manifolds. Our figure 3 is the image of a Fourier-Taylor polynomial, while
the image in [24] is obtained via a numerical globalization scheme applied to the linear
approximation of the manifold.

In figure 4 we show a larger section of the local unstable manifold than is shown in [24]
or in figure 3. Again the result illustrated in figure 4 emploies no numerical integration
scheme. We have simply increased the number of Fourier and Taylor modes used in the
computation.

This remark is in no way meant as a critique of the methods of [24]. Rather we aim to
show that the results obtained using the Parameterization Method alone can in some cases
reproduce results in the literature obtained via numerical integration. Again, this does
not suggest that the Parameterization method is a replacement for numerical globalization
schemes. Instead our hope is to highlight in the context of a specific example the point
made in Remark 1.3: namely that combining the computational methods based on the
Parameterization Method with globalization methods such as those discussed in [18] presents
exciting possibilities for future research on invariant manifolds.
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Figure 3: Unstable local manifold of the periodic orbit for the Arneodo system. In this
figure the manifold is computed using 20 Fourier and 10 Taylor modes.

3.3 The Rössler system

We now compute a three dimensional stable manifold in the Rössler system ẋ = −(y + z)
ẏ = x+ 1

5y
ż = 1

5 + z(x− λ).
(30)

For small λ the system has a single fully attracting periodic orbit. As λ increases the
periodic orbit undergoes a period doubling bifurcation giving rise to a chaotic attractor.
We set λ = 0.5 and compute the periodic orbit and Floquet normal form using K = 45
Fourier modes. The period of the orbit is roughly τ = 5.0832, the eigenvalues of B are real
(and therefore coincide with the eigenvalues of R), and are given by λ1 = −0.16577 and
λ2 = −0.01044. The orbit is stable and the corresponding Floquet multipliers are positive.
Hence, the bundles are orientable. In this case computing the stable manifold of the orbit
provides a trapping region for the orbit on which the dynamics are conjugate to linear. The
stable manifold is illustrated in Figure 5.

3.4 The Kuramoto-Sivashinsky PDE

We conclude with a higher dimensional example which arises as a finite dimensional projec-
tion of a PDE. Consider the Kuramoto-Sivashinsky equation

ut = −uyy − λuyyyy + 2uuy

u(t, y) = u(t, y + 2π), u(t,−y) = −u(t, y),
(31)

which is a popular model to analyze weak turbulence or spatiotemporal chaos [87, 88].
We expand solutions of (31) using Fourier series as

u(t, y) =
∑
n∈Z

cn(t)einy. (32)
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Figure 4: A “more global” depiction of the Arneodo manifold. This figure illustrates the
same manifold shown in Figure 3 however in this case the local approximation is taken to 45
Fourier modes and 40 Taylor modes. We see more nonlinear features of the manifold, but
it is more difficult to see the Mobius Strip. Carefully following the boundary curve shows
that there is still only one component of the boundary.

The functions ξn(t) so that cn(t) = iξn(t) solve the infinite system of real ODEs

ξ̇n = (n2 − λn4)ξn − n
∑

n1+n2=n

ξn1ξn2 , (33)

where ξ−n(t) = −ξn(t), for all t, n. We consider a finite dimensional Galerkin projection of
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Figure 5: Boundary of a trapping region for the globally attracting periodic orbit of the
Rössler system at λ = 0.5. The manifold is “cut away” to show the tubular quality of the
trapping region. The trapping region is special in the sense that the dynamics in this tube
is conjugate to the linear dynamics given by the linear flow (6). The conjugacy is given
by the parameterization computed to Taylor order N = 25. The tube is the image of the
Fourier-Taylor polynomial. No numerical integration is used to obtain this image.

(33) of dimension m = 10

ξ̇n = (n2 − λn4)ξn − n
∑

n1+n2=n

|ki|≤10

ξn1
ξn2

, (n = 1, . . . , 10). (34)

For λ = 0.127, we compute a periodic orbit Γ with period roughly τ = 2.2443. We
computed first a matrix B in the complex Floquet normal form (4) of Φ(t). The Floquet
exponents (given by the eigenvalues B) are all real negative. In this case, the eigenvalues
µi of B and λi of R coincide and are given by

λ1 λ2 λ3 λ4 λ5

103∗ −1.1691 −0.7513 −0.4558 −0.2555 −0.1281
λ6 λ7 λ8 λ9 λ10

103∗ −0.0535 −0.0147 −0.0021 −0.0006 0

Hence, the periodic orbit Γ is stable. All associated Floquet multipliers are real and by
Remark 2.3, the associated eigenvector w(θ) = Q(θ)w are not flipped over the interval [0, τ ],
and each associated bundle is orientable. Figure 6(a) shows the projection over the first three
variables (ξ1, ξ2, ξ3) of the local stable manifold associated to the eigenvalue λ9 = −0.5730,
that is the slow stable manifold of the periodic orbit. This illustrates the fact that the
Parameterization Method allows computation of invariant sub-manifolds of the full stable
manifold associated with slow eigendirections.

At λ = 0.11878 there is a solution with period τ = 3.894911. The eigenvalues of B result
to be real: one of them is positive that is λ = 1.135682, while the rest are negative. Hence
there is one unstable direction. Figure 6(b) shows the local unstable manifold, again using
the projection over the first three variables (ξ1, ξ2, ξ3).
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Figure 6: (a) Slow local stable manifold of the periodic orbit at λ = 0.127. (b) Local
unstable manifold of a periodic orbit at λ = 0.11878.

4 Preconditioning the method of projected boundary
conditions using stable/unstable manifold parameter-
ization and computation of connecting orbits

Local parameterizations of stable and unstable manifolds are useful for computing connect-
ing orbits. The idea is to reformulate the connecting orbit as the solution of a finite time
boundary value problem for an orbit segment beginning on the local unstable manifold and
terminating on the local stable manifold. This idea goes back to [29] where it is used to com-
pute connecting orbits between equilibria of differential equations. The idea is extended in
[31, 32] in order to numerically compute point-to-cycle and cycle-to-cycle connecting orbits.

It is also shown in [30] that high order expansions for the (un)stable invariant mani-
folds can be used in order to stabilize the numerical computation of the connecting orbits.
Other studies which utilize high order expansions of (un)stable manifolds in order to study
connecting orbits between fixed points and equilibria of discrete time dynamical systems
and differential equations are found in [55, 56]. This idea can also be exploited in order to
obtain computer assisted proof of the existence of connecting orbits [59, 62, 60]. In this sec-
tion we discuss some numerical computations for homoclinic connections of periodic orbits
exploiting the high order parameterization of the present work.

Let Γ0 = {γ0(t) : t ∈ [0, τ0]} and Γ1 = {γ1(t) : t ∈ [0, τ1]} be hyperbolic periodic orbits
for ẋ = f(x). Suppose that Γ0 has λu1 , . . . , λ

u
k0

unstable eigenvalues, that Γ1 has λs1, . . . , λ
s
k1

stable eigenvalues, and that k0 + k1 = n − 1. Let P : [0, τ0] × Bk0νu ⊂ Rk0+1 → Rd and
Q : [0, τ1] × Bk1νs ⊂ Rk1+1 → Rd parameterize the local unstable and stable manifolds, that
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is
image(P) = Wu

loc(Γ0) and image(Q) = W s
loc(Γ1).

Furthermore we assume that Q solves (11) and that P solves (11) for the vector field −f .
Then P and Q conjugate the dynamics on the stable/unstable manifolds to the linear flows.

The orbit of the point x0 ∈ Rd is heteroclinic from Γ0 to Γ1 if

α(x0)
def
=
⋂
s∈R
{ϕ(x0, t) : t < s} = Γ0 and ω(x0)

def
=
⋂
s∈R
{ϕ(x0, t) : t > s} = Γ1.

If Γ0 = Γ1 then the orbit of x0 is homoclinic for Γ0. Heteroclinic points are equiva-
lent to intersections of stable and unstable manifolds. Note that dim (W s(Γ0)) = k0 + 1,
dim (Wu(Γ1)) = k1 + 1, and that dim (W s(Γ0)) + dim (Wu(Γ1)) = n+ 1, and we are in the
setting where we can look for generic transverse intersections.

A sufficient condition for the orbit of the point P(θ̂0, σ̂0) ∈ Rd to be heteroclinic from
Γ0 to Γ1 is that

ϕ
[
P(θ̂0, σ̂0), L

]
= Q(θ̂1, σ̂1).

Note that this expression has n-components, and n + 2 variables θ0, σ0, θ1, σ1, and L. In
order to define map from Rd into itself we impose the constraint (or phase condition) that
‖σ0‖ = R0 < νu and ‖σ1‖ = R1 < νs. In other words we restrict to the surface of a sphere
in parameter space. In this setting, where we compute high order parameterizations of the
stable/unstable manifolds, these constraints provide natural phase conditions.

In order to formalize this notion let S0,1 : Sk0,1−1 → Rk0,1 be parameterizations of the
k0,1-spheres of radii R0, R1. Then we define the function F : Rd → Rd by

F (θ0, φ0, L, θ1, φ1) = ϕ [P(θ0, S0(φ0)), L]−Q(θ1, S1(φ1)), (35)

and look for solutions of F (θ0, φ0, L, θ1, φ1) = 0. Since the map is now from Rd to itself we
compute solutions using a numerical Newton scheme.

Note that there a many variations on equation (35). For example of we fix a “time of
flight” L > 0 then we only have to constrain one of the variables σ0,1. Then we obtain
heteroclinic connection by looking for zeros of the function G : Rd → Rd defined by

G(θ0, φ0, θ1, σ1) = ϕ [P(θ0, S0(φ0)), L]−Q(θ1, σ1),

We also note that both F and G as defined above assume that the flow ϕ is explicitly known.
In practice however ϕ is only approximated by numerical integration.

For the purpose of doing computer assisted proofs it is useful to reformulate the boundary
value problem in “integrated” form. This exploits the explicit dependance on the vector
field f . For example (35) can be rewritten as the nonlinear operator F : C0([0, L])× Rd →
C0([0, L])× Rd given by

F [u(t), θ0, φ0, θ1, φ1] =

 P(θ0, S0(φ0)) +

∫ t

0

f(u(s)) ds− u(t)

Q(θ1, S1(φ1))− P(θ0, S0(φ0))−
∫ L

0

f(u(s)) ds

 , (36)

which is solved for the unknown function u(t) and numbers (θ0, φ0, θ1, φ1). The operator is
conveniently discretized by representing u(t) using splines [62, 60] or Chebychev series [61].
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4.1 Numerical results for connecting orbits

First we consider the Lorenz system with parameter values s = 10, β = 8/3, and ρ = 30. For
these parameters the system is chaotic. The system is a good place to look for connecting
orbits between periodic orbits as hyperbolic periodic orbits are dense on the attractor.
Moreover each such periodic orbit has infinitely many homoclinic orbits. We choose the
periodic orbit discussed in the introduction. Two homoclinic orbits for this periodic orbit
are illustrated in Figure 7. Here we parameterize the stable/unstable manifolds to Taylor
order N = 25 and solve (35) using a Newton scheme.
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Figure 7: Two different orbits homoclinic to the same periodic orbit in the Lorenz system.
The period of the orbit is roughly τ = 1.4860. The “time of flight” for the orbit on the left is
L = 1.08145 while for the orbit on the right we have L = 3.50118. The boundary conditions
are projected onto manifolds of Taylor order N = 15 computed to K = 45 Fourier modes.
The orbit illustrated on the left takes one “turn” around the left lobe of the Lorenz attractor
after leaving the local unstable manifold and before returning to the local stable manifold.
The orbit on the right on the other hand makes a “turn” on the left lobe of the attractor
as well as a number of “turns” on the right lobe during its homoclinic excursion.

If we compute these orbits by projecting onto the linear approximation of the sta-
ble/unstable manifolds then the connecting orbits require about 35 time units in order
to exhibit their full homoclinic behavior. In other words we see by numerical experimenta-
tion that 35 time units is approximately the amount of time required for a homoclinic orbit
to start from a small neighborhood of the periodic orbit, make a homoclinic excursion, and
return.

On the other hand when we precondition the projected boundary method via the pa-
rameterized stable/unstable manifolds the numerical integrations required when we solve
the boundary value problem for the connecting orbits shown in Figure 7 are only L ≈ 1.1
and L ≈ 3.5 respectively. For the remainder of the time the orbits are on the local stable
and unstable manifolds, as shown in Figure 8. Then computing these orbits using the lin-
ear approximation would require roughly 35 units of integration time, where as the present
computations were carried out with less than four. In Figure 9, we show the time series for
Lorenz homoclinics.

Figure 10 illustrates a similar computation performed for a hyperbolic periodic orbit of
(31). Here we have taken a parameter value of approximately λ = 0.119, and the periodic
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Figure 8: This figure illustrates the two homoclinic orbits shown in Figure 7, but here both
orbits are shown in the same picture along with the local stable (red) and unstable (blue)
manifolds onto which the boundary conditions are projected. The information about the
number of modes used in the computation and the time of flights of the homoclinic orbits
is given in the caption of the previous figure.

orbit has period roughly 1.95. This orbit has one unstable direction. The unstable manifold
is parameterized using the methods of Section 3. The time of flight for the approximate
connecting orbit shown in the Figure is L = 14.5 time units.
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Figure 9: The figure illustrates the time series representation of the same homoclinic orbits
shown in Figure 8. On the left and right hand sides of both the top and bottom orbit the
behavior is indistinguishable from periodic. In the middle of both series we see a “wobble”
away from the periodic orbit which signifies the homoclinic excursion.
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Figure 10: A homoclinic orbit in the 10-dimensional Galerkin projection of the Kuramoto-
Sivashinsky PDE (34). The periodic orbit has one unstable direction and eight stable direc-
tions. We project the boundary conditions onto a high order Fourier-Taylor approximation
of the unstable manifold, and onto the linear approximation of the stable manifold provided
by the real Floquet normal form.
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