Mathematics 189-133B, Winter 2003 Vectors, Matrices and Geometry Written Assignment 8, due in class, March 28, 2003

Suppose that $T : \mathcal{R}^n \longrightarrow \mathcal{R}^n$ is a linear operator. We define the *kernel of* T, as $ker(T) = \{ \vec{v} \in \mathcal{R}^n : T\vec{v} = \vec{0} \}$. [In case $T = T_A$, this is just the null space of A.]

- 1. Show that $ker(T^k) \leq ker(T^{k+1})$ for any natural number k.
- 2. Show that there is an integer $k \leq n$ such that $ker(T^k) = ker(T^{k+1})$.
- 3. Give examples, for n = 4, to show that it is possible that
 - (a) $T \neq 0$, but $ker(T) = ker(T^2)$.
 - (b) $ker(T) \neq ker(T^2)$, but $ker(T^2) = ker(T^3)$.
 - (c) $ker(T^2) \neq ker(T^3)$, but $ker(T^3) = ker(T^4)$.
 - (d) $ker(T^3) \neq ker(T^4)$, but $ker(T^4) = ker(T^5)$.