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Abstract

In this paper we develop mathematically rigorous computer assisted techniques for
studying high order Fourier-Taylor parameterizations of local stable/unstable manifolds
for hyperbolic periodic orbits of analytic vector fields. The parameterizations studied
here are not required to be graphs over the stable/unstable eigenspace and can follow
folds in the embedding. In addition to providing the embedding of the manifold,
the parameterization also gives the dynamics on the manifold in terms of an explicit
conjugacy relation. We exploit the numerical methods developed in [1] in order to
obtain a high order Fourier-Taylor series expansion of the parameterization. There is
no a-priori theory which guarantees the accuracy of this approximation far from the
periodic orbit, and the main result of the present work is an a-posteriori Theorem
which provides mathematically rigorous error bounds. The hypotheses of the theorem
are checked with computer assistance. The argument relies on a sequence of preliminary
computer assisted proofs where we validate the numerical approximation of the periodic
orbit, its stable/unstable normal bundles, and the jets of the manifold to some desired
order M . The validation of the orbit and bundles is based on existing computer assisted
methods, but the validation of the jets is new and explained in detail here. We illustrate
our method by implementing validated computations of some two dimensional manifold
in R3 and a three dimensional manifold in R4.

1 Introduction

The present work is the second paper in a series started in [1]. The purpose of this series is to
study the partial differential equation (1) below. Our interest in Equation (1) is due to the
fact that its solutions parametrize local stable/unstable manifolds associated with hyperbolic
periodic orbits of ordinary differential equations. We focus on ordinary differential equations
given by analytic vector fields, so the manifolds and hence the solutions of Equation (1) we
consider are analytic.

Paper (I) [1] is devoted to efficient numerical solution of the partial differential equation.
Since solutions of Equation (1) parametrize embedded cylinders in phase space, it is natural
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to look for a formal solution expressed as a Fourier-Taylor series. The numerical scheme
developed in Paper (I) exploits Floquet theory to find elementary recursion relations for
the Fourier-Taylor coefficients of the formal series. These recursion relations can be rapidly
solved to any desired order.

The present paper is concerned with convergence of the formal series just mentioned. Our
main result is Theorem 2.4, an a-posteriori theorem which allows us to establish the existence
of a true solution of Equation (1) supposing we have a “good enough” approximate solution.
The theorem also provides mathematically rigorous C0 bounds between the approximate and
true solution. The hypotheses of the theorem are checked via finite numerical computations.
In order to illustrate the use and performance of our method we implement computer assisted
convergence proofs for some example applications, namely we compute some two dimensional
manifolds for the Lorenz system as well as some three dimensional manifolds for a simplified
suspension bridge equation.

Both papers in this series are based on a functional analytic framework for studying
invariant manifolds known as the Parameterization Method. The theoretical core of this
method is developed in the work of [2, 3, 4, 5], and we refer the reader back to paper (I)
for more complete discussion of the method and its literature. The interested reader may
also want to consult the recent book of [6]. Presently we recall only the main philosophy
of the Parameterization Method, which is that many of the smooth invariant manifolds of
dynamical systems theory are characterized by an (infinitesimal) conjugacy, or invariance
equation. The invariance equation, which often takes the form of a nonlinear operator
on a Banach space, may be approximately solved on the digital computer using existing
tools of numerical analysis. The operator equation may also be susceptible to a-posteriori
analysis, that is once we obtain a good numerical approximation it may be possible to
obtain mathematically rigorous error bounds via a computer assisted Newton-Kantorovich
argument in the tradition of [7].

The reader interested in the Parameterization Method as a framework for computer
assisted proof can consult the works of [8, 9, 10, 11, 12, 13] and the references discussed
therein. We remark that the works just cited deal with stable/unstable manifolds of fixed
points for maps/equilibria for differential equations, and also with invariant circles for area
preserving maps and their bundles. The present work is a contribution in this vein, where
we extend existing validated numerical methods based on the Parameterization Method to
hyperbolic periodic orbits of differential equations.

In Section 1.1 we refine the discussion above, and review as much of the Parameterization
Method as is needed for the present work. In the section just mentioned we also outline
the main steps of the validation argument developed in the remainder of the paper. Before
moving on however, several remarks are in order.

Remark 1.1 (First order constraints). Solutions of Equation (1) below are dynamically
meaningful only after the imposition of certain first order constraints. These constraints
require that the periodic orbit, its stable or unstable Floquet exponents, and its stable or
unstable normal bundles are known “exactly”. Here exactly is interpreted in the sense of
validated numerics, that is we need numerical approximations of this data along with explicit
mathematically rigorous error bounds.

Since our goal is to validate parameterizations of local stable/unstable manifolds using
Fourier spectral methods, we require the first order data is given as Fourier series. Indeed,
the methods of the present work exploit complex analytic properties of the first order data
and we actually require some knowledge about domains of analyticity of the periodic orbit
and the stable/unstable bundles (bounds on the size of a strip about the real axis in the
complex plane into which the periodic functions can be extended analytically). In practice
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this information is not readily available and some preliminary work is required.
Recent advances in computer assisted Fourier analysis of periodic solutions of analytic

differential equations [14, 15] and computer assisted Floquet analysis [16, 17] allow us to
obtain the desired representation of the first order data. The methods of the works just
cited also provide the lower bounds on the domain of analyticity mentioned in the previous
paragraph. See Remark 2.9 for more detailed discussion of this point.

Remark 1.2 (Features of the Parameterization Method). Many functional analytic meth-
ods for proving stable manifold theorems are based on “graph transform” type arguments,
Lyapunov-Perron operators, or sequence space arguments ala Irwin (see a standard text on
dynamical systems such as [18, 19, 20]). While it is possible to adapt such arguments for a-
posteriori computer assisted analysis this approach has some draw backs, such as the need to
compute the composition of the unknown parameterization with itself, and the requirement
that the representation of the manifold is expressed as the graph of a function.

The Parameterization Method on the other hand, requires only composition of the un-
known function with the known vector field. Moreover there is no requirement that the
parameterization be the graph of a function, hence it is possible to follow folds in the embed-
ding. Another advantage is that the parameterization of the manifold satisfies a conjugacy
relation which recovers the dynamics on the manifold in addition to the embedding.

The price we pay is the appearance of some non-resonance conditions between the Flo-
quet exponents of the periodic orbit. These non-resonance conditions have no analogue
in the classical approaches mentioned in the first paragraph of this remark. However we
must point out that (a)-the non-resonance conditions are satisfied “generically” that is for
open sets in the parameter space of the vector field, and (b)-that it is possible to modify
the underlying conjugacy relation in the Parameterization Method (that is conjugate to a
polynomial rather than a linear vector field) in order to treat the resonant cases as well.
We do not consider such degeneracies further in the present work. The interested reader
can consult the works of [2, 3, 4] for more complete discussion of the resonant case, and can
also see the work of [10] for computer aided proofs for resonant stable/unstable manifolds
attached to equilibrium solutions of differential equations.

Remark 1.3 (Geometric methods: covering relations and cone conditions). Another ap-
proach to stable manifold theory is based on topological degree theory and cone conditions
applied directly in the phase space. See for example the work of [21] on stable manifolds
of fixed points of maps and the work of [22] on normally hyperbolic invariant manifolds.
These geometric methods are well suited for adaptation to computer assisted proof, as is
illustrated by the work of [23, 24, 25] (see also the references discussed therein).

Geometric methods have been used to give computer assisted proofs of a number of
conjectures in celestial mechanics involving the existence and intersection of stable/unstable
manifolds for periodic orbits [26, 27]. One of the advantage of the geometric methods is that
they require only C1 or C2 assumptions on the vector field. Geometric methods also make
only weak hyperbolicity assumptions, so for example there no non-resonance assumptions to
check. In fact the geometric methods have been used to give elementary computer assisted
proofs of the existence of center manifolds, see for example the work of [28], again in the
context of celestial mechanics.

Of course the geometric methods result in only C1 (or sometimes only Lipschitz) infor-
mation about the manifold under consideration. Moreover these methods show the existence
of the manifold (often that the manifold is contained somewhere inside the union of a collec-
tion of polygons) but do not explicitly recover the dynamics, that is one obtains conclusions
about the asymptotics of orbits but no conjugacy is obtained. Analytic properties of the
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embedding such as decay rates of jets or domain of analyticity seem to be unavailable using
these methods.

The geometric and analytic methods (such as the analytic methods developed in the
present work) complement one another, and the choice of method in a particular problem
depends on the desired results. This state of affairs (not surprisingly) mirrors the state
of affairs in the classical qualitative “pen and paper” theory of dynamical systems, where
many of the most important results have both geometric and functional analytic proofs.

Remark 1.4 (Automatic differentiation for Fourier series). In the present work we im-
plement our argument for vector fields with polynomial nonlinearities. This simplifies the
technical details somewhat but is not a fundamental limitation. By exploiting ideas from
“automatic differentiation” it is possible to apply the Fourier-Taylor methods of the present
work to study analytic vector fields with nonlinearities given by elementary functions. For
more complete discussion of automatic differentiation as a numerical tool in dynamical sys-
tems theory we refer to the works of [29, 30, 31, 32] and the references therein, though the
list is by no means complete. The reader interested in automatic differentiation as a tool
for computer assisted proof in Fourier analysis might consult the work of [15].

Remark 1.5 (Computer assisted proof of connecting orbits). While the invariant manifolds
studied in the present work are of interest in their own right, we also remark that inter-
sections of stable/unstable manifolds play a central role in the global study of nonlinear
systems. By studying the intersections of stable/unstable manifolds it is possible to learn
about orbits which connect invariant sets to one another. In addition to being a critical
component of Melnikov theory (see for example the classical works of [33, 34, 35, 36]) the in-
tersections of stable/unstable manifolds explain global phenomena such as Arnold diffusion
[37] and transport in celestial mechanics and fluid systems [38, 39, 40, 41, 42]. Of course
this list of references does not even scratch the surface of the literature, and is only meant
to point in the direction of further reading.

Given the importance of connecting orbits in dynamical systems theory it is not sur-
prising that many authors have developed numerical computational methods. We refer for
example to the works of [43, 44, 45, 46, 47, 48] and the references discussed therein for much
more complete discussion, though again this is by no means a complete list of references.
Existence for connecting orbits occupies a central place in the computer assisted proof liter-
ature and we refer the interested reader to the works of [49, 50, 51, 52, 53, 54, 55, 9, 56, 8, 57]
and the references discussed therein.

Moreover we remark that the last two references just cited incorporate the Parameteri-
zation Method in a fundamental way, obtaining computer aided proofs of connecting orbits
between equilibria of differential equations and fixed points of maps. A feature of the ap-
proach developed in these two papers is that the method of proof obtains the transversality
of the connecting orbit “for free” (that is if the method succeeds then the intersection of
the stable/unstable manifolds are transverse). Combining the methods of the present work
with a mathematically rigorous method for computer assisted analysis of boundary value
problems as in [57] would be a natural extension, and will make the topic of a future study.
The proposed method would give automatic transversality for connecting orbits between
periodic orbits.

1.1 Review of the parameterization method for stable/unstable
manifolds of periodic orbits

In this section, and throughout the remainder of the paper, we assume the reader is familiar
with classical stability analysis/Floquet theory for periodic orbits of differential equations
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(an excellent reference for this material is the book of [18]). We also remark that the material
which we briefly review in this section is meant to provide context for the work done in the
remainder of the present work. The reader interested in more thorough discussion may also
want to consult the works of [2, 3, 58, 59, 6] for more general coverage of the Parameterization
Method, and [60, 61, 62, 4, 1] for more discussion of the Parameterization Method in the
context of periodic orbits.

Now a little notation. With w ∈ C, let |w| =
√

real(w)2 + imag(w)2 denote the complex
absolute value. We endow Cd with the max norm, so that if z = (z1, . . . , zd) ∈ Cd then

‖z‖d = max
1≤j≤d

|zj |.

Let
Ar

def
= {w ∈ C : |imag(w)| < r},

denote the complex strip of width r about the real axis. With T ∈ R, T > 0 we say that
the complex function γ : Ar → Cd is T -periodic on Ar if

γ(w + T ) = γ(w),

for all w ∈ Ar. A function γ : Ar → Cd is said to be analytic on Ar if each component of γ
is complex differentiable at each w ∈ Ar.

For k ∈ N, k ≥ 1 let

Dkν
def
=
{
z = (z1, . . . , zk) ∈ Ck : ‖z‖k < ν

}
,

denote the poly-disk of radius ν about the origin in Ck. Throughout the sequel we are
interested in functions P : Ar × Dkν → Cd with d ≥ k + 1. We say that P is T -periodic in
the first variable (or simply that P is T -periodic) if

P (w + T, z1, . . . , zk) = P (w, z1, . . . , zk),

for all (w, z1, . . . , zk) ∈ Ar×Dkν . We say that P is analytic on Ar×Dkν if each component of P
is complex differentiable in each variable separately at each point (w, z1, . . . , zk) ∈ Ar ×Dkν .

Let T > 0, f : Cd → Cd be an analytic vector field, and fix the complex numbers
λ1, . . . , λk ∈ C. We are interested in 2T -periodic, analytic functions P : Ar × Dkν → Cd
solving the partial differential equation

∂

∂w
P (w, z1, . . . , zk) +

k∑
j=1

λjzj
∂

∂zj
P (w, z1, . . . , zk) = f [P (w, z1, . . . , zk)]. (1)

When properly constrained, Equation (1) has special dynamical significance for the vector
field f . In order to make this precise we state the following assumptions.

Assumption 1. Suppose that γ : Ar → Cd is an analytic, T -periodic solution for the vector
field f , that is

d

dw
γ(w) = f [γ(w)],

and γ(w + T ) = γ(w) for all w ∈ Ar.

Assumption 2. Suppose that λ1, . . . , λk are the stable (or respectively unstable) Floquet
exponents for γ. Suppose in addition that these are all of the stable (respectively unstable)
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exponents, so that any remaining exponents are unstable or neutral (respectively stable or
neutral). Suppose now that ξj : Ar → Cd are analytic, 2T -periodic functions parameterizing
the stable (respectively unstable) normal bundle of γ. More precisely suppose that

real(λj) < 0, for 1 ≤ j ≤ k

(respectively that real(λj) > 0, for 1 ≤ j ≤ k) and that ξj(w + 2T ) = ξj(w) for all w ∈ Ar
and solve the eigenvalue problem

d

dw
ξj(w) + λjξj(w)−Df [γ(w)]ξj(w) = 0, for 1 ≤ j ≤ k.

Remark 1.6 (Orientation of the stable/unstable normal bundles). The functions
ξj(w) are 2T -periodic as the stable/unstable bundles need not be orientable. Moreover, we
can find a T -periodic basis function ξj(w) if and only if the associated bundle is orientable.

We now recall several properties enjoyed by solutions of Equation (1).

x

�

W s
loc(�)

P x

�

W s
loc(�)

P

�

L

(w, z)

Figure 1: Cartoon of the flow conjugacy Equation (4) satisfied by solutions of Equation (1).

Claim 1. (Flow conjugacy) Let φ : R×Cd → Cd denote the flow generated by f . (In fact
we only need that φ is defined in a neighborhood of γ). Suppose that P : Ar × Dkν → Cd is
an analytic 2T -periodic solution of Equation (1) which satisfies the first order constraints

P (w, 0, . . . , 0) = γ(w), (2)
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and
∂

∂zj
P (w, 0, . . . , 0) = ξj(w), for 1 ≤ j ≤ k. (3)

Then the image of P is a local stable (respectively unstable) manifold for γ. In fact, P
satisfies the flow conjugacy relation

φ [P (w, z1, . . . , zk), t] = P (w + t, eλ1tz1, . . . , e
λktzk), (4)

for all t ≥ 0 (respectively t ≤ 0), that is the dynamics on the local manifolds parameterized
by P are conjugate to the linear flow L : Ar × Dkν → Ar × Dkν given by

L(w, z1, . . . , zn, t)
def
=
(
w + t, eλ1tz1, . . . , e

λktzk
)
.

The geometric meaning of this conjugacy is illustrated in Figure 1. For the elementary proof
see Theorem 2.6 in [1].

Remark 1.7 (Real vector fields, orbits, bundles, and parameterizations). The case
of a real analytic vector field is of special interest, that is when x ∈ Rd ⊂ Cd implies that
f(x) ∈ Rd. In this case we are especially interested in real analytic periodic orbits, that
is γ : Ar → Cd having that γ(t) ∈ Rd when t ∈ R. If γ is real analytic and λj ∈ R for
1 ≤ j ≤ k then the basis functions ξj can be chosen real analytic. In this case the solution
P of Equation (1) can be taken real analytic. Another case of interest is that λj and λj+1

are a complex conjugate pair. In this case the associated basis functions ξj and ξj+1 can
be taken as complex conjugates and arrange that P maps associated complex conjugate
variables into Rd. In other words, P is no longer real analytic, but there is a canonical
method for obtaining the real image of P and hence the real stable (unstable) manifold
associated with γ ⊂ Rd. See [1] for more complete discussion.

Claim 2. (Non-uniqueness) Solutions of Equation (1) are not unique. Indeed suppose
that P is a solution of Equation (1) constrained by Equations (2) and (3), and consider any
collection Γ = {τ1, . . . , τk} of non-zero positive real scalars. Define the disk

DkΓ,ν
def
=
{

(z1, . . . , zk) ∈ Ck : |zj | ≤
ν

τ j
and 1 ≤ j ≤ k

}
,

and the function Q : Ar × DkΓ,ν → Cd by

Q(w, z1, . . . , zs)
def
= P (w, τ1z1, . . . , τkzk).

By differentiating and evaluating at zero we see that

Q(w, 0, . . . , 0) = P (w, 0, . . . , 0) = γ(w),

and that
∂

∂zj
Q(w, 0, . . . , 0) = τj

∂

∂zj
P (w, 0, . . . , 0) = τjξj(w). (5)

Moreover

f [Q(w, z1, . . . , zk)] = f [P (w, τ1z1, . . . , τkzk)]

=
∂

∂w
P (w, τ1z1, . . . , τkzk) +

k∑
j=1

λjτjzj
∂

∂zj
P (w, τ1z1, . . . , τkzk)

=
∂

∂w
Q(w, z1, . . . , zk) +

k∑
j=1

λjzj
∂

∂zj
Q(w, z1, . . . , zk),
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as P is a solution of Equation (1). Then Q is an 2T periodic solution of Equation (1)
on Ar × DkΓ,ν , satisfying constraint Equations (2) and (3) (with a rescaled choice of basis
functions for the normal bundle). Since P is analytic so is Q. If τj < 1 for 1 ≤ j ≤ k then
Q is also a solution of Equation (1) on Ar × Dkν , hence the non-uniqueness. If the τj > 1
then the question of whether or not Q is a solution on Ar × Dkν is a question we return to
momentarily, indeed it is one of the main concerns of the present work.

Remark 1.8 (Rescaling the basis of the stable/unstable normal bundle). Equation
(5) shows that rescaling the domain by Γ leads to a corresponding rescaling of the basis
functions for the stable (respectively unstable) normal bundle of the periodic orbits γ. In
fact this is the only source of non-uniqueness in the problem, that is once the scalings of
the ξj are fixed then the solution of Equation (1), if it exists, is unique. See Claim 3 below
and also the discussion in Section 5 of [4]. We remark that the freedom in the choice of
the scaling of the basis functions can be exploited in numerical computations. Numerical
implications of non-uniqueness were discussed in [1], and will play a role in the sequel.

Suppose now that we look for a solution P of Equation (1) as a Taylor series

P (w, z) =

∞∑
|α|=0

aα(w)zα.

Here α = (α, . . . , αk) ∈ Nk is the k-dimensional multi-index, |α| = α1 + . . . + αk, z =
(z1, . . . , zk) ∈ Dkν , and zα = zα1

1 · . . . · z
αk
k , and for each α ∈ Nk the functions aα : Ar → Cd

are analytic, 2T -periodic functions. Imposing the first order constraints (2) and (3) leads to

a0(w) = γ(w) and aej (w) = ξj(w),

where 0 = (0, . . . , 0) ∈ Nk and ej = (0, . . . , 1, . . . , 0) is the jth vector of the canonical basis
of Rk. Plugging the Taylor expansion into Equation (1) and matching like powers of z shows
that the periodic functions aα : Ar → Cd must solve the homological equations

d

dw
aα(w) + (α1λ1 + . . .+ αkλk)aα(w)−Df(γ(w))aα(w) = Rα(w), (6)

for |α| ≥ 2. Here Rα is a function only of the aβ with |β| < |α|, that is the homological
equations are inhomogeneous linear differential equations which can be solved recursively to
any order. Computation of the aα is illustrated for a number of specific example problems
in [1], and one sees that for a given vector field f the functions Rα(w) can be worked out
explicitly.

Definition 1.9. We say that the Floquet exponents λ1, . . . , λk are non-resonant if

α1λ1 + . . .+ αkλk 6= λj , (7)

for each |α| ≥ 2 and 1 ≤ j ≤ k. Note that since the real part of the λj are all negative
(respectively positive) this reduces to only a finite number of conditions, that is for |α| large
enough the non-resonance condition is automatically met.

Claim 3. If λ1, . . . , λk are non-resonant then aα exists and is unique for all |α| ≥ 2.
This is due to the fact that the homological equations given by (6) are linear with periodic
coefficients. Hence the classical Floquet theorem gives that these equations have unique
analytic 2T periodic solution assuming that Equation (7) holds. See also Section 2.3 of [1].
Only the convergence of the formal solution is in question.
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For fixed choice of ξj(w), 1 ≤ j ≤ k assume that the Floquet exponents λ1, . . . , λk are
non-resonant and let

P (w, z) =

∞∑
|α|=0

aα(w)zα,

be the associated formal solution of Equation (1). By Claim 1 we obtain another formal
solution by

Q(w, z)
def
= P (w, τ1z1, . . . , τkzk)

=

∞∑
|α|=0

aα(w)(τ1z1, . . . , τkzk)(α1,...,αk)

=

∞∑
|α|=0

aα(w)τα1
1 · . . . · τ

αk
k zα.

Moreover, as seen in Claim 1, this rescaling of the domain is equivalent to rescaling the basis
of the stable (respectively unstable) normal bundle. Since by Claim 3 the coefficients with
|α| ≥ 2 are uniquely determined we see that: given the Taylor coefficients {aα(w)}∞|α|=0 of

a particular formal solution of Equation (1) all other formal solutions are of the form

qα(w) = τα1
1 · . . . · τ

αk
k aα(w), (8)

for some choice of the scalars τ1, . . . , τk.

Claim 4. (A-priori existence for small scalings) Fix first order data γ, ξj : Ar → Cd
for 1 ≤ j ≤ k, and let

τj = sup
w∈Ar

‖ξj(w)‖d and s = max
1≤j≤k

{τj}.

Suppose we fix also a ν > 0. The results of [2, 4] give that: if the Floquet multipliers are
non-resonant then there exists an ε > 0 so that for all s ≤ ε the formal solution associated
with this choice of first order constraints converges, that is for small enough s the solution
P : Ar×Dkν → Cd of Equation (1) subject to these constraints exists. The solution is unique,
again up to the choice of the scalings ξ1(w), . . . , ξk(w). Then for different choices of τj ≤ ε
we parametrize larger or smaller portions of the local stable (respectively unstable) manifold
of the periodic orbits.

The dependence of the Taylor coefficients on the scalings illustrated in Equation (8)
make it clear that by choosing larger scalings for the basis functions ξj(w) we obtain slower
convergence of the series P . Hence for a fixed domain disk Dkν larger scalings correspond to
a larger image of the parameterization in phase space. On the other hand, smaller choice
of scalings make it more likely that the formal solution converges to a true solution. This is
the fundamental balancing act inherent in the Parameterization Method: namely we want
the image of P as large as possible in phase space so that the series still converges.

Assumption 3. Suppose that the stable (respectively unstable) Floquet exponents λ1, . . . , λk
are non-resonant. Choose τ1, . . . , τk > 0 and suppose that the basis functions ξ1(w), . . . , ξk(w)
are scaled so that

τj = sup
w∈Ar

‖ξj(w)‖d.
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Fix N ∈ N with N ≥ 2. For 2 ≤ |α| ≤ N assume that aα : Ar → Cd are analytic,
2T -periodic solutions of the Homological Equation (6). Define the approximate solution
PN : Ar × Ck → Cd of Equation (1) by

PN (w, z) =

N∑
|α|=0

aα(w)zα. (9)

Main question – Existence and approximation: With the scalings τ1, . . . , τk, N ≥ 2,
and PN (w, z) as in Assumption 3, let

H(w, z) =

∞∑
|α|=N+1

aα(w)zα,

be the tail function defined by the formal series solutions of the homological equations. For
a particular choice of ν > 0, does H converge on Ar × Dkν? If so, can we bound H on
Ar × Dkν?

The remainder of the paper is organized as follows. In Section 2 we develop the main
result of the present work. This is Theorem 2.4 which, when its a-posteriori hypotheses are
satisfied, answers the existence and approximation questions at the same time. Section 3
deals with computer assisted validation of the solutions aα(w) of the homological equations
for 2 ≤ |α| ≤ N , that is with obtaining the data postulated in Assumption 3. Sections 4
and 5 are devoted to applications: validation of manifolds with one and two stable/unstable
Floquet exponents respectively. Appendix A contains some technical details associated with
the application problem of Section 5.

2 A-posteriori analysis of Equation (1)

We begin somewhat informally in order to introduce the main idea of the argument. Suppose
that f : Cd → Cd is an analytic vector field and that T , γ(w), λ1, . . . , λk, ξ1(w), . . . , ξk(w),
and PN (w, z) are as in Assumptions 1, 2 and 3 of Section 1.1. We seek a 2T -periodic function
H : Ar × Dkν → Cd so that

P (w, z) = PN (w, z) +H(w, z), (10)

is an exact solution of Equation (1) for all (w, z) ∈ Ar × Dkν .
Plugging P from Equation (10) into Equation (1) gives

f [PN (w, z) +H(w, z)] =
∂

∂w
[PN (w, z) +H(w, z)] +Dz[PN (w, z) +H(w, z)]Λz, (11)

where

Λ
def
=

 λ1 . . . 0
...

. . .
...

0 . . . λk

 ,

is the k×k diagonal matrix with the Floquet exponents on the diagonal and zeros elsewhere.
We expand the vector field to second order about the image of the approximate solution

PN so that the left hand side of (11) becomes

f [PN (w, z) +H(w, z)] = f [PN (w, z)] +Df [PN (w, z)]H(w, z) +R[PN (w, z), H(w, z)]. (12)
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Here R is the second order Taylor remainder associated with the vector field f at the point
PN (w, z). Define the a-posteriori error function EN : Ar × Dkν → Cd associated with PN to
be the function given by

EN (w, z)
def
= f [PN (w, z)]− ∂

∂w
PN (w, z)−DzPN (w, z)Λz. (13)

Plugging (12) and (13) into Equation (11) and rearranging gives

∂

∂w
H(w, z) +DzH(w, z)Λz −Df [PN (w, z)]H(w, z) = EN (w, z) +R[PN (w, z), H(w, z)].

(14)
We introduce the linear operator

L[H](w, z)
def
=

∂

∂w
H(w, z) +DzH(w, z)Λz −Df [PN (w, z)]H(w, z), (15)

and rewrite (14) as

L[H](w, z) = EN (w, z) +R[PN (w, z), H(w, z)].

Assuming that L is invertible gives

H(w, z) = L−1 (EN (w, z) +R[PN (w, z), H(w, z)]) ,

and we introduce the nonlinear operator

Φ[H](w, z)
def
= L−1 [EN (w, z) +R[PN (w, z), H(w, z)] . (16)

We see that H is the truncation error associated with PN if and only if H is a fixed point
of Equation (16). The remainder of the section is devoted to the study of Φ.

We want to show that Φ has a unique fixed point in a small neighborhood of PN , and
we solve the problem in three steps.

Step 1: Show that the linear operator L is invertible. We will see that invertibility of L follows
if N is “large enough”.

Step 2: Establish some quadratic estimates for the nonlinear function R[PN (w, z), H(w, z)]
given by Equation (12).

Step 3: Obtain that the operator Φ is a contraction mapping in a certain neighborhood Uδ.

In order to formalize these steps we need to define appropriate Banach space norms.

2.1 Background: analytic functions and 2T -periodic families of an-
alytic N -tails

Let Matm×n(C) denote the collection of all m × n matrices with complex entries. For
A ∈ Matm×n(C) we employ the norm

‖A‖M = max
1≤i≤m

n∑
j=1

|aij |,

where |aij | is the usual complex absolute value.

11



Let U ⊂ C be a simply connected open domain in the complex plane, and f : U → C an
analytic function. We say that f is bounded on U if

sup
w∈U
|f(w)| <∞.

The set of all bounded analytic functions on U is a Banach space under the norm

‖f‖∞U
def
= sup

w∈U
|f(w)|.

The set of all functions f = (f1, . . . , fd) such that each fj : Ar → C, 1 ≤ j ≤ d is analytic,
bounded, and T -periodic is a Banach space under the product space (maximum) norm

‖f‖∞r
def
= max

1≤j≤d
‖fj‖∞Ar .

Similarly, we say that P : Ar × Dkν → Cd is bounded if

max
1≤j≤d

‖Pj‖∞Ar×Dkν <∞.

For P : Ar × Dkν → Cd given by the Taylor series

P (w, z1, . . . , zk) =

∞∑
|α|=0

aα(w)zα1
1 . . . zαkk ,

with aα : Ar → Cd bounded analytic functions, we define the two norms

‖P‖r,ν
def
=

∞∑
|α|=0

‖aα‖∞r ν|α|,

‖P‖∞r,ν
def
= max

1≤j≤d
‖Pj‖∞Ar×Dkν .

Note that it is always the case that ‖P‖∞r,ν ≤ ‖P‖r,ν even when the latter quantity is infinite.
Now for 1 ≤ i, j ≤ N let aij : Ar → C be bounded and 2T -periodic analytic functions,

and consider the matrix

A(w) =

 a11(w) . . . a1N (w)
...

. . .
...

aN1(w) . . . aNN (w)

 .

Define the norm

‖A‖∞r
def
= max

1≤i≤N

N∑
j=1

‖aij‖∞Ar . (17)

Then if g : Ar → Cd is a bounded, analytic, T -periodic function then we obtain a new
function Ag : Ar → Cd by the matrix multiplication A(w)g(w) and have that

‖Ag‖∞r ≤ ‖A‖∞r ‖g‖∞r .

We say that an analytic function h : Dkν → C is an analytic N -tail if

h(0) =
∂|α|

∂zα
h(0) = 0, for all α ∈ Nk, 0 ≤ |α| ≤ N.

12



Note that an analytic N -tail has Taylor series

h(z) =

∞∑
|α|=N+1

hαz
α,

converging absolutely and uniformly for |z| < ν. Analytic N -tails enjoy the following esti-
mate.

Lemma 2.1. Suppose that h : Dkν → C is an analytic N -tail with

‖h‖∞Dkν = sup
z∈Dkν

|h(z)| <∞.

Fix λ1, . . . , λk ∈ C and suppose that |λj | ≤ µ < 1 for 1 ≤ j ≤ k for some µ > 0. Then

sup
z∈Dkν

|h(λ1z1, . . . , λkzk)| ≤ µN+1 sup
z∈Dkν

|h(z)|. (18)

An elementary proof of (18) is given in [9]. The estimate above extends trivially to functions
h : Dkν → Cd whose component functions are analytic N -tails.

In the sequel we are interested in analytic N -tails with coefficients which are 2T -periodic
on Ar and analytic on Ar × Dkν . Such an H : Ar × Dkν → Cd is given by

H(w, z) =

∞∑
|α|=N+1

hα(w)zα,

where the sum converges absolutely for |imag(w)| < r, |z| < ν. Then for each fixed w0 ∈ Ar
the analytic function H(w0, z) is an analytic N -tail in z. We call such a function H a 2T -
periodic family of analytic N -tails. The space of 2T -periodic families of analytic N -tails is
a Banach space under both the ‖ · ‖r,ν and ‖ · ‖∞r,ν norms. Suppose that λ1, . . . , λk satisfy
the hypothesis of Lemma 2.1 and let Λ be the diagonal matrix with λ1, . . . , λk as diagonal
entries and zeros elsewhere. Then ‖H‖∞r,ν <∞ implies

‖H(w,Λz)‖∞r,ν ≤ µN+1‖H‖∞r,ν , (19)

as Lemma 2.1 applies uniformly for each fixed w ∈ Ar.
For bounded analytic functions f : Dkν → Cd we have the following bounds on derivatives.

The result is standard (and we refer to [8] for the proof).

Lemma 2.2 (Cauchy Bounds). Suppose that f : Dkν ⊂ Ck → Cd is bounded and analytic.
Then for any 0 < σ ≤ 1 we have that

‖∂if‖∞νe−σ ≤
2π

νσ
‖f‖∞ν .

2.2 Validation values and the main theorem

Take f : Cd → Cd, T , N , γ : Ar → Cd, λ1, . . . , λk ∈ C, ξj : Ar → Cd for 1 ≤ j ≤ k,
aα : Ar → Cd for 2 ≤ |α| ≤ N , and PN : Ar × Ck → Cd as in Assumptions 1, 2, 3 of Section
1.1.

We define the “tube” of radius ρ about γ to be

Uρ(γ) =
⋃
w∈Ar

Ddρ[γ(w)].
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Suppose that f is bounded and complex analytic on the tube Uρ(γ) ⊂ Cn. Consider

Df [PN (w, z)] = Df [γ(w) + P 1
N (w, z)],

where P 1
N (w, z)

def
=
∑N
|α|=1 aα(w)zα. Let

Ã(w, z)
def
= Df [PN (w, z)]−Df [γ(w)].

For the applications considered in the present work f is always an M -th order polynomial
with M = 2, 3. Then, since PN is an N -th order polynomial in z we have that

Ã(w, z) =

(M−1)N∑
|α|=1

Aα(w)zα (20)

is an (M−1)N -th order polynomial with 2T -periodic matrix coefficients Aα(w). The explicit
form of the Aα(w) is a problem dependent computation illustrated in examples.

Now fix ν > 0. The following definition tabulates the constants which need to be
computed in order to obtain validated bounds on the tail of PN .

Definition 2.3 (Validation values for an approximate solution of Equation (1)).
The positive constants κ, C̃, µ∗, ρ, ρ′, M1, M2, and ε are called validation values for the
approximate parameterization PN if

(i)
‖Df(γ)‖∞r ≤ κ,

(ii)

exp

(M−1)N∑
|α|=1

‖Aα‖∞r
|α1λ1 + . . .+ αkλk|

ν|α|

 ≤ C̃,
where the Aα = Aα(w) are the coefficients of Ã(w, z) as given in (20),

(iii)
µ∗ ≤ min

1≤i≤k
(|real(λ1)|, . . . , |real(λk)|), (21)

(iv)
max

1≤j≤n
#
{

(k, `) | 1 ≤ k, ` ≤ n such that ∂k∂`fj 6≡ 0
}
≤M1, (22)

(v)

sup
z∈Uρ(γ)

max
1≤i≤n

max
|β|=2

∣∣∣∣ ∂2

∂zβ
fi(z)

∣∣∣∣ ≤M2, (23)

(vi) 0 < ρ′ < ρ and
N∑
|α|=1

‖aα‖∞r ν|α| ≤ ρ′,

(insuring that image(PN ) ⊂ Uρ′(γ)).

(vii) Finally assume that
‖EN‖∞r,ν ≤ ε,

where EN (w, z) is as defined in (13).
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Theorem 2.4 (A-Posteriori Validation of a High Order Approximation of the
Stable Manifold of a Periodic Orbit). Suppose that κ, C̃, µ∗, ρ

′, M1, M2, and ε are
validation values for PN . Assume that N ∈ N and δ > 0 have that

•
N + 1 >

κ

µ∗
, (24)

•
δ < e−1 min

{
(N + 1)µ∗ − κ
2nπM1M2C̃

, ρ− ρ′
}
, (25)

•
2C̃

(N + 1)µ∗ − κ
ε < δ. (26)

Then there is a unique periodic family of analytic N -tails H : Ar × Dkν → Cn with

‖H‖∞r,ν ≤ δ,

having that
P (w, z) = PN (w, z) +H(w, z),

is the exact solution of Equation (1) on Ar × Dkν .

2.3 Spaces and Lemmas

First, we will exploit the following bound.

Lemma 2.5. Suppose that κ, C̃ are real positive constants with ‖Df(γ)‖∞r ≤ κ and

exp

(M−1)N∑
|α|=1

‖Aα‖∞r
|α1λ1 + . . .+ αkλk|

ν|α|

 ≤ C̃. (27)

Then for any w ∈ Ar, z ∈ Dkν , and t ≥ 0 we have the bound∣∣∣∣exp

(∫ t

0

Df
(
PN
(
w + s, eΛsz

) )
ds

)∣∣∣∣ ≤ C̃eκt.
Proof. Letting Ñ = (M − 1)N note that∣∣∣∣∫ t

0

Ã(w + s, eΛsz) ds

∣∣∣∣ ≤ ∫ t

0

∣∣∣∣∣∣
Ñ∑
|α|=1

Aα(w + s)
(
eΛsz

)α∣∣∣∣∣∣ ds
=

∫ t

0

Ñ∑
|α|=1

|Aα(w + s)|
∣∣∣e(α1λ1+...+αkλk)szα

∣∣∣ ds
≤

Ñ∑
|α|=1

‖Aα‖∞r
(∫ t

0

e(α1µ1+...+αkµk)s ds

)
ν|α|

=

Ñ∑
|α|=1

‖Aα‖∞r
1

α1µ1 + . . .+ αkµk

(
e(α1µ1+...+αkµk)t − 1

)
ν|α|

≤
Ñ∑
|α|=1

‖Aα‖∞r
|α1µ1 + . . .+ αkµk|

ν|α|.
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Then∣∣∣∣exp

(∫ t

0

Df
(
PN
(
w + s, eΛsz

) )
ds

)∣∣∣∣ = exp

∣∣∣∣∫ t

0

Df(γ(w + s)) ds+

∫ t

0

Ã
(
w + s, eΛsz

)
ds

∣∣∣∣
≤ exp

(∫ t

0

|Df(γ(w + s))| ds
)

exp

∣∣∣∣∫ t

0

Ã(w + s, eΛsz) ds

∣∣∣∣
≤ eκt exp

 Ñ∑
|α|=1

‖Aα‖∞r
|α1µ1 + . . .+ αkµk|

ν|α|


≤ C̃eκt,

as desired.

Remark 2.6 (General vector fields). If f is not a polynomial then of course the bound
for C̃ will be more complicated. We can always obtain an expression similar to Equation
(27), plus a small remainder, by considering a Taylor expansion for f (about any convenient
point). On the other hand, if the nonlinearity of f is given by elementary functions, then it
will be possible to bound C̃ using techniques of automatic differentiation.

We now define our function space. Let

X def
=
{
H : Ar × Dkν → Cd : H is a 2T -periodic family of analytic N -tails and ‖H‖∞ν,r <∞

}
,

and recall that X is a Banach Space under the ‖ · ‖∞r,ν norm. We denote the closed delta
neighborhood of the origin in X by

Uδ =
{
H ∈ X : ‖H‖∞r,ν ≤ δ

}
.

Lemma 2.7. Let L as defined by Equation (15). If

N + 1 >
κ

µ∗
, (28)

then L is boundedly invertible on X and

‖L−1‖X ≤
C̃

(N + 1)µ∗ − κ
. (29)

Proof. Let S ∈ X . We will show the existence of H ∈ X such that L[H] = S. Assuming it
exists (it does and it is given by Equation (33) below), consider the equation

L[H](w, z) =
∂

∂w
H(w, z) +DzH(w, z)Λz −Df [PN (w, z)]H(w, z) = S(w, z). (30)

For t ∈ R+ we fix w ∈ Ar, z ∈ Dkν and define the curve Γ : R+ → Ck+1 given by

Γ(t) =

(
w + t
eΛtz

)
.

We now make the change of variables

H̃(t)
def
= H ◦ Γ(t) = H

(
w + t, eΛtz

)
,

Ψ(t)
def
= Df [PN ◦ Γ](t) = Df [PN (w + t, eΛtz)],

S̃(t)
def
= S ◦ Γ(t) = S

(
w + t, eΛtz

)
,
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and observe that

d

dt
H̃(t) = DH(Γ(t)) · Γ′(t)

= [∂wH(Γ(t))|DzH(Γ(t))]

(
1

eΛtΛz

)
=

∂

∂w
H
(
w + t, eΛtz

)
+DzH

(
w + t, eΛtz

)
eΛtΛz.

Then we consider the ordinary differential equation

d

dt
H̃(t)−Ψ(t)H̃(t) = S̃(t),

and note that H̃(0) is the solution of Equation (30). We introduce the integrating factor

Ω(t)
def
= e−

∫ t
0

Ψ(τ) dτ ,

and note that Ω(0) = I and

Ω−1(t) = e
∫ t
0

Ψ(τ) dτ .

Then for any t, a ∈ R we have that

Ω(t)H̃(t) = Ω(a)H̃(a) +

∫ t

a

Ω(β)S̃(β) dβ. (31)

The next step is to evaluate the limit as a goes to infinity. We assume that H is bounded
(an assumption which will be justified momentarily) and see (recalling the definition of µ∗
in (21)) that

|Ω(a)H̃(a)| =
∣∣∣e− ∫ a

0
Ψ(τ) dτH(w + a, eΛaz)

∣∣∣
(a)

≤ e
∫ a
0
|Ψ(τ)| dτ (e−µ∗a)N+1 |H(w + a, z)|

(b)

≤ C̃eκae−(N+1)µ∗a‖H‖∞r,ν
= C̃‖H‖∞r,νe[−(N+1)µ∗+κ ]a, (32)

where (a) follows from Lemma 2.1 and (b) follows from Lemma 2.5. Now the hypothesis of
Equation (28) implies that (N + 1)µ∗ > κ and we have

lim
a→∞

|Ω(a)H̃(a)| = C̃‖H‖∞r,ν lim
a→∞

e[−(N+1)µ∗+κ ]a = 0.

Then (at least formally) we have that Equation (31) becomes

H̃(t) = −Ω−1(t)

∫ ∞
t

Ω(β)S̃(β) dβ.

Taking t = 0 gives

H(w, z) = H̃(0) = −
∫ ∞

0

[
e−

∫ β
0
Df[PN(w+τ,eΛτz) ] dτ

]
S
(
w + β, eΛβz

)
dβ. (33)

Now we take Equation (33) as the definition of H, and by running the argument back-
wards we see that H solves Equation (30), assuming that we can show that H is bounded.
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It is also clear upon inspection that H so defined is T -periodic on Ar in the variable w,
owing to the fact that PN and S̃ are. What remains is to show that H is bounded and
analytic in both w and z and that H is a T -periodic family of analytic N -tails.

By arguing as in Equation (32) we have

|Ω(β)S̃(β)| ≤ C̃e[−(N+1)µ∗+κ]β‖S‖∞r,ν , (34)

with S bounded and −(N + 1)µ∗ + κ < 0 by hypothesis. It follows that

|H(w, z)| = |H̃(0)|

=

∣∣∣∣− ∫ ∞
0

Ω(β)S̃(β) dβ

∣∣∣∣
≤ C̃‖S‖∞r,ν

∫ ∞
0

e[−(N+1)µ∗+κ]β dβ

≤
C̃‖S‖∞r,ν

(N + 1)µ∗ − κ
, (35)

and we see that H is indeed bounded. To see that H is analytic in any of w, z1, . . . , zk we
remark that Equation (34) shows that the integrand is bounded and we know the integrand
is analytic in each variable. Morera’s Theorem [63] then gives the analyticity of H. To
see that H is an N -tail we simply use that S is an N -tail and apply the Leibnitz rule on
Equation (33) (exploiting the boundedness of the integrand in order to pass the derivative
under the integral).

Since S was arbitrary we see that the desired inverse operator is defined explicitly by
L−1[S] = H. Taking the supremum in Equation (35) over all S with norm one gives the
bound claimed in the Equation (29).

Lemma 2.8. Assume that the hypotheses of Theorem 2.4 are satisfied. Given H ∈ X , let
R : Ar × Dkν → Cd be the function defined by

f [PN (w, z) +H(w, z)] = f [PN (w, z)] +Df [PN (w, z)]H(w, z) +R[PN (w, z), H(w, z)]. (36)

Then R is a T -periodic family of analytic N -tails satisfying the following bounds:

• For any δ ≤ ρ− ρ′ and H ∈ Uδ,

‖R(PN , H)‖∞r,ν ≤M1M2δ
2. (37)

• For any δ ≤ (ρ− ρ′)e−1 and H1, H2 ∈ Uδ we have

‖R[PN , H1]−R[PN , H2]‖∞r,ν ≤ 2πedM1M2δ‖H1 −H2‖∞r,ν . (38)

Proof. Let s
def
= ρ− ρ′. For any fixed w0, z0 ∈ Ar × Dkν and η ∈ Dds we have that

f [PN (w0, z0) + η] = f [PN (w0, z0)] +Df [PN (w0, z0)]η +R[PN (w0, z0), η],

where R is given by the Lagrange form of the Taylor Remainder

Rj [PN (w0, z0), η] =
∑
|β|=2

2

β!
ηβ
∫ 1

0

(1− t) ∂
2

∂ηβ
fj(PN (w0, z0) + tη) dt. (39)
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Applying Morera’s Theorem (e.g. see [63]) to Equation (39) shows that R is analytic
as (w0, z0) ∈ Ar × Dkν as well as η ∈ Dds vary. It is also clear that Rj is T -periodic in w0.
Moreover

|Rj [PN (w0, z0), η]| ≤
∑
|β|=2

2

β!
sup

z∈Uρ(γ)

∣∣∣∣ ∂2

∂zβ
fj(z)

∣∣∣∣ ‖η‖2d ≤M1M2‖η‖2d.

Fixing H ∈ Uδ with δ < s we define R : Ar × Dkν → Cd by R[PN (w, z), H(w, z)] and have

‖R[PN , H]‖∞r,ν ≤M1M2δ
2,

as desired.
We now introduce a “loss of domain” parameter σ ∈ (0, 1] which is used to leverage the

supremum bound on R into a Lipschitz bound. So, fix (w0, z0) ∈ Ar×Dkν and η1, η2 ∈ Dde−σs.
Then

R[PN (w0, z0), η1]−R[PN (w0, z0), η2] = DηR[PN (w0, z0), η̃](η1 − η2),

for some η̃ ∈ Dde−σs. The fact that R is analytic and zero to second order in η implies that
∂/∂ηjRi is analytic and zero to first order in η for each 1 ≤ i, j ≤ d. Then for any 0 < t < 1
we have

‖Dη R[PN (w0, z0), tη]‖M ≤ t‖Dη R[PN (w0, z0), η]‖M ,

Let t = δ/se−σ with 0 < σ ≤ 1 and note that 0 < t < 1 by the hypothesis given by Equation
(25) of Theorem 2.4. It follows that

‖Dη[PN (w0, z0), tη]‖M ≤
δ

se−σ
‖DηR[PN (w0, z0), η]‖M

≤ δ

se−σ
sup

|η|=e−σs
‖DR[PN (w0, z0), η]‖M

≤ δeσ

s

(
2πd

sσ
sup
|η|=s

|R[PN (w0, z0), η]

)

≤ δ 2πdeσ

σs2
M1M2s

2

≤ 2πedM1M2δ, (40)

as eσ/σ is minimized when σ = 1. Note that we have used the Cauchy Bounds of Lemma 2.2
in order to pass from the second to the third line of the estimate. The use of the Cauchy
Bounds explains the loss of domain and the parameter σ appearing in the argument.

Fixing H1, H2 ∈ Uδ we now have

‖R[PN , H1]−R[PN , H2]‖∞r,ν ≤ 2πedM1M2δ‖H1 −H2‖∞r,ν

as desired.

2.4 Proof of Theorem 2.4

We will show that the operator Φ: X → X defined in (16) has a unique fixed point in
Uδ ⊂ X . First note that Φ is well defined as the hypothesis of Equation (24) allow us to
apply Lemma 2.7 and obtain that L is boundedly invertible on X .
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Now for any H ∈ Uδ and consider

‖Φ[H]‖∞r,ν = ‖L−1 [EN +R[PN , H]] ‖∞r,ν
≤ ‖L−1‖∞r,ν‖EN‖∞r,ν + ‖L−1‖∞r,ν‖R[PN , H]‖∞r,ν

≤ C̃

(N + 1)µ∗ − κ
(
ε+M1M2δ

2
)

≤ δ. (41)

Here we have applied the bounds of Lemma 2.7, as well as the bound given by Equation
(37), the the definition of ε from condition (vii) if the definition of validation values, as well
as the hypothesis given by Equations (25) and (26) of the present theorem. This shows that
in fact Φ : Uδ → Uδ.

What remains is to show that Φ is a contraction on Uδ. To see this let H1, H2 ∈ Uδ. The
inequality hypothesized by Equation (25) of the present theorem gives that δ ≤ (ρ− ρ′)/e.
It follows that we can apply the bound given by Equation (38) to the expression

‖Φ[H1]− Φ[H2]‖∞r,ν = ‖L−1 (R[PN (w, z), H1(w, z)]−R[PN (w, z), H2(w, z)]) ‖∞r,ν

≤ C̃

(N + 1)µ∗ − κ
2πedM1M2δ‖H1 −H2‖∞r,ν . (42)

Here we have again used the bounds of Lemma 2.7. Moreover,

C̃

(N + 1)µ∗ − κ
2πedM1M2δ < 1

by the inequality hypothesised in Equation (25) of the present theorem. Then Φ: Uδ → Uδ is
a contraction mapping and hence has unique fixed point H ∈ Uδ. Since H is the truncation
error we have

‖P − PN‖∞r,ν = ‖H‖∞r,ν ≤ δ,

as desired.

2.5 Validation Algorithm

The parameters ν and the scalings of the basis functions ξj , 1 ≤ j ≤ k are free in the
discussion above. In theory there is no difference between fixing the norms of the basis
vectors and then choosing the size ν > 0 of the validation domain, or vice versa. In practice
however it is preferable to fix ν = 1 and choose numerically convenient scalings for the basis
functions. This is simply due to the fact that ν = 1 is the most stable choice in the ν|α|

terms appearing in the Taylor-norms.
Algorithms for optimizing the choice of the scalings are discussed in detail in [64], however

we make a few heuristic comments. In many applications it is sufficient to simply compute
once the parameterization PN with any convenient choice of scalings, and then examine the
growth of the resulting ‖pα‖∞r . If these coefficients grow either too fast or too slow then
simply rescale so that the desired decay rate is achieved. The dependence of the new decay
on the choice of rescaling is given explicitly in Equation (8). A good heuristic is to choose
that the highest order coefficients have magnitude close to machine epsilon.

Once the scalings and ν are picked then we try the following algorithm. If the algorithm
fails then we modify the scalings and try again.
Recipe: Input choice of ν from above.
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1. Choose: any positive constant κ with

‖Df(γ)‖∞r < κ.

In practice κ will be an interval arithmetic bound on ‖Df(γ)‖∞r as this quantity
depends only in the known Fourier coefficients of γ as well as the known decay rate
bounds.

2. Choose: a positive constant C̃ with

exp

(M−1)N∑
|α|=1

‖Aα‖∞r
|α1λ1 + . . .+ αkλk|

ν|α|

 ≤ C̃.
In practice C̃ is any bound on the sum obtained using interval arithmetic.

3. Choose: a constant ρ′ with

N∑
|α|=1

‖aα‖∞r ν|α| < ρ′.

In practice the terms ‖aα‖∞r are bound using the ‖aα‖r norms.

4. Choose: s > 0. For polynomial vector fields the choice of s is more or less arbitrary
and we often obtain good results with s = 0.1ρ′. Then define ρ to be any number with

ρ′ + s ≤ ρ.

If f is not polynomial then we have to pick a ρ > 0 and estimate the second derivative
of f in a ρ neighborhood of γ. This could be done either by hand, or more likely with
some preliminary interval arithmetic. Note that if f has poles then this imposes a
theoretical limit on the size of ρ. Next we make sure that ρ′ defined above is smaller
than ρ. s is then the difference.

5. Compute: M1 and M2 on the “tube” Uρ(γ). For quadratic vector fields the second
partials are of course constant.

6. Choose: ε to be any positive number with

‖EN‖∞r,ν ≤ ε.

7. Choose: µ∗ to be any lower bound on the absolute values of the real parts of the
stable eigenvalues.

8. Check:
N + 1 >

κ

µ∗
.

If not then the proof fails.

9. Choose: δ > 0 so that
2C̃

(N + 1)µ∗ − κ
ε ≤ δ. (43)

21



10. Check:

δ < e−1 min

(
(N + 1)µ∗ − κ
2nπM1M2C̃

, ρ− ρ′
)
. (44)

If not then the proof fails.

11. Return: δ.

If the proof does not fail before Step 11, then it succeeds and we have the validated bound

‖H‖∞r,ν ≤ ‖H‖r,ν ≤ δ,

for the truncation error associated with the approximation PN on the domain Ar × Dkν .

Remark 2.9 (Implementation details). In practice we must obtain the data hypothesized
in Assumptions 1, 2 and 3 of Section 1.1 by separate computer assisted arguments. Since the
functions γ(w), ξ1(w), . . . , ξk(w), and aα(w) for 2 ≤ |α| ≤ N are analytic and periodic, it is
reasonable to represent these functions as Fourier series. Then the first step is to compute
numerical approximations

γM (w) =

M∑
m=−M

γme
2πim
T w,

ξMj (w) =

M∑
m=−M

(ξj)me
2πim

2T w, 1 ≤ j ≤ k,

aMα (w) =

M∑
m=−M

aα,me
2πim

2T w, 2 ≤ |α| ≤ N.

In addition to these numerical approximations we need positive constants r, ε0, ε1, . . ., εk,
and εα, for 2 ≤ |α| ≤ N so that

‖γM − γ‖∞r ≤ ε0, ‖ξMj − ξj‖∞r ≤ εj , and ‖aMα − aα‖∞r ≤ εα, (45)

for 1 ≤ j ≤ k and 2 ≤ |α| ≤ N . In the present work we compute the approximate Fourier
coefficient sequences {γm}Mm=−M , {(ξj)m}Mm=−M for the periodic orbit/parameterization of
the normal bundles, as well as the constants r and ε1, ε1, . . . , εk, using the computer aided
methods of [14, 15] (for the periodic orbit) and the methods of [16, 17] (for the basis functions
of the normal bundles). The approximate Fourier coefficients {aα,m}Mm=−M all in Cd for the
solutions of the homological Equations are computed numerically using the methods of [1].
What remains is to compute validated constants εα for 2 ≤ |α| ≤ N satisfying (45). This
is topic of Section 3. We note that all of this data is assumed as input for the validation
algorithm above.

3 Rigorous solution of the homological equations

The goal of this section is to obtain computer assisted error bounds satisfying (45) on the
solutions aα : Ar → Cd of the homological equations for 2 ≤ |α| ≤ N . Or to put it another
way, the goal is to obtain the data hypothesized in Assumption 3 of Section 1.1. More
precisely, recall that for each α ∈ Nk we seek aα so that

daα(w)

dw
+ (α · Λ)aα(w) = (f ◦ P )α(w),
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where α · Λ def
= α1λ1 + . . .+ αkλk, and with

f(P (w, z)) =

∞∑
|α|=0

(f ◦ P )α(w)zα =

∞∑
|α|=0

∑
m∈Z

(f ◦ P )α,m e
2πi
2T mwzα.

For j = 1, . . . , d, denote

F (j)
α,m

def
=

(
2πim

2T
+ α · Λ

)
a(j)
α,m − (f ◦ P )

(j)
α,m . (46)

Denote
a = (aα)N|α|=2 = (a(j)

α ) j=1,...,d
|α|=2,...,N

,

with

aα =
(
a(1)
α , . . . , a(d)

α

)T
∈ Rd and a(j)

α =
(
a(j)
α,m

)
m∈Z

, for j = 1, . . . , d.

Similarly, denote
F = (Fα)N|α|=2 = (F (j)

α ) j=1,...,d
|α|=2,...,N

,

with

Fα =
(
F (1)
α , . . . , F (d)

α

)T
∈ Rd and F (j)

α =
(
F (j)
α,m

)
m∈Z

, for j = 1, . . . , d.

We look for a solution of
F (a) = 0. (47)

Given a bi-infinite sequence c = (cm)m∈Z of complex numbers and given ν ≥ 1, let

‖c‖1,ν
def
=
∑
m∈Z
|cm|ν|m|,

which is used to define the Banach space

`1ν
def
= {c = (cm)m∈Z : ‖c‖1,ν <∞} .

Denote

B(`1ν , `
1
ν)

def
=

{
A : `1ν → `1ν

∣∣ A is linear and |||A||| def
= sup
‖v‖1,ν=1

‖Av‖1,ν <∞

}

the space of bounded linear operator from `1ν to `1ν .

For each α ∈ Nk with |α| ∈ {2, . . . , N} and j = 1, . . . , d, we consider a
(j)
α ∈ `1ν . Let

n = n(m,N) be the cardinality

n = #
{
α = (α1, . . . , αk) ∈ Nk | |α| = α1 + · · ·+ αk ∈ {2, . . . , N}

}
.

For each i = 1, . . . , n, denote by α(i) ∈ Nk the corresponding multi-index such that |α(i)| ∈
{2, . . . , N}. In other words, we choose an ordering for the set of multi-indices satisfying
|α| ∈ {2, . . . , N}.

Consider the Banach space

X
def
=
(
`1ν
)nd

(48)
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endowed with the norm
‖a‖X = max

i=1,...,n
j=1,...,d

{
‖a(j)
α(i)‖1,ν

}
. (49)

The goal is to compute solutions of (47) within the Banach space (X, ‖ · ‖X) using
a Newton-Kantorovich type theorem (the radii polynomial approach, e.g. see [65, 14]).
This approach first requires computing an approximate solution using a finite dimensional
projection.

Given a Fourier truncation order M , consider a finite dimension projection Π(M) : X =(
`1ν
)nd → Rnd(2M−1) defined by

Π(M) :
(
`1ν
)nd → Rnd(2M−1) : a 7→ Π(M)a =

((
a

(j)
α(i),m

)
|m|<M

)
i=1,...,n
j=1,...,d

.

Given a ∈
(
`1ν
)nd

, denote aF
def
= Π(M)a. Consider the finite dimensional projection

F (m) : Rnd(2m−1) → Rnd(2m−1) of (47) given by

F (M)(aF ) =
(
F

(M)
α(i) (aF )

)n
i=1

def
= Π(M)F (aF ) ∈ Rnd(2M−1).

Assume that using an iterative scheme (e.g. Newton’s method), a numerical approximation
āF has been computed that is F (M)(āF ) ≈ 0. For the sake of simplicity of the presen-

tation, we introduce the notation ā ∈
(
`1ν
)nd

to denote the embedding of the numerical

approximation āF ∈ Rnd(2M−1) by adding zeroes in the tail.
The idea now is to introduce a Newton-like operator based at ā whose fixed point cor-

respond to a solution (near ā) of the infinite dimensional problem (47). A Newton-like
operator is an operator of the form

T (a) = a−AF (a), (50)

with A a linear operator chosen carefully so that it is a good enough approximate inverse for
the derivative operator DF (ā). Since the Newton operator a 7→ a −DF (a)−1F (a) should
be a contraction on a neighbourhood of an hyperbolic fixed point, there is hope that for
a carefully chosen approximation A of DF (ā)−1 the perturbation of the Newton operator
(50) will still be a contraction near the fixed point.

The computation of the operator A is problem dependent, and by using carefully the
structure of the problem under study, one can get better approximate inverses. However,
for the specific problem (47), there is natural choice that we present next.
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3.1 Construction of the approximate inverse A

Consider the Jacobian matrix DF (M)(ā) ∈Mnd(2M−1)(C) and let A(M) a numerically com-

puted pseudo-inverse of DF (M)(ā). Denote A(M) block-wise as

A(M) =



(A
(M)
1,1 )1,1 · · · (A

(M)
1,1 )1,d (A

(M)
1,n )1,1 · · · (A

(M)
1,n )1,d

...
. . .

... · · ·
...

. . .
...

(A
(M)
1,1 )d,1 · · · (A

(M)
1,1 )d,d (A

(M)
1,n )d,1 · · · (A

(M)
1,n )d,d

...
...

. . .
...

...

(A
(M)
n,1 )1,1 · · · (A

(M)
n,1 )1,d (A

(M)
n,n )1,1 · · · (A

(M)
n,n )1,d

...
. . .

... · · ·
...

. . .
...

(A
(M)
n,1 )d,1 · · · (A

(M)
n,1 )d,d (A

(M)
n,n )d,1 · · · (A

(M)
n,n )d,d


∈Mnd(2M−1)(C)

(51)

with (A
(M)
n1,n2)d1,d2 ∈ M(2M−1)(C) for 1 ≤ n1, n2 ≤ n and 1 ≤ d1, d2 ≤ d. The operator A

which acts as an approximate inverse for Df(x̄) is given block-wise by

A =



(A1,1)1,1 · · · (A1,1)1,d (A1,n)1,1 · · · (A1,n)1,d

...
. . .

... · · ·
...

. . .
...

(A1,1)d,1 · · · (A1,1)d,d (A1,n)d,1 · · · (A1,n)d,d
...

...
. . .

...
...

(An,1)1,1 · · · (An,1)1,d (An,n)1,1 · · · (An,n)1,d

...
. . .

... · · ·
...

. . .
...

(An,1)d,1 · · · (An,1)d,d (An,n)d,1 · · · (An,n)d,d


(52)

where (An1,n2)d1,d2 ∈ B
(
`1ν , `

1
ν

)
for 1 ≤ n1, n2 ≤ n and 1 ≤ d1, d2 ≤ d. For c = (cm)m∈Z ∈

`1ν , denote by cF = (c−M+1, . . . , cM−1) ∈ C2M−1.

Given b = (bα(i))
n
i=1 = (b

(j)
α(i)) i=1,...,n

j=1,...,d
∈ X, the action of the operator A on b is given by

(Ab)
(j1)
α(i1) =

n∑
i2=1

(
Ai1,i2bα(i2)

)(j1)
=

n∑
i2=1

d∑
j2=1

(Ai1,i2)j1,j2b
(j2)
α(i2),

where the action of (Ai1,i2)j1,j2 on c ∈ `1ν is given by

((Ai1,i2)j1,j2c)m =


(

(A
(M)
i1,i2

)j1,j2cF

)
m
, |m| < M,

δi1,i2δj1,j2

(
1

2πim
2T + α(i1) · Λ

)
cm, |m| ≥M,

(53)

where δi,j equals 1 if i = j and 0 otherwise.

Lemma 3.1. Define T as in (50) with A defined by (52). Then

AF : X → X. (54)

25



Proof. Let h ∈ X, b
def
= F (h) and a

def
= Ab. Denote b = (bα(i))

n
i=1 = (b

(j)
α(i)) i=1,...,n

j=1,...,d
. The goal

is to show that a ∈ X. We have

a =
{
aα(i)

}n
i=1

=
{
a

(j)
α(i)

}
i=1,...,n
j=1,...,d

=
{

(Ab)
(j)
α(i)

}
i=1,...,n
j=1,...,d

=

{
n∑

i2=1

(
Ai,i2bα(i2)

)(j)}
i=1,...,n
j=1,...,d

=


n∑

i2=1

d∑
j2=1

(Ai,i2)j,j2b
(j2)
α(i2)


i=1,...,n
j=1,...,d

.

Fix i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, and let

c(i, j)
def
=

n∑
i2=1

d∑
j2=1

(Ai,i2)j,j2b
(j2)
α(i2).

Let us show that c(i, j) ∈ `1ν . Recalling (83), (46) and that b = F (h), we have b
(j2)
α(i2) =

F
(j2)
α(i2)(h), and therefore

‖c(i, j)‖1,ν =

∞∑
m=−∞

|c(i, j)m|ν|m|

=

−M∑
m=−∞

∣∣∣∣∣
(

1
2πim
2T + α(i) · Λ

)(
F

(j)
α(i)(h)

)
m

∣∣∣∣∣ ν|m|
+

M−1∑
m=−M+1

∣∣∣∣∣∣
 n∑
i2=1

d∑
j2=1

(A
(M)
i1,i2

)j1,j2

(
F

(j2)
α(i2)(h)

)
F


m

∣∣∣∣∣∣ ν|m|
+

∞∑
m=M

∣∣∣∣∣
(

1
2πim
2T + α(i) · Λ

)(
F

(j)
α(i)(h)

)
m

∣∣∣∣∣ ν|m|
=

−M∑
m=−∞

∣∣∣∣∣
(

1
2πim
2T + α(i) · Λ

)[(
2πim

2T
+ α(i) · Λ

)
h

(j)
α(i),m − (f ◦ P )

(j)
α(i),m (h)

]∣∣∣∣∣ ν|m|
+

M−1∑
m=−M+1

∣∣∣∣∣∣
 n∑
i2=1

d∑
j2=1

(A
(M)
i1,i2

)j1,j2

(
F

(j2)
α(i2)(h)

)
F


m

∣∣∣∣∣∣ ν|m|
+

∞∑
m=M

∣∣∣∣∣
(

1
2πim
2T + α(i) · Λ

)[(
2πim

2T
+ α(i) · Λ

)
h

(j)
α(i),m − (f ◦ P )

(j)
α(i),m (h)

]∣∣∣∣∣ ν|m|,
where the middle sum is finite, and the first and the third sums are bounded since h

(j)
α(i) ∈ `

1
ν ,

and since by the Banach algebra property of `1ν , we have that (f ◦ P )
(j)
α(i) (h) ∈ `1ν . Therefore,

‖c(i, j)‖1,ν <∞ for all i ∈ {1, . . . , n} and j ∈ {1, . . . , d}. Hence, a = AF (h) ∈ X.
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We introduce the notation conj(z) to denote the complex conjugate of a complex number
z ∈ C. Since we are interested in real solutions, we impose the following symmetries on the
blocks of A. Assume that A(M) satisfies

((A
(M)
i1,i2

)j1,j2)−k1,−k2
= conj

(
(A

(M)
i1,i2

)j1,j2)k1,k2

)
, ∀ k1, k2 = −M + 1, . . . ,M − 1. (55)

Define the space

Xsym
def
=
( ˜̀1
ν

)nd
, (56)

where ˜̀1
ν

def
=
{
c ∈ `1ν | c−m = conj(cm) ∀ m ∈ Z

}
. (57)

Denote by Br(ā) the closed ball of radius r > 0 centered at ā in the Banach space X,
that is

Br(ā) = {a ∈ X : ‖a− ā‖X ≤ r}.

Lemma 3.2. Assume that ā ∈ Xsym and set r > 0. Define T as in (50) and let A defined
by (52) such that the assumption (55) holds. Then

AF : Xsym → Xsym. (58)

Assume moreover that T : Br(ā) → Br(ā) is a contraction, and let ã ∈ X the unique fixed
point of T in Br(ā) which exists by the contraction mapping theorem. Then, ã ∈ Xsym.

Proof. We begin by showing that (54) holds. Let h ∈ Xsym, b
def
= F (h) and a

def
= Ab. As in

the proof of Lemma 3.1, we have that

a =


n∑

i2=1

d∑
j2=1

(Ai,i2)j,j2b
(j2)
α(i2)


i=1,...,n
j=1,...,d

.

By Lemma 3.1, we know that ‖a‖X <∞. It remains to show that each component a
(j)
α(i) is

in ˜̀1
ν . Now, for each i, i2 = 1, . . . , n and j, j2 = 1, . . . , d, let c

def
= (Ai,i2)j,j2b

(j2)
α(i2). Then, for

each m ∈ Z, and using the symmetry assumption (55),

c−m =

∞∑
m1=−∞

((Ai,i2)j,j2)−m,k1

(
b
(j2)
α(i2)

)
k1

=

∞∑
k1=−∞

((Ai,i2)j,j2)−m,−k1

(
b
(j2)
α(i2)

)
−k1

=

∞∑
k1=−∞

conj
(

((Ai,i2)j,j2)m,k1

)
conj

((
b
(j2)
α(i2)

)
k1

)

= conj

( ∞∑
k1=−∞

((Ai,i2)j,j2)m,k1

(
b
(j2)
α(i2)

)
k1

)
= conj (c−m) .

Finally, by (54), T : Xsym → Xsym. Using that ā ∈ Xsym ∩ Br(ā), and that Xsym is a
closed subset of X, we obtain that

ã = lim
n→∞

T n(ā) ∈ Xsym.
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3.2 The radii polynomial approach

The goal of the present section is to determine an efficient way of determining a ball of the
form Br(ā) on which the operator T : X → X as defined in (50) is a contraction.

For each i = 1, . . . , n and j = 1, . . . , d, consider bounds Y
(j)
α(i) and Z

(j)
α(i) satisfying∥∥∥∥(T (ā)− ā

)(j)

α(i)

∥∥∥∥
1,ν

≤ Y (j)
α(i) and sup

b,c∈Br(0)

∥∥∥∥(DT (ā+ b)c
)(j)

α(i)

∥∥∥∥
1,ν

≤ Z(j)
α(i). (59)

Remark 3.3 (The bound Z
(j)
α(i) as a polynomial in r). To compute Z

(j)
α(i) for i = 1, . . . , n

and j = 1, . . . , d, one estimates (DT (ā+ b)c)
(j)
α(i) for all b, c ∈ Br(0). This is equivalent to

estimating (DT (ā+ ur)vr)
(j)
α(i) for all u, v ∈ B1(0). If the nonlinearities of the vector field

f are polynomials, then F will consists of Cauchy products of discrete convolutions. Since
T (x) = x − AF (x) and DT (ā + ur)vr ∈ X, then each component of DT (ā + ur)vr can be
expanded as a polynomial in r with the coefficients being in `1ν .

Hence, from now on we assume that the bound Z
(j)
α(i) = Z

(j)
α(i)(r) is polynomial in r.

Definition 3.4. For each i = 1, . . . , n and j = 1, . . . , d, the radii polynomial p
(j)
α(i)(r) is

given by

p
(j)
α(i)(r)

def
= Y

(j)
α(i) + Z

(j)
α(i)(r)− r. (60)

Lemma 3.5. Define

I =

n⋂
i=1

d⋂
j=1

{
r > 0 : p

(j)
α(i)(r) < 0

}
. (61)

If I 6= ∅, then I = (I−, I+) is an open interval, and for any fixed r̄ ∈ I, the ball Br̄(ā)
contains a unique solution of (47).

The proof of this result is standard (e.g. see [14, 65, 66]) and will be omitted.
Before proceeding with the explicit computation of the bounds satisfying (59), we present

a remark describing how a successful application of Lemma 3.5 can be used to obtain the
rigorous error bounds required in (45).

Remark 3.6. Consider the radii polynomials (60) constructed with a fixed decay rate ν > 1.
Let I the set defined in (61) and assume it is non empty. Let r̄ ∈ I and let a ∈ Br̄(ā) such
that F (a) = 0. Then

‖a− ā‖X = max
i=1,...,n
j=1,...,d

{
‖a(j)
α(i) − ā

(j)
α(i)‖1,ν

}
≤ r̄. (62)

Let α be a multi-index such that 2 ≤ |α| ≤ N . In the context of the error bounds (45), set
aMα = āα. Also, set

r =
T

π
log(ν). (63)
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the width of the strip Ar in the complex plane.Then, 2 ≤ |α| ≤ N , using (62),

‖aMα − aα‖∞r = ‖āα − aα‖∞r
= max

1≤j≤d
‖ā(j)
α − a(j)

α ‖∞Ar

= max
1≤j≤d

sup
w∈Ar

|ā(j)
α (w)− a(j)

α (w)|

= max
1≤j≤d

sup
w∈Ar

∣∣∣∣∣
∞∑

m=−∞
ā(j)
α,me

2πim
2T w − a(j)

α,me
2πim

2T w

∣∣∣∣∣
≤ max

1≤j≤d
sup
w∈Ar

∞∑
m=−∞

∣∣∣ā(j)
α,m − a(j)

α,m

∣∣∣ ∣∣∣eπimT w
∣∣∣

≤ max
1≤j≤d

∞∑
m=−∞

∣∣∣ā(j)
α,m − a(j)

α,m

∣∣∣ eπ|m|T r

≤ max
1≤j≤d

∞∑
m=−∞

∣∣∣ā(j)
α,m − a(j)

α,m

∣∣∣ ν|m|
= max

1≤j≤d

∥∥∥ā(j)
α − a(j)

α

∥∥∥
ν

≤ εα.

Hence, the rigorous error bound required in (45) can be set to be εα
def
= r̄ for all 2 ≤ |α| ≤ N .

Here is our general strategy: we use Lemma 3.5 to solve (47) and Remark 3.6 shows how
the rigorous error bounds required in (45) can be obtained. Next, we attempt to provide
general formulas for the construction of the radii polynomials valid for any vector field, any
periodic orbit, no matter what the dimension of the manifold and the dimension of the
phase space are. However, some of the formula would be significantly hard to write in the
full generality and almost impossible to read, hence we prefer to combine the exposition of
the general case with a concrete example.

To begin with, we remind that the unknowns of the problem are the sequences a
(j)
α ∈ `1ν

of Fourier coefficients of the functions a
(j)
α (w) where |α| ∈ {2, . . . , N} while the Fourier

coefficients of the function a
(j)
α (w) with |α| ∈ {0, 1} are data for the problem. More precisely

a
(j)
0 is the sequence of Fourier coefficients on the basis of 2T -periodic functions of the periodic

orbit γ(t) while a
(j)
α with |α| = 1 are sequences of the Fourier coefficients forming the normal

bundle. We assume that both the periodic orbit and the linear bundle have been previously
computed and that the data are given in the form

a(j)
α = ā(j)

α + Ea(j)
α , |α| ∈ {0, 1} (64)

where (ā
(j)
α )m ≡ 0 for any |m| > M and the remainder Ea(j)

α is known only in norm,

‖Ea(j)
α ‖1,ν ≤ ε(j)α .
For any a ∈ X, the function F (a) depends on the data aα with |α| ∈ {0, 1}. Let us write

explicitly such a dependence as F (a) = F ({aα}1‖α|=0, a) = F ({āα + Eaα}1‖α|=0, a). Denote

F̄ (a) = F ({āα}1‖α|=0, a) and introduce EF (a) so that the equality holds

F (a) = F̄ (a) + EF (a). (65)
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In practice, EF (a) is a correction that can only be estimated in norm, since the contributions
Eaα, |α| ∈ {0, 1} are only known in norm. Afterwards, the notation E· always stands for a
quantity the knowledge of which is only given in norm.

Similarly, the derivative DF (a) splits into the sum

DF (a) = DF (a) + EDF (a) (66)

where DF (a) = DF ({āα}1|α|=0, a).

<<COMMENT>> What are ε0 and ε1? Why the dependency is only on these terms?

JP

SOLVED !!

3.2.1 Bound Y

Formally,∥∥∥∥(AF (ā)
)(j)

α(i)

∥∥∥∥
1,ν

=

∥∥∥∥∥∥
n∑

i2=1

d∑
j2=1

(Ai,i2)j,j2

[
F̄ (ā)

(j2)
α(i2) + EF (j2)

α(i2)(ā)
]∥∥∥∥∥∥

1,ν

≤

∥∥∥∥∥∥
n∑

i2=1

d∑
j2=1

(Ai,i2)j,j2 F̄ (ā)
(j2)
α(i2)

∥∥∥∥∥∥
1,ν

+

∥∥∥∥∥∥
n∑

i2=1

d∑
j2=1

(Ai,i2)j,j2EF
(j2)
α(i2)(ā)

∥∥∥∥∥∥
1,ν

.

Any F̄ (ā)
(j)
α is a finite dimensional sequence, the length of which depends on the degree of

the nonlinearity of the vector field. Therefore the first sum is a finite computations which
can be rigorously bounded using interval arithmetic. For the second sum we estimate

<<COMMENT>> Is it really what is done here? Don’t we loose the fact that

somehow only the tail of A is involved? JP

Why it should be like that? All the EF (j2)

α(i2)
(ā) are sequences different than

zero also in the finite part !!∥∥∥∥∥∥
n∑

i2=1

d∑
j2=1

(Ai,i2)j,j2EF
(j2)
α(i2)(ā)

∥∥∥∥∥∥
1,ν

≤
n∑

i2=1

d∑
j2=1

|||(Ai,i2)j,j2 ||| ‖EF
(j2)
α(i2)(ā)‖1,ν

and we take advantage from the algebra property ‖a∗b‖1,ν ≤ ‖a‖1,ν‖b‖1,ν in order to bound

‖EF (j2)
α(i2)‖1,ν .

3.2.2 The bounds Z
(j)
α(i), i = 1, . . . , n, j = 1, . . . , d

For each i = 1, . . . , n and j = 1, . . . , d we seek a bound Z
(j)
α(i), a polynomial in the variable

r satisfying

sup
b,c∈Br(0)

∥∥∥∥(DT (ā+ b)c
)(j)

α(i)

∥∥∥∥
1,ν

≤ Z(j)
α(i)(r).

Recalling that DF (M)(ā) ∈ Mnd(2M−1)(C)(ā) is the Jacobian of F (M) at ā, denote as

DF (M) = {(DF (M)
n1,n2)d1,d2

} the component-wise representation of DF (M)(ā) similar to (51).
Define the linear operator A† so that, for any b ∈ (`1ν)nd

(A†b)
(j1)
α(i1) =

n∑
i2=1

(
A†i1,i2bα(i2)

)(j1)

=

n∑
i2=1

d∑
j2=1

(A†i1,i2)j1,j2b
(j2)
α(i2),
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where the action of (A†i1,i2)j1,j2 on h ∈ `1ν is given by

(
(A†i1,i2)j1,j2h

)
m

=


(

(DF
(M)
i1,i2

)j1,j2hF

)
m
, |m| < M,

δi1,i2δj1,j2

(
2πim

2T
+ α(i1) · Λ

)
hm, |m| ≥M,

(67)

where δi,j equals 1 if i = j and 0 otherwise.
Consider now the splitting

DT (ā+ b)c = (I−ADF (ā+ b))c = (I−AA†)c−A(DF (ā)−A†)c−A(DF (ā+ b)−DF (ā))c

and ∥∥∥∥(DT (ā+ b)c
)(j)

α(i)

∥∥∥∥
1,ν

≤
∥∥∥∥(I −AA†)c)(j)

α(i)

∥∥∥∥
1,ν

+

∥∥∥∥(A(DF (ā)−A†)c
)(j)

α(i)

∥∥∥∥
1,ν

+

∥∥∥∥(A(DF (ā+ b)−DF (ā))c
)(j)

α(i)

∥∥∥∥
1,ν

.

Since b, c ∈ Br(0), we can factor out r and write b = ru and c = rv where u, v ∈ B1(0). This

means that u = {u(j)
α(i)} i=1,...,n

j=1,...,d
satisfies ‖u(j)

α(i)‖1,ν ≤ 1 for any i = 1, . . . , n and j = 1, . . . , d.

The same holds for v.
The bound is constructed as

Z
(j)
α(i)(r) = (Z0)

(j)
α(i)r + (Z1)

(j)
α(i)r + (Z2)

(j)
α(i)r

2 + · · ·+ (Zp)
(j)
α(i)r

p

where ∥∥∥∥((I −AA†)v
)(j)

α(i)

∥∥∥∥
1,ν

≤ (Z0)
(j)
α(i), ‖v‖X ≤ 1∥∥∥∥(A(DF (ā)−A†)v

)(j)

α(i)

∥∥∥∥
1,ν

≤ (Z1)
(j)
α(i), ‖v‖X ≤ 1∥∥∥∥(A(DF (ā+ ru)−DF (ā))rv

)(j)

α(i)

∥∥∥∥
1,ν

≤ (Z2)
(j)
α(i)r

2 + · · ·+ (Zp)
(j)
α(i)r

p, ‖u‖X ≤ 1, ‖v‖X ≤ 1.

The exponent p refers to the maximal power of r that appears on the last relation and equals
the degree of the polynomial nonlinearity of the vector field f(x).

3.2.3 The bound Z0

Denote by B
def
= I − AA†. Since the tail diagonal components of (Ai,i)j,j are defined as

the inverse of the tail diagonal components of (A†i,i)j,j , the operator B results in a finite
dimensional operator acting on vF . Hence

(
(I −AA†)v

)(j)

α(i)
= (Bv)

(j)
α(i) =

n∑
i2=1

d∑
j2=1

(Bi,i2)j,j2 (vF )
(j2)
α(i2).

The operatorDF (M) used in the definition ofA† represents the genuine (finite-dimensional)
Jacobian of F . Therefore DF (M) and A† inherit the same splitting already discussed for
DF , that is A† = Ā† + EA†.
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<<COMMENT>> Don’t we have that EB = 0? JP

DF (M) and thus A† depend on a0 and a1 both given within bounds. So when computing

AA† one splits A(Ā† + EA†). !!

Thus, we set B = B̄ + EB where B̄ = I −AĀ† and EB = −AEA†. It follows∥∥∥∥((I −AA†)v
)(j)

α(i)

∥∥∥∥
1,ν

≤ ‖(B̄v)
(j)
α(i)‖1,ν +

∥∥∥∥((AEA†)v
)(j)

α(i)

∥∥∥∥
1,ν

≤
n∑

i2=1

d∑
j2=1

|||(B̄i,i2)j,j2 |||+
n∑

i2=1

d∑
j2=1

|||(Ai,i2)j,j2 |||
∥∥∥(EA†(v))

(j2)
α(i2)

∥∥∥
1,ν
.

3.2.4 The bound Z1∥∥∥∥(A(DF (ā)−A†)v
)(j)

α(i)

∥∥∥∥
1,ν

≤ (Z1)
(j)
α(i), ‖v‖X ≤ 1.

In order to properly compute a bound of the above norm, we need to recast the quantity
A(DF (ā) − A†)v as a linear operator acting on the components of v. It is convenient to
treat the linear operator DF (ā) − A† as a matrix of operators. We remind that the index
i ∈ {1, . . . , n} and j runs between 1 and d. Without separating further the different role of
the two indexes, we can consider a unique index ranging from 1 to nd labelling the elements
of v.

Suppose that the operator DF (ā)− A† is represented by the matrix Γ = Γ(s, t), where

s, t ∈ {1, . . . , nd} and Γ(s, t) ∈ B(`1ν , `
1
ν) for any s, t. That is,

[(
DF (ā) − A†

)
v
]
s

=∑
t Γ(s, t)vt. Suppose also that A is represented by A(p, q), p, q ∈ {1, . . . nd}. Then the

operator A(DF (ā)−A†) is represented by the matrix AΓ with AΓ(q, t) =
∑
sA(q, s)Γ(s, t),

AΓ(q, t) ∈ B(`1ν , `
1
ν) and

(
A(DF (ā)−A†)v

)
q

=
∑
tAΓ(q, t)vt. Therefore

∥∥∥∥(A(DF (ā)−A†)v
)
q

∥∥∥∥
1,ν

≤
∑
t

‖AΓ(q, t)vt‖1,ν ≤
∑
t

∑
s

‖A(q, s)Γ(s, t)vt‖1,ν . (68)

Also, we separate the ε-contribution and write Γ(s, t) = Γ(s, t) + EΓ(s, t). Accordingly,
the general receipt for the definition of Z1

q is∥∥∥∥(A(DF (ā)−A†)v
)
q

∥∥∥∥
1,ν

≤
∑
t

∑
s

‖A(q, s)(Γ(s, t) + EΓ(s, t))vt‖1,ν

≤
∑
t

∑
s

|||A(q, s)Γ(s, t)|||+
∑
t

∑
s

|||A(q, s)||| ‖EΓ(s, t)vt‖1,ν

=: Z1
q .

(69)
The previous formula provides the scheme for the computation of the bound Z1 for any
given vector field. However, the definition of Γ is problem dependent, hence we prefer to
present more details about the construction of the bound Z1 having a concrete case in mind.
That will be done in the subsequent section, where the Lorenz system is considered as toy
model.
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3.2.5 Bound Zi, 2 ≤ i ≤ p

For the construction of the bound Zi, 2 ≤ i ≤ p we proceed as follows: define a vec-
tor of sequences {Vq}ndq=1, Vq = {(Vq)m}m∈Z so that Vq contains the ri contributions of[(
DF (ā+ ru)−A†

)
rv
]
q
. Then introduce V = {Vq}ndq=1 so that Vq ≤ sup‖u‖X≤1,‖v‖X≤1 ‖Vq‖1,ν .

Finally, define

Ziq =
∑

1≤t≤nq

|||A(q, t)|||Vt.

3.3 Enclosure of aα in case of large N

The first condition required by Theorem 2.4 is that (N + 1) > A/µ∗, where A only depends
on the jacobian of the vector field along γ and µ∗ on the Floquet exponents. If the degree of
the polynomial nonlinearity of the vector field is large, or the magnitude of orbit γ is large
in phase space, the bound A can be considerably large. Also, if the real part of the Floquet
exponents are small, µ∗ is small. The combination of these factors may lead to a choice of
large N . From the theoretical point of view, the procedure so far exposed is well working

for any N . On the other hand, the number of equation in the nonlinear system F
(j)
α,m = 0

to be rigorously solved increases with N and the effective computation can be problematic.
In this section we present a modification of the technique that allows to compute the

coefficients aα when |α| is large. The key observation is that ‖aα‖∞r → 0 for |α| large
enough, thus it is reasonable to compute the enclosure of aα around āα = 0.

Suppose that for a choice of Ñ < N the method of the previous sections returns the
enclosure of the functions aα(w) for |α| ≤ Ñ . We are now concerned with the computation

of aα(w) for Ñ < |α| ≤ N , that is, we need to solve F
(j)
α,m = 0, in the unknowns a

(j)
α (w),

Ñ < |α| ≤ N . Instead, aα with |α| ≤ Ñ are data of the problem and given within rigorous
bounds computed before.

Since Fα depends on aα and on aβ with |β| ≤ |α| we can solve layer-by-layer. That

means, we solve {Fα = 0}|α|=Ñ+1 in the unknown {aα}|α|=Ñ+1. Once the Ñ + 1 layer

is rigorously enclosed, we move to the next Ñ + 2 layer, treating the previous computed
coefficients as data for the new problem.

We apply the same technique as before, with the following modifications.

• The numerical approximate solution ā is set to zero. For a choice of M , that might

be different than the previous, define ā
(j)
α,m = 0 for any |m| < M , j = 1, . . . , d,

Ñ < |α| ≤ N .

• The operators A and A†, see (83), (67) are now defined as diagonal operators in α,
that is Ai1,i2 ≡ 0 if i1 6= i2. The same for A†. In practice only the Jacobian of Fα with
respect to aα is considered in constructing A and A†, even in the finite dimensional
subspace. Use the notation Aα,α in place of Ai,i when α = α(i).

The definition of the Z bound is the same as before. However, since A† and A are diagonal
in α, the operators Γ(s, t) are slightly different and the sum (68) is taken over those s’s
that refer to the same α as q. The meaning of these statements will be clearer in the next
section, where the computational technique is applied to the Lorenz system.

33



4 A study case: the Lorenz system

The Lorenz vector field is given by

f(x, y, z) =

 −σx+ σy
ρx− y − xz
−βz + xy

 , (σ, β, ρ ∈ R). (70)

The composition of f and the parameterisation P reads as

(f ◦ P )α(w) =

 −σa(1)
α (w) + σa

(2)
α (w)

ρa
(1)
α (w)− a(2)

α (w)−
(
a(1)a(3)

)
α

(w)

−βa(3)
α (w) +

(
a(1)a(2)

)
α

(w)

 ,

where(
a(1)a(3)

)
α

(w)
def
=

∑
α1+α2=α
αi≥0

a(1)
α1

(w)a(3)
α2

(w) and
(
a(1)a(2)

)
α

(w)
def
=

∑
α1+α2=α
αi≥0

a(1)
α1

(w)a(2)
α2

(w).

Moreover,

(f ◦ P )α,m =

 −σa(1)
α,m + σa

(2)
α,m

ρa
(1)
α,m − a(2)

α,m −
(
a(1)a(3)

)
α,m

−βa(3)
α,m +

(
a(1)a(2)

)
α,m

 ,

where(
a(1)a(3)

)
α,m

=
∑

α1+α2=α
αi≥0

(
a(1)
α1
∗ a(3)

α2

)
m

and
(
a(1)a(2)

)
α,m

=
∑

α1+α2=α
αi≥0

(
a(1)
α1
∗ a(2)

α2

)
m
,

with(
a(1)
α1
∗ a(3)

α2

)
m

=
∑

k1+k2=m
ki∈Z

a
(1)
α1,k1

a
(3)
α2,k2

and
(
a(1)
α1
∗ a(2)

α2

)
m

=
∑

k1+k2=m
ki∈Z

a
(1)
α1,k1

a
(2)
α2,k2

.

Therefore, in the context of the Lorenz system, (46) is given by


F

(1)
α,m

F
(2)
α,m

F
(3)
α,m

 =



(
2πim

2T
+ αλ

)
a(1)
α,m + σa(1)

α,m − σa(2)
α,m(

2πim

2T
+ αλ

)
a(2)
α,m − ρa(1)

α,m + a(2)
α,m +

∑
α1+α2=α
αi≥0

(
a(1)
α1
∗ a(3)

α2

)
m(

2πim

2T
+ αλ

)
a(3)
α,m + βa(3)

α,m −
∑

α1+α2=α
αi≥0

(
a(1)
α1
∗ a(2)

α2

)
m


, (71)

with 2 ≤ α ≤ N and m ∈ Z.
Concerning the separation (65), by direct computation, it results

(EF (a))2 =

 0

Ea(1)
0 ∗ a

(3)
2 + Ea(3)

0 ∗ a
(1)
2 + Ea(1)

1 ∗ a
(3)
1 + Ea(3)

1 ∗ a
(1)
1 + Ea(1)

1 ∗ Ea
(3)
1

Ea(1)
0 ∗ a

(2)
2 + Ea(2)

0 ∗ a
(1)
2 + Ea(1)

1 ∗ a
(2)
1 + Ea(2)

1 ∗ a
(1)
1 + Ea(1)

1 ∗ Ea
(2)
1


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(EF (a))α =

 0

Ea(1)
0 ∗ a

(3)
α + Ea(3)

0 ∗ a
(1)
α + Ea(1)

1 ∗ a
(3)
α−1 + Ea(3)

1 ∗ a
(1)
α−1

Ea(1)
0 ∗ a

(2)
α + Ea(2)

0 ∗ a
(1)
α + Ea(1)

1 ∗ a
(2)
α−1 + Ea(2)

1 ∗ a
(1)
α−1

 , ∀α > 2.

Since `1ν is an algebra with the convolution product, it follows that

‖(EF (a))α‖1,ν ≤

 0

ε
(1)
0 ‖a

(3)
α ‖1,ν + ε

(3)
0 ‖a

(1)
α ‖1,ν + ε

(1)
1 ‖a

(3)
α−1‖1,ν + ε

(3)
1 ‖a

(1)
α−1‖1,ν

ε
(1)
0 ‖a

(2)
α ‖1,ν + ε

(2)
0 ‖a

(1)
α ‖1,ν + ε

(1)
1 ‖a

(2)
α−1‖1,ν + ε

(2)
1 ‖a

(1)
α−1‖1,ν

+

 0

ε
(1)
1 ε

(3)
1

ε
(1)
1 ε

(2)
1

 δα,2 .

The derivative of F at any point a is a linear operator DF (a) : (`1ν)3n → (`1ν)3n. The action
of DF (a) on v ∈ (`1ν)3n is explicitly given by

((
DF (a)(v)

)
α

)
m

=

(
2πim

2T
+ αλ

)
vα,m +

 σv(1)
α,m − σv(2)

α,m

−ρv(1)
α,m + v(2)

α,m

+βv(3)
α,m

 (72)

+



0∑
α1+α2=α
αi≥0,α1≥2

(
v(1)
α1
∗ a(3)

α2

)
m

+
∑

α1+α2=α
αi≥0,α2≥2

(
a(1)
α1
∗ v(3)

α2

)
m

−
∑

α1+α2=α
αi≥0,α1≥2

(
v(1)
α1
∗ a(2)

α2

)
m
−

∑
α1+α2=α
αi≥0,α2≥2

(
a(1)
α1
∗ v(2)

α2

)
m


For any a, the derivative DF (a) splits into two parts (66). The data a0 and a1 contribute
only to the nonlinearity, therefore we have

(
EDF (a)(v)

)
α

=

 0

Ea(1)
0 ∗ v

(3)
α + Ea(3)

0 ∗ v
(1)
α + Ea(1)

1 ∗ v
(3)
α−1 + Ea(3)

1 ∗ v
(1)
α−1

Ea(1)
0 ∗ v

(2)
α + Ea(2)

0 ∗ v
(1)
α + Ea(1)

1 ∗ v
(2)
α−1 + Ea(2)

1 ∗ v
(1)
α−1

 .

From where, we infer that the action of EA† on any v ∈ B1(0) is such that

∥∥(EA†(v))2

∥∥
1,ν
≤

 0

ε
(1)
0 + ε

(3)
0

ε
(1)
0 + ε

(2)
0

 ,
∥∥(EA†(v))α

∥∥
1,ν
≤

 0

ε
(1)
0 + ε

(3)
0 + ε

(1)
1 + ε

(3)
1

ε
(1)
0 + ε

(2)
0 + ε

(1)
1 + ε

(2)
1

 , ∀α > 2.

Now we depict in more details the definition of Z1.
For x = {xm}m∈Z we define xI = (I − Π(M))x, that is the sequence so that xIm = 0 for

|m| < M , xIm = xm for |m| ≥M . Our goal is to write the action of DF (ā)−A†. Recalling
formula (72), the definition of A† and the assumption (64), it turns out that[(

DF (ā)−A†
)
v
]
α,m

=
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



0∑
α1+α2=α
αi≥0,α1≥2

(
ā(3)
α2
∗ v(1)I

α1

)
m

+
(
ā(1)
α2
∗ v(3)I

α1

)
m

−
∑

α1+α2=α
αi≥0,α1≥2

(
ā(2)
α2
∗ v(1)I

α1

)
m

+
(
ā(1)
α2
∗ v(2)I

α1

)
m

+ (Ev)α,m, |m| < M


σ(v

(1)
α,m − v(2)

α,m)

−ρv(1)
α,m + v(2)

α,m +
∑

α1+α2=α
αi≥0,α1≥2

(
ā(3)
α2
∗ v(1)

α1

)
m

+
(
ā(1)
α2
∗ v(3)

α1

)
m

βv(3)
α,m −

∑
α1+α2=α
αi≥0,α1≥2

(
ā(2)
α2
∗ v(1)

α1

)
m

+
(
ā(1)
α2
∗ v(2)

α1

)
m

+ (Ev)α,m, |m| ≥M.

In the term (Ev)α,m all the contributions due to Ea0 and Ea1 are collected.
In order to define the matrix of operators Γ, it is convenient to introduce further notation.

Let Ĩ the infinite dimensional matrix given component wise by

Ĩ(j,m) =

{
δj,m, |j|, |m| ≥M
0, otherwise

.

To any ā
(j)
α let be associated the matrix A(j)

α and Ã(j)
α as

A(j)
α (m,n) = (ā(j)

α )m−n, Ã(j)
α (m,n) =

{
0, |n|, |m| < M

(ā
(j)
α )m−n, otherwise

. (73)

The action of Ĩ on a sequence w = {wm}m∈Z is (Ĩw)m = 0 for |m| < M and (Ĩw)m = wm
for |m| ≥M . The action of A(j)

α on w is such that (A(j)
α w)m = (ā

(j)
α ∗w)m while (Ã(j)

α w)m =

(ā
(j)
α ∗ wI)m for |m| < M and (Ã(j)

α w)m = (ā
(j)
α ∗ w)m for |m| ≥M .

We are now in the position of writing

[(
DF (ā)−A†

)
v
]
α

=


σĨ(v

(1)
α − v(2)

α )

−ρĨv(1)
α + Ĩv(2)

α +
∑

α1+α2=α
αi≥0,α1≥2

Ã(3)
α2
v(1)
α1

+ Ã(1)
α2
v(3)
α1

βĨv(3)
α −

∑
α1+α2=α
αi≥0,α1≥2

Ã(2)
α2
v(1)
α1

+ Ã(1)
α2
v(2)
α1

+ (Ev)α.

Referring to the label set {1, . . . , nd} previously introduced, we can now define the operators
Γ(s, t) associated to DF (ā)−A†, for any s, t ∈ {1, . . . , nd}.

Suppose the couples of labels (i, j), i ∈ {1, . . . , n}, j ∈ {1, . . . , d} are one-to-one related
to the set {1, . . . , nd} through the bijection φ. Given q = φ(i, j) denote by qα = α(i) and
qj = j. For instance

[(
DF (ā)−A†

)
v
]
s

=
[(
DF (ā)−A†

)
v
]sj
sα

. Also, given q = φ(i1, j1)

and s = φ(i2, j2), according to the notation in (52), A(q, s) = (Ai1,i2)j1,j2 .
The non zero Γ(s, t) are the following:
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sj = 1 sα = tα
tj = 1 Γ(s, t) = σĨ

tj = 2 Γ(s, t) = −σĨ

sj = 2 sα = tα

tj = 1 Γ(s, t) = −ρĨ + Ã(3)
0

tj = 2 Γ(s, t) = Ĩ

tj = 3 Γ(s, t) = Ã(1)
0

, sα > tα
tj = 1 Γ(s, t) = Ã(3)

sα−tα
tj = 3 Γ(s, t) = Ã(1)

sα−tα

sj = 3 sα = tα

tj = 1 Γ(s, t) = −Ã(2)
0

tj = 2 Γ(s, t) = −Ã(1)
0

tj = 3 Γ(s, t) = βĨ

, sα > tα
tj = 1 Γ(s, t) = −Ã(2)

sα−tα
tj = 2 Γ(s, t) = −Ã(1)

sα−tα

Concerning the contribution of EΓ, as said before, we are interested in the the image of
EΓ(s, t) applied to a sequence w ∈ `1ν .

sj = 2 sα = tα
tj = 1 EΓ(s, t)w = Ea(3)

0 ∗ w
tj = 3 EΓ(s, t)w = Ea(1)

0 ∗ w
, sα = tα + 1

tj = 1 EΓ(s, t)w = Ea(3)
1 ∗ w

tj = 3 EΓ(s, t)w = Ea(1)
1 ∗ w

sj = 3 sα = tα
tj = 1 EΓ(s, t)w = Ea(2)

0 ∗ w
tj = 2 EΓ(s, t)w = Ea(1)

0 ∗ w
, sα = tα + 1

tj = 1 EΓ(s, t)w = Ea(2)
1 ∗ w

tj = 2 EΓ(s, t)w = Ea(1)
1 ∗ w

Therefore, the various terms ‖EΓ(s, t)vt‖1,ν appearing in (69) are easily bounded by either

‖Ea(i)
0 ‖1,ν = ε

(i)
0 or ‖Ea(i)

1 ‖1,ν = ε
(i)
1 .

It remains to provide a mean to compute |||A(q, s)Γ(s, t)|||.
Looking at the definition of A, we realise that A(q, s) is either a square finite dimensional

matrix of dimension 2M − 1 or a infinite dimensional operator with a diagonal action out
of the central block. The latter case holds when q = s. We depict the two cases

A(q, s) =

0 0 0
0 A 0
0 0 0

q 6= s, A(q, q) =

. . . 0 0
0 A 0

0 0
. . .

. (74)

Suppose Γ(s, t) = Ã(j)
α ( the case Ĩ is immediate). Since (ā

(j)
α )m = 0 for |m| ≥ M , the

infinite dimensional matrix Γ(s, t) is zero out of a strip 2M − 1 thick around the main
diagonal. For the proceeding, it is useful to introduce the matrix

E =



ā0 ā−1 . . . . . . ā−M+1 0 . . . . . . 0
ā1 ā0 ā−1 . . . ā−M+2 ā−M+1 0 . . . 0

. . .
...

. . .

. . .
...

. . . 0
āM−1 . . . . . . ā0 . . . . . . ā−M+1

0 āM−1 . . . . . . 0 ā0 . . . . . . ā−M+2

0
. . .

...
. . .

. . .
...

. . .

0 . . . 0 āM−1 . . . . . . . . . ā0


and the (M − 1)× (M − 1) sub matrixes B̂, Ĉ of E as

E =

[
∗ Ĉ

B̂ ∗

]
.
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Finally, define B and C the (2M − 1)× (2M − 1) matrices given by

B =

[
0 B̂
0 0

]
, C =

[
0 0

Ĉ 0

]
.

Using these matrices, we can see the infinity dimensional operator Γ(s, t) as tri-diagonal
concatenation of B, E, C with a empty block in the centre.

Γ(s, t) =

. . .
. . .

. . . E C 0
0 B E C 0

0 B 0 C 0
0 B E C 0

0 B E C
. . .

. . .

(75)

In case Γ(s, t) is Ĩ, then E = Id and B = C = 0.
Let us now compute the multiplication A(q, s)Γ(s, t). If p 6= q the operator A(q, s) is of

the first of the two forms depicted in figure (74). It results

A(q, s)Γ(s, t) =

0 0 0
AB 0 AC
0 0 0

.

It is a finite dimensional operator and the operator norm can be easily computed. Note that
if Γ(s, t) = cĨ then A(q, s)Γ(s, t) = 0.

Consider now the case s = q. The operator A is of the form

A(q, q) =

. . .

D3

D2

D1

A
H1

H2

H3

. . .

where dim(Di) = dim(A) = dim(Hi) = (2M −1)× (2M −1). Remember that the elements
on the diagonal are strictly decreasing, hence maxm |Di(m,m)| < infm |Di−1(m,m)| and
the same for Hi.

The multiplication with Γ(s, t) produces
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A(s, s)Γ(s, t) =

. . .
. . .

D3B D3E D3C
D2B D2E

D1B
0

︸︷︷︸
V3

︸︷︷︸
V2

︸︷︷︸
V1

D2C 0 0
D1E D1C 0
AB 0 AC
0 H1B H1E
0 0 H2B

︸ ︷︷ ︸
M

0
H1C
H2E H2C
H3B H3E H3C

. . .
. . .︸︷︷︸

W1

︸︷︷︸
W2

︸︷︷︸
W3

The operator norm of the above infinite dimensional operator is given by

|||A(s, s)Γ(s, t)||| = max{|||M |||,max{|||Vi|||},max{|||Wi|||}}

Since |Di| < |Di−1| and |Hi| < |Hi−1|, it follows that |||Vi||| ≤ |||Vi−1||| and |||Wi||| ≤
|||Wi−1|||. Hence we conclude that

|||A(s, s)Γ(s, t)||| ≤ max{|||M |||, |||V1|||, |||W1|||}.

Such a quantity can be rigorously computed because it involves only a finite number of
operations.

Concerning the Z2 bound, in the case of the Lorenz system, the r2 contribution is

[(
DF (ā+ ru)−A†

)
rv
]
α

= r2


0∑

α1+α2=α
αi≥2

u(1)
α1
∗ v(3)

α2
+ u(3)

α1
∗ v(1)

α2

−
∑

α1+α2=α
αi≥2

u(1)
α1
∗ v(2)

α2
+ u(2)

α1
∗ v(1)

α2

 (76)

Since any convolution is bounded by ‖u(j)
α1 ∗ v

(l)
α2‖1,ν ≤ ‖u

(j)
α1 ‖1,ν‖v

(l)
α2‖1,ν ≤ 1, we define

Vq =

{
0 if qj = 1

2(qα − 3) if qj = 2 or qj = 3, and qα ≥ 4.

4.1 Higher order terms

Now we apply the variant described in Section 3.3 to the case of the Lorenz equation.

Suppose the enclosure of the functions a
(j)
α has been computed for any α ≤ Ñ and it results

a
(j)
α = ā

(j)
α + Ea(j)

α with ‖Ea(j)
α ‖ ≤ ε(j)α , for any α ≤ Ñ and j = 1, 2, 3.

We are now concerned with the computation of aÑ+1 as solution of FÑ+1 = 0. Let

α = Ñ + 1. The system Fα is formally the same as (71). It is however convenient to rewrite
the nonlinearity in the form∑

α1+α2=α

αi≥0

a
(1)
α1 ∗ a(3)

α2 =
∑

α1+α2=α

0≤αi≤Ñ

a
(1)
α1 ∗ a(3)

α2 + (a
(1)
0 ∗ a(3)

α + a(1)
α ∗ a

(3)
0 )
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where the dependence on the unknown aα is highlighted.
Setting āα = 0, it results

Fα(ā) =

0,
∑

α1+α2=α

0≤αi≤Ñ

a
(1)
α1 ∗ a(3)

α2 ,
∑

α1+α2=α

0≤αi≤Ñ

a
(1)
α1 ∗ a(2)

α2

 .
A bound for ‖Fα(ā)‖1,ν is provided by

‖Fα(ā)‖1,ν ≤



0∥∥∥∥∥∥∥
∑

α1+α2=α

0≤αi≤Ñ

ā
(1)
α1 ∗ ā(3)

α2

∥∥∥∥∥∥∥
1,ν∥∥∥∥∥∥∥

∑
α1+α2=α

0≤αi≤Ñ

ā
(1)
α1 ∗ ā(2)

α2

∥∥∥∥∥∥∥
1,ν


+



0∑
α1+α2=α

0≤αi≤Ñ

‖ā(1)
α1 ‖1,νε(3)

α2 + ‖ā(3)
α1 ‖1,νε(1)

α2 + ε
(1)
α1 ε

(3)
α2

∑
α1+α2=α

0≤αi≤Ñ

‖ā(1)
α1 ‖1,νε(2)

α2 + ‖ā(2)
α1 ‖1,νε(1)

α2 + ε
(1)
α1 ε

(2)
α2

 .

The definition of Aα,α and A†α,α are based on the Jacobian of Fα with respect to aα,
say DFα,α. Recalling the definition (73) and denoting by µα the diagonal matrix with
µα(m,m) = 2πim

2T + αλ ∀m, the operator DFα,α = DFα,α + EDFα,α, where

DFα,α =

 µα + σI −σI 0

−ρI +A(3)
0 µα + I A(1)

0

−A(2)
0 −A(1)

0 µα + βI



EDFα,α

 v(1)

v(2)

v(3)

 =

 0

Ea(3)
0 ∗ v(1) + Ea(1)

0 v(3)

−Ea(2)
0 ∗ v(1) − Ea(1)

0 v(2)


The finite dimensional operator (Aα,α)(M) is defined as approximate inverse of (DFα,α)(M),

while (A†α,α)(M) is given by DF
(M)
α,α .

The operators Γ(s, t) are similar to those reported in the previous section. The difference

is that any Ã(j)
α with α > 0 is replaced by zero. The construction of Z1

q follows form (68).
However, since the only unknown is aα, the sum in (68) restricts to those s such that
s(α) = α.

Explicitly, for j = 1, 2, 3,

Z1
α,j ≥2|||(Aα,α)j,1σĨ|||

+ |||(Aα,α)j,2(−ρĨ + Ã(3)
0 )|||+ |||(Aα,α)j,2Ĩ|||+ |||(Aα,α)j,2Ã(1)

0 |||

+ |||(Aα,α)j,2|||(ε(1)
0 + ε

(3)
0 )

+ |||(Aα,α)j,3(−Ã(2)
0 )|||+ |||(Aα,α)j,3(−Ã(1)

0 )|||+ |||(Aα,α)j,3βĨ|||

+ |||(Aα,α)j,3|||(ε(1)
0 + ε

(2)
0 )

We remark that some of the above terms vanish, for instance |||(Aα,α)j,iĨ||| = 0 whenever
j 6= i.
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4.2 Some remarks

1. According to (45), the computation of the parameterisation begins with the rigorous
enclosure of the periodic orbit γ(t). Denoted by T the period of the orbit, the function
γ(t) is expanded on the T -periodic exponential Fourier basis. For a choice of νγ , the
sequence of Fourier coefficients γ = {γm}m∈Z is proved to be in a ball of radius rγ , with
respect to the νγ-norm, around the numerical approximation γM . Define ν <

√
νγ

and r as in (63). Arguing as in Remark 3.6, it follows that ‖γM − γ‖∞r ≤ ε0, where
ε0

def
= rγ .

2. The computation of the normal bundle is performed following the method described in
[16]. The functions ξj(w) are defined as ξj(w) = Q(w)vj , where vj is an eigenvector of
R and (Q(w), R) is the Floquet normal form decomposition of the fundamental matrix
solution of the linearised system around γ(t). The matrix function Q(t) is expanded
in Fourier series on the 2T -periodic exponential basis. Denoted by Q the sequence of
Fourier coefficients of Q(w), the computation returns a radius rFl so that

‖Q(i, j)− Q̄(i, j)‖1,ν ≤ rFl, |R(i, j)− R̄(i, j)|∞ ≤ rFl, 1 ≤ i, j ≤ d

where (Q̄, R̄) is a finite dimensional approximate solution.

Without loss of generality, let us choose j = 1 and denote v = v1, so that ξ1 = Q(w)v.
The eigenvector v of R is computed rigorously, for instance following [67], so that
|v(j) − v̄(j)| ≤ rv, for any 1 ≤ j ≤ d. For convenience, let us write Q = Q̄ + εQ and
v = v̄ + εv, with ‖εQ‖1,ν ≤ rFl, |εv| ≤ rv both component wise.

Set ξ̄1 = Q̄v̄. Thus

ξ1 − ξ̄1 = (Q̄+ εQ)(v̄ + εv)− Q̄v̄ = εQv̄ + Q̄εv + εQεv

and

‖ξ1(i)− ξ̄1(i)‖1,ν ≤ ‖
∑
j

εQ(i, j)v̄(j)‖1,ν + ‖
∑
j

Q̄(i, j)εv(j)‖1,ν + ‖
∑
j

εQ(i, j)εv(j)‖1,ν

≤ rFl
∑
j

|v̄(j)|+ rv
∑
j

‖Q̄(i, j)‖1,ν + drFlrv.

Hence

max
i=1,...,d

‖ξ1(i)− ξ̄1(i)‖1,ν ≤ rFl
∑
j

|v̄(j)|+ drFlrv + rv max
i

∑
j

‖Q̄(i, j)‖1,ν .

Again, according to remark 3.6, the bound ε1 appearing in (45) is provided by the
right hand side of the above relation. The same applies for all the normal bundles ξi,
1 ≤ i ≤ k. In the case of the Lorenz system d = 3.

3. The eigenvalues λ of R are also given within some bounds, precisely |λ− λ̄| ≤ rv.

4. The parameterisation of the normal bundle, i.e aα(w) with |α| = 1 is defined in terms
of the eigenvectors vj of the matrix R. Therefore the scaling of the eigenvectors is
a further free parameter. From one side a larger eigenvectors will result in a larger
image of the parameterisation. On the other, the rigorous enclosure of the coefficients
might be problematic. Besides the scaling of the eigenvectors, the size of the image
of the validated parameterisation is affected by the choice of the Taylor norm decay
parameter ν. A large value of ν produces large image but it also leads to a larger a
posteriori error bound.

41



4.3 Validation values for the Lorenz system

We now report the validation values for the stable manifold of a periodic orbit of the Lorenz
system, with σ = 10, β = 8/3.

Fix the parameter ρ = 22 and choose the decay rate νγ = 1.3 and ν = 1.14017. The
periodic orbit is computed with period T = 0.764386427 and enclosure radius rγ = 8.8448 ·
10−12 around a numerical approximate solution. Hence define

ε0 = 8.8448 · 10−12.

The computation for the Floquet normal form decomposition (Q, R) returns the enclosure
radius rFl = 3.0955·10−11. The periodic orbit is hyperbolic has one positive and one negative
Floquet exponent. Here we are concerned with the stable manifold. The stable eigenvalue
λ and associated eigenvector v of R are proved to be in a ball of radius rv = 8.0431 · 10−11

around the numerical approximation

λ̄ = −13.861695717713566,

v̄ = [0.793402810447226, 0.025855938972115, 0.608147556760951]T

The procedure explained in section 4.2 point 2, provides

ε1 = 5.0003 · 10−10.

Now choose N = 10 and M = 40, respectively the order of the parameterization PN and

the finite dimensional projection coefficient. The rigorous enclosure of the functions a
(j)
α

returns the bound
εα = 1.3389 · 10−10.

Following the algorithm proposed in section 2.5, the validation values can be defined as
follow. First define r = 0.031918155042942 and ν = 1. Note that the latter ν refers to the
norm in the Taylor space.

We need to bound the norm ‖Df(γ)‖∞r . In the case of Lorenz we have

Df(γ) =

 −σ σ 0
ρ− γ(3) −1 −γ(1)

γ(2) γ(1) −β


and γ = Γ + Eγ where Γ(w) =

∑M
m=−M Γme

i 2π
T mw and ‖Eγ‖∞r ≤ ε0. Explicitly, from (17),

‖Df(γ)‖∞r = max1≤i≤3

∑3
j=1 ‖Df(γ)(i, j)‖∞Ar .

In practice, one computes

‖Df(γ)‖∞Ar =
∑
|m|<M

|Dfm(Γ)|e 2πr
T |m| +

 0 0 0
ε0 0 ε0
ε0 ε0 0


and then takes the maximum over sum along the rows. In our example

κ = 32.9823362305.

For the computation of C̃, let us first compute the norm ‖aα‖∞Ar . For α = 1, . . . , N ,
aα(w) = āα + Eaα with ‖Eaα‖∞r ≤ εα . Hence

‖aα‖∞Ar ≤
∑
m

|(āα)m|e
2πr
T̂
|m| + εα.
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The matrices Aα have the form

Aα =

 0 0 0

−a(3)
α 0 −a(1)

α

a
(2)
α a

(1)
α 0

 .
Plugging in the r-norms above computed, and afterwards taking the maximum of the sums
along the rows, we obtain

α 1 2 3 4 5
‖Aα‖∞r 3.450453 0.092396 4.4772 · 10−3 1.4108 · 10−4 5.0794 · 10−6

α 6 7 8 9 10
‖Aα‖∞r 1.4752 · 10−7 4.8646 · 10−9 4.0205 · 10−10 2.7729 · 10−10 2.7367 · 10−10

Inserting into formula (27), having λ = λ1 ∈ −13.861695± rv, Ñ = N because the nonlin-
earity of the vector field is quadratic, it follows

C̃ = 1.28706319.

Fix M1 = 2, M2 = 1, µ∗ = 13.8616957. The definition of ρ′ and ρ is useless in this example,
because the second derivatives of the vector field are constants and do not depend on ρ.

It remains to compute ε so that ‖EN‖∞r,ν ≤ ε. By definition, EN is given by

EN (w, z) =
∑

|α|≥N+1

Rα(w)zα.

For the Lorenz equation

Rα(w) =


0

−
∑

α1+α2=α
αi>0

a(1)
α1

(w)a(3)
α2

(w)

∑
α1+α2=α
αi>0

a(1)
α1

(w)a(2)
α2

(w)

 (77)

Since aα(w) = 0 for any α > N , it holds Rα(w) = 0 for any α > 2N . Thus

EN (w, z) =

2N∑
α=N+1

Rα(w)zα

and

‖EN (w, z)‖∞r,ν ≤ max
1≤i≤3

2N∑
α=N+1

‖R(i)
α ‖∞r να

The functions a
(i)
α are known within bounds, that is ‖a(i)

α ‖∞r ≤ ‖ā
(i)
α ‖∞r + εα. The norm of

the components of (77) can be bounded by

‖Rα‖∞r =



0
N∑

α1=α−N

(
(‖ā(1)

α1
‖∞r + εα1)(‖ā(3)

α−α1
‖∞r + εα−α1

)
)

N∑
α1=α−N

(
(‖ā(1)

α1
‖∞r + εα1

)(‖ā(2)
α−α1

‖∞r + εα−α1
)
)

 (78)
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For the example under investigation, it holds

ε = 4.75196887496 · 10−10.

Then, check that (N + 1) > κ/µ∗ and define δ = 1.0236439709 · 10−11 so that the relation
(43) is satisfied. Since also the last check (44) is satisfied, we conclude that the finite order
parameterisation PN (w, z) is rigorously validated and the N -tail is such that ‖H‖∞r,ν ≤ δ.

Figure 2 (left) shows the image of the parameterisation PN (w, z), |z| < ν above discussed.

Figure 2: Two images of the parameterisation PN (w, z), |z| ≤ ν, N = 10, of the local stable
manifold associated to the periodic orbit of the Lorenz system at parameter ρ = 22. In the
left case ν = 1 and the N -tail norm is ‖H‖∞r,ν ≤ 1.024 · 10−11. On the right ν = 4 and
‖H‖∞r,ν ≤ 9.77 · 10−5.

In Table 1 we summerize the data and results for other examples. Each line reports
the value of the parameter ρ of the Lorenz system, the period T of the orbit, the finite
order/dimension parameters N and M , the Fourier/Taylor norm parameters r, ν and the
resulting δ so that ‖H‖r,ν ≤ δ. All the computations concern the stable manifold. Figure
2, on the right, shows the image of the parameterisation computed in the third example.

We also compute the parameterisation for the local unstable manifold for the periodic
orbit with ρ = 28. The unstable Floquet exponents is λ̄ = 0.99465 and a preliminary
analysis shows that a value for N larger than 50 is required. We choose N = 70. Thus,
setting Ñ = 10, M = 60, the computation of aα, α ≤ Ñ is performed according to the
general technique. Rather, the remaining coefficients aα, Ñ < α ≤ N are enclosed layer-
by-layer as discussed in section 4.1. In this case, we scale the eigenvector to be of length
2 and we set the Taylor decay rate ν = 1. The N -order parameterisation is validated with
N -tail norm ‖H‖r,ν ≤ 9.0789 · 10−9, being r = 0.023644. In Fig. 3, right, the image of the
unstable local manifold is plot.

5 The bridge problem

Consider the vector field

ẋ = f(x) =


x2

x3

x4

−120x1 − x3
1 − 154x2 − 71x3 − 14x4

 (79)
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Table 1: default

ρ T N M r ν δ
17.32 1.1084183 6 40 0.08291 1 2.6769·10−5

22 0.7643864 10 40 0.03191 2 2.8987·10−8

22 0.7643864 10 40 0.01915 4 9.7698·10−5

20 0.8765522 10 40 0.03660 1 1.2643·10−10

28 1.5586522 10 40 0.02364 1 4.6806·10−5

28 1.5586522 10 60 0.02364 1.2 1.4591·10−6

Figure 3: Image of the local stable ( left) and unstable (right) manifold associated to a
periodic orbit of the Lorenz system at parameter ρ = 28.

equivalent to the 4−th order differential equation

w′′′′ + 14w′′′ + 71w′′ + 154w′ + 120w + w2 = 0

considered in [68].
In the work [68] it is rigorously computed a T -periodic orbit Γ(t)

Γ(t) =


γ(t)
Γ2(t)
Γ3(t)
Γ4(t)


together with the Floquet exponents. The orbit Γ has two negative Floquet exponents

λ = (λ1, λ2), λi < 0

hence the stable manifold is a 3-dimensional manifold in 4-dimensional space. We now apply
the procedure explained before to compute the parameterisation of the stable manifold.

Note that γ(t), the first component of Γ(t), represents the periodic solution of the 4-th
order ODE.
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The validation of the coefficients of the high order parameterisation

PN (w, z) =

N∑
|α|=0

aα(w)zα, α ∈ N2, aα(w) ∈ R4

is split into three steps: for a choice of ν,

1. For Ñ < N compute the enclosure in `1ν of each component of aα(w) with 2 ≤ |α| ≤ Ñ
around a numerical approximation āα(w).

2. Let N∗ be such that 3Ñ < N∗ < N . Compute layer-by-layer the `1ν-norm of each
component of aα(w) for any α with Ñ < |α| ≤ N∗.

3. Compute an uniform bound for the `1ν-norm of all the aα(w) for N∗ < |α| ≤ N .

Details about the rigorous computation of the enclosure of the coefficients aα(w) are
provided in Section A.

5.1 Computational results

The rigorous computation performed in [68] provides the enclosure of the periodic solution
γ(t), see Fig. 4, and the enclosure of the Floquet exponents together with the normal
bundles, that is the coefficients a(1,0)(w) and a(0,1)(w) of the parameterisation.

The period T and the sequence of Fourier coefficients of γ are proved to be in a ball of
radius rγ = 7.5955 · 10−13 around the numerical solution in the space `1νγ with νγ = 1.3.
That is

|T − T̄ | ≤ rγ , ‖γ − γ̄‖νγ ≤ rγ ,
where T̄ = 1.908097232051104.

The Floquet exponents are computed so that

|λ1 − (−7)| ≤ 4.4942 · 10−12, |λ2 − (−8)| ≤ 4.9807 · 10−13

and the normal bundles, rescaled so that |a(1,0)(0)| = 5, |a(0,1)(0)| = 20, are proved within
bounds

‖a(j)
(1,0) − ā

(j)
(1,0)‖νFl ≤ 2.24709 · 10−11 ‖a(j)

(0,1) − ā
(j)
(0,1)‖νFl ≤ 9.96140 · 10−12, ∀j = 1, . . . , 4,

where νFl = 1.001. Set

Ñ = 3, N∗ = 15, N = 380, ν = 1.0005.

The Fourier coefficients of the parameterisation of the stable manifold are numerically com-
puted up to order |α| = 3 with finite dimensional parameter M = 60. For |α| > Ñ the
numerical approximation āα(w) is set to zero. The rigorous computation returns the enclo-

sure of the sequence of Fourier coefficients a
(j)
α of the functions a

(j)
α (w) as ‖a(j)

α −ā(j)
α ‖ν ≤ εα,

where

• for any 2 ≤ |α| ≤ Ñ , εα = 2.413502 · 10−10

• for each Ñ < |α| ≤ N∗, 2.20396 · 10−18 < εα < 2.5209 · 10−8

• for any N∗ < |α| ≤ N , εα = ε̄ = 9.208077 · 10−13.

46



t
0 0.5 1 1.5

γ
(t
)

-20

-10

0

10

20

20100

γ(t)

-10-20
-50

γ′(t)

0

50

200

100

0

-100

-200

γ
′′ (
t)

Figure 4: Left: image of the periodic solution γ(t). Right: image of the first 3 components
of Γ(t), periodic solution of the vector field (79).

5.2 Validation values

According to the scheme explained in section 2.5, the validation values can be defined as
follow. Fix the Taylor decay rate ν = 1 and choose r = 3.03607 · 10−4.

A positive constant κ such that ‖Df(Γ)‖∞r ≤ κ is computed as

κ = 2.520751 · 103.

The bound C̃ is given as
C̃ = 4.834293.

The a-posteriori error bound is estimated by ( see next section)

‖E‖∞r,ν ≤ 1.412547 · 10−6.

Compute
ρ′ = 72.23678

and choose
ρ = 79.46046.

Set
µ? = 7, M1 = 1

and compute
M2 = 6(sup |γ(t)|+ ρ) = 639.2028.

The validation of the parameterisation is successful with

‖H‖r,ν ≤ 9.338422 · 10−8.

Figure 5 represents the projection on the first 3 components of two sub manifolds of the
stable manifold. More precisely, writing the parameterization in the form

P (w, z) =
∑

(α1,α2)

a(α1,α2)(w)zα
1

1 zα
2

2 ,

the red-to-yellow and the green-to-blue plot of Fig. 5 are the image of P (w, z1, z2 = 0) and
P (w, z1 = 0, z2) respectively.
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Figure 5: Image of the parameterisation of two sub manifolds of the local stable manifold
associated to the periodic orbit Γ(t). Only the first three components of PN (w, z) are
drawn. The red-to-yellow surface is the image of the sub manifold tangent to the eigenspace
a(1,0)(w), associated to the Floquet exponent λ1 = −7. The green-to-blue surface is the sub
manifold tangent to the eigenspace a(0,1)(w), associated to λ2 = −8.

5.3 A-posteriori error bound

For a choice of ν, the a-posteriori error bound is given by

‖EN‖∞r,ν =

3N∑
|α|=N+1

∥∥∥∥∥∥∥
∑

α1+α2+α3=α

|αi|≤N

a
(1)
α1 (w)a

(1)
α2 (w)a

(1)
α3 (w)

∥∥∥∥∥∥∥
r

ν|α|

We know bounds for the r-norm of a
(1)
α for any α up to |α| = N . In particular ‖a(1)

α ‖r = ε̄
for any |α| > N∗. It is not advised to run over all possible α’s of the above sum and
compute precisely all the terms in the inner sum. Rather, by means of some combinatorial
calculations, we can provide an upper bound for the error.

Denote by

Rα =

∥∥∥∥∥∥∥
∑

α1+α2+α3=α

|αi|≤N

a
(1)
α1 (w)a

(1)
α2 (w)a

(1)
α3 (w)

∥∥∥∥∥∥∥
r

.
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First compute the quantities

a2
α ≥

∥∥∥∥∥∥∥
∑

α1+α2=α

|αi|≤N

a
(1)
α1 (w)a

(1)
α2 (w)

∥∥∥∥∥∥∥
r

, ∀ 0 ≤ |α| ≤ 2N

and consider the splitting∑
α1+α2+α3=α

|αi|≤N

a
(1)
α1 (w)a

(1)
α2 (w)a

(1)
α3 (w) =

∑
|α1|≤N

a
(1)
α1

∑
α2+α3=α−α1

|αi|≤N

a
(1)
α2 (w)a

(1)
α3 (w).

For any α such that N + 1 ≤ |α| ≤ 2N +N∗ we have

Rα ≤
∑

0<|α1|≤N∗
‖a(1)
α1 ‖r max

|α2|≥N+1−N∗
a2
α2 +

∑
N∗<|α1|≤N

ε̄ max
|α2|≥N

a2
α2

≤
∑

0<|α1|≤N∗
‖a(1)
α1 ‖r max

|α2|≥N+1−N∗
a2
α2 + ε̄

( (N + 1)(N + 2)

2
− (N∗ + 1)(N∗ + 2)

2

)
max
|α2|≥N

a2
α2 .

For all the remaining 2N +N∗ < |α| ≤ 3N we bound

Rα ≤ ε̄
( (N + 1)(N + 2)

2
− (N∗ + 1)(N∗ + 2)

2

)
max

|α2|≥N+N∗
a2
α2 .

A Rigorous enclosure of the coefficients for the bridge
problem

The multi-indeces α ∈ N2 and are denote by α = (α1, α2), whereas superscripts (αi) label
different α’s.

Following the scheme proposed in section 3, the rigorous enclosure of the coefficients
aα(w) of the parametersation with 2 ≤ |α| ≤ Ñ are computed.

The system (46) is given by


F

(1)
α,m

F
(2)
α,m

F
(3)
α,m

F
(4)
α,m

 =



(
2πim

2T
+ α · λ

)
a(1)
α,m − a(2)

α,m(
2πim

2T
+ α · λ

)
a(2)
α,m − a(3)

α,m(
2πim

2T
+ α · λ

)
a(3)
α,m − a(4)

α,m(
2πim

2T
+ α · λ

)
a(4)
α,m + 120a(1)

α,m +
∑

α1+α2+α3=α

αi≥0

(
a

(1)
α1 ∗ a(1)

α2 ∗ a(1)
α3

)
m

+154a
(2)
α,m + 71a

(3)
α,m + 14a

(4)
α,m


,

(80)
with 2 ≤ |α| ≤ Ñ and m ∈ Z.

The derivative of F (with respect to aα,m, |α| ≥ 2) at the point a acts on an element v
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as

((
DF (a)(v)

)
α

)
m

=

(
2πim

2T
+ α · λ

)
vα,m+


−v(2)

α,m

−v(3)
α,m

−v(4)
α,m

+120v(1)
α,m + 154v(2)

α,m + 71v(3)
α,m + 14v(4)

α,m


(81)

+


0
0
0

3
∑

α1+α2+α3=α

αi≥0,|α3|≥2

(
a

(1)
α1 ∗ a(1)

α2 ∗ v(1)
α3

)
m

 .

Denoting by

a2
α =

∑
α1+α2=α

|αi|≥0

a
(1)
α1 ∗ a(1)

α2

the last term of the above derivative is rewritten as 3
∑

α1+α2=α

|α1|≥0,|α2|≥2

(
a2
α1 ∗ v(1)

α2

)
m
.

We now choose the operator A and A†. We remind that A† approximates the derivative
DF (ā) ( where ā is an approximate solution of F (a) = 0) while A approximates the inverse
of DF (ā). We have some freedom in defining these operators but it is advisable that the
composition AA† : X → X acts as the identity out of a certain finite dimensional subspace
of X. Arguing as in (67), define a finite dimensional part of A† as the exact derivative of
DF (M), while the action of the derivative on the infinite dimensional complement is only
approximated. In (67) we chose to approximate the derivative with the diagonal action of(

2πim
2T + α · Λ

)
because this term is growing with m, hence, it is asymptotically dominant.

However, besides those terms that are growing, it is advisable to consider in A† also those
terms that are big. In our case the vector field has a cubic nonlinearity and the first few
Fourier coefficients γm of the 2T -periodic orbit γ(t) are

γ0 = 0, γ±2 ≈ 0.178± 13.34i, γ±6 = −0.17± 0.064i, γ±1,±3,±4±5 ≡ 0.

It follows that the first few Fourier coefficients of a2
0 are the following ( 0 = (0, 0)):

(a2
0)0 ≈ 356.31, (a2

0)±4 ≈ −176.40± 9.52i (a2
0)±1,2,3 ≈ 0.

Therefore, the cubic term alone produces contributions in the derivative as big as multipli-
cation by 1100.

We decide to include these contributions ( 3 times the multiplication by (a2
0)0, (a2

0)±4),

together with the linear term 120v
(1)
α,m, 154v

(2)
α,m, 71v

(3)
α,m in the definition of A†. In practice,

define A† so that

(
(A†i1,i2)j1,j2d

)
m

=


(

(DF
(M)
i1,i2

)j1,j2dF

)
m
, |m| < M,

δi1,i2δj1,j2

(
2πim

2T
+ α(i1) · Λ

)
dm, |m| ≥M,

(82)

and for any i ranging on the set of possible α’s, we augment the action of the operators
(A†i,i)4,j , j = 1, 2, 3 with the multiplication by the infinite dimensional tri-diagonal matrix
or the diagonal matrix as depicted in Figure 6 where

d0 = 120 + 3(a2
0)0, d4 = 3(a2

0)4, d−4 = 3(a2
0)−4,
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f0 = 154, g0 = 71.

Similarly, we define the operator A as

((Ai1,i2)j1,j2c)m =


(

(A
(M)
i1,i2

)j1,j2cF

)
m
, |m| < M,

δi1,i2δj1,j2

(
1

2πim
2T + α(i1) · Λ

)
cm, |m| ≥M,

(83)

and, at first, we augment the action of (Ai,i)4,j , j = 1, 2, 3, for any i ranging on the set
of possible α’s, with the multiplication by the infinite dimensional tri-diagonal matrix as
depicted in Figure 7 where

e
(m)
0 = − d0

µ2
m

, e
(m)
−4 = − d−4

µm+4µm
, e

(m)
4 = − d4

µm−4µm
,

h
(m)
0 = − f0

µ2
m

, `
(m)
0 = − g0

µ2
m

and

µm =
2iπ

2T
m+ α(i) · Λ.

Figure 6: Structure of the components of the operator A†i,i.

Let us now compute the action of A† on v ∈ X. The finite dimensional part results

(
(A†(v))α

)
F

=


(DF (M)v)

(1)
F

(DF (M)v)
(2)
F

(DF (M)v)
(3)
F

(DF (M)v)
(4)
F + ε

 .
where ε denotes the multiplication of d4 and d−4 times v

(1)
α,m where m = −M − 3, . . . ,−M

and m = M, . . . ,M + 3 respectively.
Instead, for |m| ≥M

(
(A†(v))α

)
m

=


µmv

(1)
α,m

µmv
(2)
α,m

µmv
(3)
α,m

d4v
(1)
α,m−4 + d0v

(1)
α,m + d−4v

(1)
α,m+4 + f0v

(2)
α,m + g0v

(3)
α,m + µmv

(4)
α,m

 .
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Figure 7: Structure of the components of the operator Ai,i. The infinite dimensional diagonal
and ti-diagonal terms are defined so that the composition AA† acts as the identity out of
Π(M+4)X.

Then, let us apply the operator A to A†(v). For any α and |m| ≥M + 4, it holds

[A(A†(v))]α,m =



1
µm

(µmv
(1)
α,m)

1
µm

(µmv
(2)
α,m)

1
µm

(µmv
(3)
α,m)

e
(m)
4 (µm−4v

(1)
α,m−4) + e

(m)
0 (µmv

(1)
α,m) + e

(m)
−4 (µm+4v

(1)
α,m+4) + h

(m)
0 µmv

(2)
α,m + `

(m)
0 µmv

(3)
α,m

1
µm

(
d4v

(1)
α,m−4 + d0v

(1)
α,m + d−4v

1
α,m+4 + f0v

(2)
α,m + g0v

(3)
α,m + µmv

(4)
α,m

)


.

By definition of e0, e4, e−4, h0, `0, we have [A(A†(v))]α,m = vα,m, that is AA† acts as the
identity on the infinite dimensional subspace (I − Π(M+4))X. On the contrary, we can
not guarantee that AA† is close to the identity in the finite dimensional space Π(M+4)(X),
because of the out of diagonal terms. Thus, we compute a numerical inverse of the restriction
of A† on Π(M+4)(X), and we append the result in the construction of A. In practice, the

matrices (A
(M)
i1,i2

)j1,j2 are replaced by slightly larger matrices (A
(M+4)
i1,i2

)j1,j2 . In conclusion,
the structure of the operator A is the same as the one depicted in Fig. 7 with M + 4 in
place of M .

Bound Z(1)

As in (73), let Ã2
α be the matrix with components (Ã2

α)(m,n) = (ā2
α)m−n. The matrices

Γ(s, t) used in the computation of the Z(1) bound, are of the following form

sj = 1 sα = tα tj = 2 Γ(s, t) = −Ĩ
sj = 2 sα = tα tj = 3 Γ(s, t) = −Ĩ

sj = 3 sα = tα tj = 4 Γ(s, t) = −Ĩ

sj = 4 sα = tα tj = 1 Γ(s, t) = 3(Ã2
0)∗

tj = 4 Γ(s, t) = 14Ĩ

sα > tα tj = 1 Γ(s, t) = 3Ã2
sα−tα

where (Ã2
0)∗ is the same as Ã2

0 after replacing (ā2
0)0 = (ā2

0)±4 = 0. That is one of the

consequences of considering the tridiagonal action in (A†i,i)4,1. The other main consequence

is that there are no the linear terms 120Ĩ, 154Ĩ, 71Ĩ.
Bound Z(2) and Z(3)
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Because of the cubic nonlinearity, besides the Z(2) bound we also have the Z(3) bound.
Indeed ∑

α1+α2+α3=α

|α1|≥0,|α2|≥0,|α3|≥2

(ā
(1)
α1 + ruα1) ∗ (ā

(1)
α2 + ruα2) ∗ (rv

(1)
α3 ) =

r
∑

α1+α2=α

|α1|≥0,|α2|≥2

(ā2)α1∗v(1)
α2 +r2

∑
α1+α2+α3=α

|α1|,|α2|≥0

|α3|≥2

(ā
(1)
α1 ∗uα2+ā

(1)
α2 ∗uα1)∗vα3+r3

∑
α1+α2+α3=α

|αi|≥2

uα1∗uα2∗vα3

Hence (Z(2))
(j)
α = (Z(3))

(j)
α = 0, for j = 1, 2, 3, and

(Z(2))(4)
α = 2

∑
α1+α2+α3=α

|α1|≥0,|α2|,|α3|≥2

‖ā(1)
α1 ‖1,ν , (Z(3))(4)

α =
∑

α1+α2+α3=α

|αi|≥2

1

A.1 Extra coefficients, Ñ < |α| ≤ N

Once the enclosure of the function aα(w) for |α| < Ñ is computed, following the approach of
section 3.3, the coefficients aα(w) for Ñ < |α| ≤ N can be addressed layer by layer. In the
case under analysis, the value of N required by the proof is pretty big. As already stated,
we do not compute all the coefficients one-by-one for any |α| up to N , rather for |α| big
enough a uniform bound is employed. More precisely, for a choice of N?, 3Ñ < N? < N ,
the functions aα are one-by-one enclosed for any Ñ < |α| ≤ N?. Then uniform bounds
provide the enclosure for all the remaining aα.

The case |α| ≤ N?.
In the unknown aα, the function Fα is the same as in (80). The nonlinearity is decom-

posed into ∑
α1+α2+α3=α

a
(1)
α1 ∗ a(1)

α2 ∗ a(1)
α3 =

∑
α1+α2+α3=α

|αi|<|α|

a
(1)
α1 ∗ a(1)

α2 ∗ a(1)
α3 + 3a(1)

α ∗ (a2
0).

Since ā = āα = 0, it follows that

(F (ā))α =

0, 0, 0,
∑

α1+α2+α3=α

|αi|<|α|

(
a

(1)
α1 ∗ a(1)

α2 ∗ a(1)
α3

)
T

Definition of Aα,α
Let us first write explicitly A†α,α

(
(A†α,α)j1,j2d

)
m

=


(

(DF (M)
α,α )j1,j2dF

)
m
, |m| < M,

δj1,j2

(
2πim

2T
+ α · Λ

)
dm, |m| ≥M,

(84)

and, as done before, we augment the operators (A†α,α)4,j2 , j2 = 1, 2, 3 with the tridiagonal

and diagonal operators depicted in figure 6. Here DF
(M)
α,α is the derivative of F

(M)
α with

respect to a
(M)
α and it is given by

DF (M)
α,α =


µ

(M)
α −I(M) 0 0

0 µ
(M)
α −I(M) 0

0 0 µ
(M)
α −I(M)

120I(m) + 3(A2
0)(M) 154I(M) 71I(M) µ

(M)
α + 14I(M)


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where µ
(M)
α is the (2M−1)×(2M−1) diagonal matrix with 2πim

2T +α·Λ on the diagonal, |m| <
M , I(M) is the (2M −1)× (2M −1) identity matrix and (A2

0)(M) is the (2M −1)× (2M −1)
matrix representing the action of the convolution a2

0 ∗ x on X(M).
The operator Aα,α is of the same shape as done previously

((Aα,α)j1,j2c)m =


(

(A(M+4)
α,α )j1,j2cF

)
m
, |m| < M + 4,

δj1,j2

(
1

2πim
2T + α · Λ

)
cm, |m| ≥M + 4,

(85)

with the tridiagonal and diagonal elements of Figure 7 appended to (Aα,α)4,j2, j2 = 1, 2, 3.
Again, as before, we moved M to M + 4 to ensure that AA† = I on I − Π(M+4)X and

A
(M+4)
α,α is a numerical inverse of (A†α,α)(M+4).

Construction of the bounds Y and Z(r)

Yα ≥ |||Aα,α|||

0, 0, 0,

∥∥∥∥∥∥∥
∑

α1+α2+α3=α

|αi|<|α|

(
a

(1)
α1 ∗ a(1)

α2 ∗ a(1)
α3

)∥∥∥∥∥∥∥
ν


T

.

For any α, let Rα = I − A(M+4)
α,α (A†α,α)(M+4) the residual that occurs when multiplying

A† with the approximative inverse A and define

(Z(0)
α )(j) ≥

∑
j1

|||(Rα)j,j1 |||.

Explicitly, for any j = 1, . . . , 4 the Z(1) bound is as follows:

Z
(1)
α,j = |||(Aα,α)j,1Ĩ|||+ |||(Aα,α)j,2Ĩ|||+ |||(Aα,α)j,3Ĩ|||+ |||(Aα,α)j,414Ĩ|||+

3|||(Aα,α)j,4(Ã2
0)∗|||+ 3|||(Aα,α)j,4|||ε0,2

(86)

where ‖(ā2)0 − (a2)0‖ν ≤ ε0,2.
Uniform bound for N∗ < |α| ≤ N
It remains to compute rigorous enclosure for aα for any N∗ < |α| ≤ N . The idea is

to solve the system {Fα = 0}N∗<|α|≤N in the unknowns {aα}N∗<|α|≤N . The operators A†

and A are constructed as diagonal operator in α so that any polynomial pα depends on the
operator Aα,α. Also, the numerical approximate solution is taken to be zero for any α. In
order to define an unique polynomial that provides the enclosure for any α, uniform bound
on Yα, Zα are sought, together with uniform bound of |||Aα,α|||. Let us briefly discuss
how to define uniform bound for |||Aα,α|||. The crucial point is to bound |||AM+4

α,α |||, where

A
(M+4)
α,α is an approximate inverse of (A†α,α)(M+4).For the system under analysis, we have

(A†α,α)(M+4) =


µ

(M+4)
α −I(M) 0 0

0 µ
(M+4)
α −I(M) 0

0 0 µ
(M+4)
α −I(M)

C4,1 C4,2 C4,3 µ
(M+4)
α + 14I(M)


where C4,1 is the 2(M+4)−1×2(M+4)−1 matrix obtained by enlarging 120I(M)+3(A2

0)(M)

with the terms on the 3 diagonals d0, d4, d−4, C4,2 = 154I(M+4), C4,3 = 71I(M+4).
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Write (A†α,α)(M+4) = P +Bα where

P =


0 −I(M) 0 0
0 0 −I(M) 0
0 0 0 −I(M)

0 0 0 14I(M)

 , Bα =


µ

(M+4)
α 0 0 0

0 µ
(M+4)
α 0 0

0 0 µ
(M+4)
α 0

C4,1 C4,2 C4,3 µ
(M+4)
α


Now, we define A

(M+4)
α,α as

A(M+4)
α,α = B̃α − B̃αPB̃α.

where

B̃α =


µ−1
α 0 0 0
0 µ−1

α 0 0
0 0 µ−1

α 0
−µ−1

α C4,1µ
−1
α −µ−1

α C4,2µ
−1
α −µ−1

α C4,3µ
−1
α µ−1

α

 , µ−1
α = (µ(M+4)

α )−1.

It follows BαB̃α = I and

I −A(M+4)
α,α (A†α,α)(M+4) = B̃αPB̃αP.

For the definition of Z0, an uniform bound of the latest product is needed for any |α| > N∗.
Since B̃α is component wise decreasing in |α|, that is |B̃α′ | < max |B̃α| if |α′| = |α| + 1, a
bound is obtained by computing the expression for all the α’s with |α| = N∗.

Similarly, a bound for |||A(M+4)
α,α ||| is computed, as explained in the next remark.

Remark A.1. Direct computation provides

A(M+4)
α,α = B̃α − B̃αPB̃α =

µ−1
α µ−1

α I(M)µ−1
α 0 0

0 µ−1
α µ−1

α I(M)µ−1
α 0

−µ−1
α I(M)µ−1

α C4,1µ
−1
α −µ−1

α I(M)µ−1
α C4,2µ

−1
α µ−1

α − µ−1
α I(M)µ−1

α C4,3µ
−1
α µ−1

α I(M)µ−1
α

X1 X2 X3 X4


where

X1 = −(I − µ−1
α C4,3µ

−1
α I(M) − 14µ−1

α I(M))µ−1
α C4,1µ

−1
α

X2 = −µ−1
α C4,1µ

−1
α I(M)µ−1

α − (I − µ−1
α C4,3µ

−1
α I(M) − 14µ−1

α I(M))µ−1
α C4,2µ

−1
α

X3 = −µ−1
α C4,2µ

−1
α I(M)µ−1

α − (I − µ−1
α C4,3µ

−1
α I(M) − 14µ−1

α I(M))µ−1
α C4,3µ

−1
α

X4 = −µ−1
α C4,3µ

−1
α I(M)µ−1

α + µ−1
α − 14µ−1

α I(M)µ−1
α

For any α the operator norm of the operator µ−1
α is given by

|||µ−1
α ||| = max

m

∣∣∣∣ 1

2πim/2T + α · Λ

∣∣∣∣ =

∣∣∣∣ 1

α · Λ

∣∣∣∣ =
1

α · |Λ|

Clearly, if |α′| = N + 1, α′ · |Λ| > min|α|=N α · |Λ| therefore

|||µ−1
α′ ||| < max

|α|=N
|||µ−1

α |||.

According to this remark, the knowledge of |||µ−1
α ||| with |α| = N? allows to uniformly

bound |||µ−1
α′ ||| for any |α′| > N?. From where it follows uniform bound for the operator

norm of each of the entries of A
(M+4)
α,α that is valid for any α with |α| > N?.
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application of KAM theory: a modern approach. (submitted), 2016.

[14] Allan Hungria, Jean-Philippe Lessard, and Jason D. Mireles-James. Rigorous numerics
for analytic solutions of differential equations: the radii polynomial approach. Math.
Comp., 85(299):1427–1459, 2016.

56



[15] Jean-Philippe Lessard, Julian Ransford, and J. D. Mireles James. Automatic differen-
tiation for fourier series and the radii polynomial approach. Physica D, 2016.

[16] Roberto Castelli and Jean-Philippe Lessard. Rigorous Numerics in Floquet Theory:
Computing Stable and Unstable Bundles of Periodic Orbits. SIAM J. Appl. Dyn.
Syst., 12(1):204–245, 2013.

[17] Roberto Castelli, Jean-Philippe Lessard, and J. D. Mireles James. Analytic enclosure
of the fundamental matrix solution. Applications of Mathematics, 60(6):617–636, 2015.

[18] Carmen Chicone. Ordinary differential equations with applications, volume 34 of Texts
in Applied Mathematics. Springer, New York, second edition, 2006.

[19] Clark Robinson. Dynamical systems. Studies in Advanced Mathematics. CRC Press,
Boca Raton, FL, second edition, 1999. Stability, symbolic dynamics, and chaos.

[20] Kenneth R. Meyer, Glen R. Hall, and Dan Offin. Introduction to Hamiltonian dynamical
systems and the N -body problem, volume 90 of Applied Mathematical Sciences. Springer,
New York, second edition, 2009.

[21] Richard McGehee. The stable manifold theorem via an isolating block. In Symposium on
Ordinary Differential Equations (Univ. Minnesota, Minneapolis, Minn., 1972; dedicated
to Hugh L. Turrittin), pages 135–144. Lecture Notes in Math., Vol. 312. Springer,
Berlin, 1973.

[22] Christopher K. R. T. Jones. Geometric singular perturbation theory. In Dynamical
systems (Montecatini Terme, 1994), volume 1609 of Lecture Notes in Math., pages
44–118. Springer, Berlin, 1995.
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